metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[tetra­aquadi-μ4-oxalato-lutetium(III)potassium]

aKey Laboratory of Functional Inorganic Materials Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gmli_2000@163.com

(Received 19 September 2011; accepted 12 October 2011; online 22 October 2011)

In the title compound, [KLu(C2O4)2(H2O)4]n, the LuIII ion lies on a site of [\overline{4}] symmetry in a dodeca­hedron defined by eight O atoms from four oxalate ligands. The K atom lies on another site of the same symmetry and is coordinated by four oxalate O atoms and four O water atoms. The mid-point of the C—C bond of the oxalate group lies on an inversion center. In the packing structure, each oxalate ligand links two Lu(III) and two K atoms, forming a three-dimensional open framework with channels running along [001]. Inter­molecular O—H⋯O hydrogen bonds occur.

Related literature

For background to oxalate anions as bridging ligands in high dimensional frameworks and for a similