metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-4-bromo­benzoato)-κ3O,O′:O′;O:O,O′-bis­­[μ-1,3-bis­­(pyridin-4-yl)propane-κ2N:N′]bis­­[(4-bromo­benzoato-κ2O,O′)cadmium]

aCollege of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, Anhui, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: dongliu@chnu.edu.cn

(Received 6 October 2011; accepted 23 October 2011; online 29 October 2011)

The dinuclear complex, [Cd2(C7H4BrO2)4(C13H14N2)2], lies on a twofold rotation axis crossing midway between the two metal atoms. The CdII cation is seven-coordinated with a geometry that can be considered as distorted penta­gonal bipyramidal, with the N atom of the N-heterocyclic units occupying the apical sites and the O atoms of the 4-bromo­benzoate units in the equatorial plane. The middle methyl­ene group of the 1,3-bis­(4-pyrid­yl)propane ligands is located outside of the twofold rotation axis and consequently is disordered over two sites around this symmetry element with fixed occupancies factors of 0.5.

Related literature

For related structures, see: Liu et al. (2011[Liu, D., Li, N.-Y. & Lang, J.-P. (2011). Dalton Trans. 40, 2170-2172.]). For another complex with a dinuclear seven-coordinate Cd(II) atom, see: Ranjbar et al. (2002[Ranjbar, M., Aghabozorg, H. & Moghimi, A. (2002). Acta Cryst. E58, m304-m306.]); Wang et al. (2006[Wang, Q.-W., Li, X.-M., Gao, G.-G. & Shi, L.-F. (2006). Acta Cryst. E62, m3483-m3485.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C7H4BrO2)4(C13H14N2)2]

  • Mr = 1421.35

  • Tetragonal, P 43 21 2

  • a = 13.7829 (10) Å

  • c = 27.8235 (17) Å

  • V = 5285.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.89 mm−1

  • T = 223 K

  • 0.45 × 0.40 × 0.35 mm

Data collection
  • Rigaku Mercury area-detector diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.174, Tmax = 0.256

  • 25017 measured reflections

  • 6020 independent reflections

  • 5452 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.104

  • S = 1.05

  • 6020 reflections

  • 334 parameters

  • 34 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.71 e Å−3

  • Absolute structure: Flack (1983)[Flack, H. D. (1983). Acta Cryst. A39, 876-881.], 2533 Friedel pairs

  • Flack parameter: 0.006 (12)

Data collection: CrystalClear (Rigaku, 2001[Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structures of coordination compounds having flexible N-donor ligands are generally different from those having rigid N-donor ligands because these flexible ligands can adopt more than one conformation. The title adduct, [Cd2(C7H4O2Br)4(C13H14N2)2] (Scheme I), is assembled from Cd(II) bis(4-bromobenzoate) and 1,3-bis(4-pyridyl)propane. This study represents an extension of our previous one (Liu et al., 2011).

The complex, which features two CdII atoms, is lying on a twofold crystallographic rotation axis crossing midway between the two metallic atoms. Each CdII atom is seven coordinated with an geometry that can be considered as a distorted pentagonal bipyramid, with the nitrogen atom of the N-heterocycle units occupying the apical sites and the oxygen atoms of the p-bromobenzoate units in the ecuatorial plane of each coordination bypiramide (Fig. 1). The middle methylene groups of the 1,3-bis(4-pyridyl)propane ligands are located outside of the binary crystallographic axis and consequently are disordered between two sites around this symmetry element with fixed occupancies factors of 0.5.

Related literature top

For related structures, see: Liu et al. (2011). For another complex with a dinuclear seven-coordinate Cd(II) atom, see: Ranjbar et al. (2002); Wang et al. (2006).

Experimental top

To a 10 mL Pyrex glass tube was loaded Cd(NO3)2.4H2O (31 mg, 0.1 mmol), 4-bromobenzoic acid (40 mg, 0.2 mmol), 1,3-bis(4-pyridyl)propane (20 mg, 0.1 mmol) and 3 ml of water. The tube was sealed and heated in an oven to 423 K for three days. It was then cooled to ambient temperature at the rate of 5 K h-1 to yield colorless crystals. These were washed with water/ethanol and dried; yield: 54 mg (76% yield based on Cd). Analysis: Calcd. for C54H44Br4Cd2N4O8: C, 45.63; H, 3.12; N, 3.94%. Found: C, 45.83; H, 2.94; N, 3.88%.

Refinement top

Hydrogen atoms were placed in geometrically idealized positions (C–H = 0.95–0.98 Å) and were constrained to ride on their parent atoms with Uiso(H) = 1.2–1.5Ueq(C). The two half-molecules of the N-heterocycle have half-occupancy for their middle methylene carbon. For the —CH2—CH2—CH2— linkage, the 1,2-related distances were restrained to 1.54±0.01 Å and the 1,3-related ones to 2.51±0.01 Å. The anisotropic temperature factors of the methylene carbon atoms were restrained to be nearly istropic.

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Coordination environment of CdII with non-hydrogen atoms represented by thermal ellipsoids drawn at the 30% probability level;, hydrogen atoms are drawn as spheres of arbitrary radius. The unlabeled atoms are related to the labeled ones by y, x, 1 - z.
Bis(µ-4-bromobenzoato)-κ3O,O':O';O:O, O'-bis[µ-1,3-bis(pyridin-4-yl)propane-κ2N:N']bis[(4- bromobenzoato-κ2O,O')cadmium] top
Crystal data top
[Cd2(C7H4BrO2)4(C13H14N2)2]Dx = 1.786 Mg m3
Mr = 1421.35Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43212Cell parameters from 18739 reflections
Hall symbol: P 4nw 2abwθ = 3.0–27.5°
a = 13.7829 (10) ŵ = 3.89 mm1
c = 27.8235 (17) ÅT = 223 K
V = 5285.6 (5) Å3Block, colorless
Z = 40.45 × 0.40 × 0.35 mm
F(000) = 2784
Data collection top
Rigaku Mercury area-detector
diffractometer
6020 independent reflections
Radiation source: fine-focus sealed tube5452 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1715
Tmin = 0.174, Tmax = 0.256k = 1417
25017 measured reflectionsl = 3634
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0507P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6020 reflectionsΔρmax = 0.73 e Å3
334 parametersΔρmin = 0.71 e Å3
34 restraintsAbsolute structure: Flack (1983), 2533 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.006 (12)
Crystal data top
[Cd2(C7H4BrO2)4(C13H14N2)2]Z = 4
Mr = 1421.35Mo Kα radiation
Tetragonal, P43212µ = 3.89 mm1
a = 13.7829 (10) ÅT = 223 K
c = 27.8235 (17) Å0.45 × 0.40 × 0.35 mm
V = 5285.6 (5) Å3
Data collection top
Rigaku Mercury area-detector
diffractometer
6020 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
5452 reflections with I > 2σ(I)
Tmin = 0.174, Tmax = 0.256Rint = 0.051
25017 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.104Δρmax = 0.73 e Å3
S = 1.05Δρmin = 0.71 e Å3
6020 reflectionsAbsolute structure: Flack (1983), 2533 Friedel pairs
334 parametersAbsolute structure parameter: 0.006 (12)
34 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.28537 (3)0.30187 (3)0.571507 (12)0.03592 (10)
Br10.31290 (6)0.12444 (5)0.87743 (2)0.0635 (2)
Br20.11352 (5)0.71348 (5)0.41927 (2)0.05446 (17)
N10.4148 (3)0.4080 (3)0.56841 (16)0.0429 (11)
N20.1775 (3)0.1737 (3)0.56787 (15)0.0396 (10)
O10.2543 (3)0.3183 (3)0.65343 (12)0.0503 (10)
O20.3615 (3)0.2054 (3)0.63554 (12)0.0456 (9)
O30.1690 (3)0.4235 (3)0.56093 (13)0.0482 (10)
O40.2200 (3)0.3720 (3)0.49044 (12)0.0427 (8)
C10.5048 (4)0.3806 (5)0.5593 (3)0.0567 (16)
H10.51800.31460.55680.068*
C20.5805 (5)0.4457 (5)0.5532 (3)0.072 (2)
H20.64280.42290.54700.086*
C30.5639 (5)0.5433 (5)0.5562 (3)0.072 (2)
C40.4708 (6)0.5709 (5)0.5675 (3)0.071 (2)
H40.45620.63650.57070.086*
C50.3986 (5)0.5025 (4)0.5741 (3)0.0571 (17)
H50.33680.52320.58270.069*
C60.6408 (7)0.6190 (7)0.54516 (18)0.112 (3)
H6A0.61190.68250.54970.135*
H6B0.69200.61250.56890.135*
C70.6851 (8)0.6173 (12)0.4982 (3)0.097 (6)0.50
H7A0.71270.55330.49330.117*0.50
H7B0.73840.66330.49830.117*0.50
C80.2078 (4)0.0851 (4)0.5583 (2)0.0527 (15)
H80.27420.07470.55540.063*
C90.1461 (5)0.0068 (5)0.5524 (3)0.0592 (18)
H90.17070.05500.54680.071*
C100.0476 (4)0.0221 (5)0.5549 (3)0.0595 (17)
C110.0170 (4)0.1122 (5)0.5678 (3)0.0570 (16)
H110.04870.12370.57300.068*
C120.0826 (4)0.1862 (5)0.5731 (2)0.0484 (14)
H120.05960.24780.58070.058*
C130.0237 (5)0.0588 (5)0.54387 (18)0.085 (3)
H13A0.01010.11200.56570.102*
H13B0.08820.03520.55150.102*
C140.0264 (11)0.0976 (7)0.4959 (3)0.079 (4)0.50
H14A0.07050.15240.49540.095*0.50
H14B0.03770.12160.48780.095*0.50
C150.3081 (4)0.2494 (4)0.66474 (18)0.0375 (11)
C160.3087 (3)0.2182 (4)0.71718 (16)0.0332 (10)
C170.3666 (4)0.1423 (4)0.7316 (2)0.0450 (13)
H170.40410.10950.70900.054*
C180.3697 (5)0.1144 (4)0.7793 (2)0.0470 (14)
H180.41030.06450.78950.056*
C190.3100 (4)0.1637 (4)0.81186 (18)0.0410 (12)
C200.2518 (4)0.2390 (4)0.79782 (18)0.0432 (13)
H200.21340.27120.82020.052*
C210.2507 (4)0.2665 (4)0.7503 (2)0.0405 (11)
H210.21110.31730.74030.049*
C220.1681 (4)0.4273 (4)0.51581 (17)0.0327 (10)
C230.1022 (3)0.4995 (3)0.49208 (17)0.0314 (10)
C240.1013 (4)0.5092 (4)0.44265 (18)0.0380 (11)
H240.14310.47160.42410.046*
C250.0382 (4)0.5750 (4)0.41988 (19)0.0409 (12)
H250.03790.58220.38660.049*
C260.0224 (4)0.6278 (4)0.4483 (2)0.0408 (12)
C270.0225 (4)0.6223 (4)0.4981 (2)0.0415 (12)
H270.06380.66090.51640.050*
C280.0419 (4)0.5564 (4)0.52030 (19)0.0408 (12)
H280.04390.55120.55360.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0413 (2)0.0398 (2)0.02666 (17)0.00572 (16)0.00150 (14)0.00022 (14)
Br10.0817 (5)0.0768 (4)0.0321 (3)0.0083 (4)0.0002 (3)0.0118 (3)
Br20.0561 (3)0.0527 (3)0.0546 (3)0.0111 (3)0.0103 (3)0.0124 (3)
N10.045 (2)0.044 (2)0.040 (2)0.002 (2)0.001 (2)0.009 (2)
N20.039 (2)0.043 (2)0.037 (2)0.0020 (19)0.0006 (19)0.003 (2)
O10.064 (3)0.055 (2)0.0320 (19)0.023 (2)0.0008 (17)0.0043 (17)
O20.051 (2)0.057 (2)0.0297 (18)0.014 (2)0.0039 (16)0.0019 (17)
O30.057 (2)0.061 (2)0.0266 (19)0.0199 (19)0.0005 (18)0.0005 (18)
O40.050 (2)0.045 (2)0.0339 (18)0.0106 (18)0.0011 (17)0.0015 (16)
C10.049 (3)0.045 (3)0.076 (5)0.006 (3)0.007 (3)0.013 (3)
C20.038 (3)0.062 (4)0.115 (7)0.004 (3)0.005 (4)0.002 (4)
C30.061 (4)0.050 (4)0.106 (6)0.015 (3)0.021 (4)0.006 (4)
C40.076 (5)0.035 (3)0.102 (6)0.001 (3)0.011 (5)0.011 (4)
C50.061 (4)0.046 (3)0.064 (4)0.008 (3)0.005 (3)0.020 (3)
C60.087 (6)0.080 (5)0.170 (8)0.017 (5)0.041 (6)0.005 (6)
C70.083 (8)0.091 (9)0.118 (10)0.022 (7)0.011 (8)0.012 (8)
C80.040 (3)0.045 (3)0.073 (4)0.003 (3)0.006 (3)0.006 (3)
C90.047 (3)0.045 (3)0.085 (5)0.007 (3)0.009 (3)0.006 (3)
C100.044 (3)0.056 (4)0.078 (5)0.006 (3)0.004 (3)0.008 (4)
C110.041 (3)0.056 (4)0.075 (5)0.002 (3)0.018 (3)0.000 (4)
C120.046 (3)0.048 (3)0.050 (3)0.003 (3)0.009 (3)0.005 (3)
C130.054 (4)0.062 (4)0.140 (7)0.012 (4)0.001 (5)0.017 (5)
C140.078 (8)0.063 (7)0.097 (9)0.023 (6)0.005 (7)0.010 (7)
C150.037 (2)0.041 (3)0.034 (3)0.001 (2)0.003 (2)0.001 (2)
C160.033 (2)0.041 (2)0.025 (2)0.005 (2)0.0024 (19)0.000 (2)
C170.052 (3)0.047 (3)0.036 (3)0.017 (3)0.003 (2)0.003 (2)
C180.062 (4)0.043 (3)0.036 (3)0.010 (3)0.004 (3)0.007 (2)
C190.047 (3)0.047 (3)0.029 (2)0.002 (3)0.002 (2)0.004 (2)
C200.049 (3)0.048 (3)0.033 (3)0.008 (3)0.007 (2)0.000 (2)
C210.043 (3)0.042 (3)0.036 (3)0.012 (2)0.002 (2)0.002 (2)
C220.034 (2)0.032 (2)0.032 (3)0.0013 (19)0.002 (2)0.002 (2)
C230.035 (3)0.029 (2)0.029 (2)0.0025 (19)0.004 (2)0.0007 (19)
C240.037 (3)0.043 (3)0.034 (3)0.004 (2)0.003 (2)0.000 (2)
C250.048 (3)0.044 (3)0.030 (3)0.001 (2)0.002 (2)0.004 (2)
C260.046 (3)0.032 (3)0.044 (3)0.004 (2)0.004 (2)0.002 (2)
C270.044 (3)0.039 (3)0.041 (3)0.004 (2)0.001 (2)0.000 (2)
C280.051 (3)0.042 (3)0.029 (2)0.004 (2)0.003 (2)0.000 (2)
Geometric parameters (Å, º) top
Cd1—N12.309 (5)C9—C101.375 (9)
Cd1—N22.311 (5)C9—H90.9300
Cd1—O12.330 (3)C10—C111.360 (9)
Cd1—O32.338 (4)C10—C131.518 (7)
Cd1—O4i2.381 (3)C11—C121.371 (9)
Cd1—O22.458 (4)C11—H110.9300
Cd1—O42.614 (3)C12—H120.9300
Br1—C191.903 (5)C13—C141.439 (8)
Br2—C261.904 (5)C13—C14i1.568 (9)
N1—C11.323 (7)C13—H13A0.9700
N1—C51.331 (7)C13—H13B0.9700
N2—C81.318 (7)C14—C13i1.568 (9)
N2—C121.328 (7)C14—H14A0.9700
O1—C151.245 (6)C14—H14B0.9700
O2—C151.253 (6)C15—C161.521 (6)
O3—C221.256 (6)C16—C171.376 (7)
O4—C221.262 (6)C16—C211.390 (7)
O4—Cd1i2.381 (3)C17—C181.383 (8)
C1—C21.386 (9)C17—H170.9300
C1—H10.9300C18—C191.400 (8)
C2—C31.368 (10)C18—H180.9300
C2—H20.9300C19—C201.368 (8)
C3—C41.374 (10)C20—C211.376 (7)
C3—C61.519 (7)C20—H200.9300
C4—C51.383 (10)C21—H210.9300
C4—H40.9300C22—C231.500 (7)
C5—H50.9300C23—C241.382 (7)
C6—C71.441 (8)C23—C281.387 (7)
C6—C7i1.547 (9)C24—C251.408 (8)
C6—H6A0.9700C24—H240.9300
C6—H6B0.9700C25—C261.360 (8)
C7—C6i1.547 (9)C25—H250.9300
C7—H7A0.9700C26—C271.389 (8)
C7—H7B0.9700C27—C281.412 (7)
C8—C91.385 (8)C27—H270.9300
C8—H80.9300C28—H280.9300
N1—Cd1—N2168.48 (15)C10—C9—C8118.8 (6)
N1—Cd1—O196.70 (16)C10—C9—H9120.6
N2—Cd1—O189.95 (16)C8—C9—H9120.6
N1—Cd1—O394.06 (16)C11—C10—C9117.4 (6)
N2—Cd1—O395.80 (15)C11—C10—C13121.5 (6)
O1—Cd1—O385.85 (13)C9—C10—C13121.1 (6)
N1—Cd1—O4i83.45 (15)C10—C11—C12120.2 (6)
N2—Cd1—O4i85.92 (15)C10—C11—H11119.9
O1—Cd1—O4i147.81 (12)C12—C11—H11119.9
O3—Cd1—O4i126.32 (12)N2—C12—C11122.8 (6)
N1—Cd1—O292.32 (15)N2—C12—H12118.6
N2—Cd1—O283.84 (14)C11—C12—H12118.6
O1—Cd1—O254.69 (12)C14—C13—C10118.5 (7)
O3—Cd1—O2140.51 (12)C14—C13—C14i55.6 (10)
O4i—Cd1—O293.12 (12)C10—C13—C14i110.7 (7)
N1—Cd1—O489.98 (14)C14—C13—H13A107.7
N2—Cd1—O491.32 (14)C10—C13—H13A107.7
O1—Cd1—O4138.15 (12)C14i—C13—H13A141.4
O3—Cd1—O452.42 (11)C14—C13—H13B107.7
O4i—Cd1—O473.93 (13)C10—C13—H13B107.7
O2—Cd1—O4166.50 (11)C14i—C13—H13B57.6
N1—Cd1—C1596.62 (15)H13A—C13—H13B107.1
N2—Cd1—C1584.99 (15)C13—C14—C13i114.9 (8)
O1—Cd1—C1527.28 (14)C13—C14—H14A108.5
O3—Cd1—C15113.01 (14)C13i—C14—H14A108.5
O4i—Cd1—C15120.56 (14)C13—C14—H14B108.5
O2—Cd1—C1527.50 (13)C13i—C14—H14B108.5
O4—Cd1—C15164.60 (14)H14A—C14—H14B107.5
C1—N1—C5117.4 (6)O1—C15—O2123.7 (5)
C1—N1—Cd1123.4 (4)O1—C15—C16117.5 (5)
C5—N1—Cd1119.1 (4)O2—C15—C16118.8 (4)
C8—N2—C12117.1 (5)O1—C15—Cd159.1 (3)
C8—N2—Cd1120.8 (4)O2—C15—Cd165.0 (3)
C12—N2—Cd1122.0 (4)C16—C15—Cd1173.6 (3)
C15—O1—Cd193.6 (3)C17—C16—C21120.3 (5)
C15—O2—Cd187.5 (3)C17—C16—C15119.9 (5)
C22—O3—Cd199.4 (3)C21—C16—C15119.8 (4)
C22—O4—Cd1i167.6 (3)C16—C17—C18120.6 (5)
C22—O4—Cd186.3 (3)C16—C17—H17119.7
Cd1i—O4—Cd1106.03 (13)C18—C17—H17119.7
N1—C1—C2123.0 (6)C17—C18—C19117.9 (5)
N1—C1—H1118.5C17—C18—H18121.1
C2—C1—H1118.5C19—C18—H18121.1
C3—C2—C1120.2 (6)C20—C19—C18121.9 (5)
C3—C2—H2119.9C20—C19—Br1120.1 (4)
C1—C2—H2119.9C18—C19—Br1118.0 (4)
C2—C3—C4116.3 (6)C19—C20—C21119.4 (5)
C2—C3—C6123.1 (7)C19—C20—H20120.3
C4—C3—C6120.5 (7)C21—C20—H20120.3
C3—C4—C5120.9 (6)C20—C21—C16119.9 (5)
C3—C4—H4119.6C20—C21—H21120.1
C5—C4—H4119.6C16—C21—H21120.1
N1—C5—C4122.1 (6)O3—C22—O4121.8 (5)
N1—C5—H5119.0O3—C22—C23118.3 (4)
C4—C5—H5119.0O4—C22—C23119.9 (4)
C7—C6—C3117.9 (8)C24—C23—C28120.2 (5)
C7—C6—C7i52.5 (12)C24—C23—C22120.5 (5)
C3—C6—C7i114.6 (8)C28—C23—C22119.3 (4)
C7—C6—H6A107.8C23—C24—C25121.0 (5)
C3—C6—H6A107.8C23—C24—H24119.5
C7i—C6—H6A58.9C25—C24—H24119.5
C7—C6—H6B107.8C26—C25—C24117.6 (5)
C3—C6—H6B107.8C26—C25—H25121.2
C7i—C6—H6B137.6C24—C25—H25121.2
H6A—C6—H6B107.2C25—C26—C27123.5 (5)
C6—C7—C6i117.0 (9)C25—C26—Br2119.4 (4)
C6—C7—H7A108.1C27—C26—Br2117.2 (4)
C6i—C7—H7A108.0C26—C27—C28118.1 (5)
C6—C7—H7B108.0C26—C27—H27121.0
C6i—C7—H7B108.0C28—C27—H27121.0
H7A—C7—H7B107.3C23—C28—C27119.6 (5)
N2—C8—C9123.4 (6)C23—C28—H28120.2
N2—C8—H8118.3C27—C28—H28120.2
C9—C8—H8118.3
N2—Cd1—N1—C111.9 (10)C4—C3—C6—C7119.0 (12)
O1—Cd1—N1—C1113.0 (5)C2—C3—C6—C7i116.5 (12)
O3—Cd1—N1—C1160.7 (5)C4—C3—C6—C7i60.0 (12)
O4i—Cd1—N1—C134.6 (5)C3—C6—C7—C6i65.9 (15)
O2—Cd1—N1—C158.3 (5)C7i—C6—C7—C6i34.9 (13)
O4—Cd1—N1—C1108.4 (5)C12—N2—C8—C91.7 (9)
C15—Cd1—N1—C185.6 (5)Cd1—N2—C8—C9175.4 (5)
N2—Cd1—N1—C5165.2 (7)N2—C8—C9—C102.3 (11)
O1—Cd1—N1—C569.9 (5)C8—C9—C10—C116.3 (11)
O3—Cd1—N1—C516.4 (5)C8—C9—C10—C13174.0 (6)
O4i—Cd1—N1—C5142.5 (5)C9—C10—C11—C126.4 (11)
O2—Cd1—N1—C5124.6 (5)C13—C10—C11—C12173.9 (6)
O4—Cd1—N1—C568.7 (5)C8—N2—C12—C111.7 (9)
C15—Cd1—N1—C597.3 (5)Cd1—N2—C12—C11175.4 (5)
N1—Cd1—N2—C811.7 (10)C10—C11—C12—N22.5 (11)
O1—Cd1—N2—C8113.8 (5)C11—C10—C13—C14115.9 (10)
O3—Cd1—N2—C8160.4 (5)C9—C10—C13—C1464.4 (12)
O4i—Cd1—N2—C834.3 (5)C11—C10—C13—C14i54.7 (10)
O2—Cd1—N2—C859.3 (5)C9—C10—C13—C14i125.6 (9)
O4—Cd1—N2—C8108.1 (5)C10—C13—C14—C13i63.9 (13)
C15—Cd1—N2—C886.9 (5)C14i—C13—C14—C13i32.8 (11)
N1—Cd1—N2—C12165.3 (7)Cd1—O1—C15—O26.5 (6)
O1—Cd1—N2—C1269.2 (4)Cd1—O1—C15—C16173.8 (4)
O3—Cd1—N2—C1216.6 (5)Cd1—O2—C15—O16.1 (5)
O4i—Cd1—N2—C12142.7 (5)Cd1—O2—C15—C16174.2 (4)
O2—Cd1—N2—C12123.7 (4)N1—Cd1—C15—O191.8 (3)
O4—Cd1—N2—C1268.9 (4)N2—Cd1—C15—O199.7 (3)
C15—Cd1—N2—C1296.1 (5)O3—Cd1—C15—O15.5 (4)
N1—Cd1—O1—C1591.5 (3)O4i—Cd1—C15—O1178.1 (3)
N2—Cd1—O1—C1579.1 (3)O2—Cd1—C15—O1174.0 (5)
O3—Cd1—O1—C15174.9 (3)O4—Cd1—C15—O123.0 (7)
O4i—Cd1—O1—C153.1 (5)N1—Cd1—C15—O282.3 (3)
O2—Cd1—O1—C153.4 (3)N2—Cd1—C15—O286.3 (3)
O4—Cd1—O1—C15171.0 (3)O1—Cd1—C15—O2174.0 (5)
N1—Cd1—O2—C1599.9 (3)O3—Cd1—C15—O2179.5 (3)
N2—Cd1—O2—C1591.0 (3)O4i—Cd1—C15—O24.0 (4)
O1—Cd1—O2—C153.3 (3)O4—Cd1—C15—O2162.9 (4)
O3—Cd1—O2—C150.7 (4)O1—C15—C16—C17179.8 (5)
O4i—Cd1—O2—C15176.5 (3)O2—C15—C16—C170.5 (8)
O4—Cd1—O2—C15160.5 (5)O1—C15—C16—C210.1 (7)
N1—Cd1—O3—C2286.1 (4)O2—C15—C16—C21179.6 (5)
N2—Cd1—O3—C2288.0 (4)C21—C16—C17—C181.5 (9)
O1—Cd1—O3—C22177.5 (4)C15—C16—C17—C18178.5 (5)
O4i—Cd1—O3—C221.2 (4)C16—C17—C18—C192.0 (9)
O2—Cd1—O3—C22175.3 (3)C17—C18—C19—C201.7 (9)
O4—Cd1—O3—C220.8 (3)C17—C18—C19—Br1179.3 (5)
C15—Cd1—O3—C22175.0 (3)C18—C19—C20—C210.9 (9)
N1—Cd1—O4—C2294.4 (3)Br1—C19—C20—C21179.9 (4)
N2—Cd1—O4—C2297.1 (3)C19—C20—C21—C160.4 (8)
O1—Cd1—O4—C225.7 (4)C17—C16—C21—C200.7 (8)
O3—Cd1—O4—C220.8 (3)C15—C16—C21—C20179.4 (5)
O4i—Cd1—O4—C22177.6 (3)Cd1—O3—C22—O41.5 (6)
O2—Cd1—O4—C22165.7 (5)Cd1—O3—C22—C23179.1 (4)
C15—Cd1—O4—C2221.3 (7)Cd1i—O4—C22—O3179.1 (14)
N1—Cd1—O4—Cd1i85.51 (17)Cd1—O4—C22—O31.3 (5)
N2—Cd1—O4—Cd1i83.04 (17)Cd1i—O4—C22—C230 (2)
O1—Cd1—O4—Cd1i174.44 (17)Cd1—O4—C22—C23179.3 (4)
O3—Cd1—O4—Cd1i179.3 (2)O3—C22—C23—C24177.4 (5)
O4i—Cd1—O4—Cd1i2.3 (2)O4—C22—C23—C243.1 (8)
O2—Cd1—O4—Cd1i14.4 (7)O3—C22—C23—C282.7 (7)
C15—Cd1—O4—Cd1i158.8 (5)O4—C22—C23—C28176.8 (5)
C5—N1—C1—C23.2 (11)C28—C23—C24—C251.4 (8)
Cd1—N1—C1—C2174.0 (6)C22—C23—C24—C25178.5 (5)
N1—C1—C2—C30.5 (13)C23—C24—C25—C260.6 (8)
C1—C2—C3—C42.8 (13)C24—C25—C26—C272.3 (9)
C1—C2—C3—C6173.9 (7)C24—C25—C26—Br2177.1 (4)
C2—C3—C4—C51.5 (13)C25—C26—C27—C281.8 (9)
C6—C3—C4—C5175.2 (7)Br2—C26—C27—C28177.6 (4)
C1—N1—C5—C44.4 (10)C24—C23—C28—C271.9 (8)
Cd1—N1—C5—C4172.8 (6)C22—C23—C28—C27178.0 (5)
C3—C4—C5—N12.1 (13)C26—C27—C28—C230.4 (8)
C2—C3—C6—C757.5 (14)
Symmetry code: (i) y, x, z+1.

Experimental details

Crystal data
Chemical formula[Cd2(C7H4BrO2)4(C13H14N2)2]
Mr1421.35
Crystal system, space groupTetragonal, P43212
Temperature (K)223
a, c (Å)13.7829 (10), 27.8235 (17)
V3)5285.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.89
Crystal size (mm)0.45 × 0.40 × 0.35
Data collection
DiffractometerRigaku Mercury area-detector
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.174, 0.256
No. of measured, independent and
observed [I > 2σ(I)] reflections
25017, 6020, 5452
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.05
No. of reflections6020
No. of parameters334
No. of restraints34
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.71
Absolute structureFlack (1983), 2533 Friedel pairs
Absolute structure parameter0.006 (12)

Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the Research Start-Up Fund for New Staff of Huaibei Normal University (600581) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, D., Li, N.-Y. & Lang, J.-P. (2011). Dalton Trans. 40, 2170–2172.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRanjbar, M., Aghabozorg, H. & Moghimi, A. (2002). Acta Cryst. E58, m304–m306.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q.-W., Li, X.-M., Gao, G.-G. & Shi, L.-F. (2006). Acta Cryst. E62, m3483–m3485.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds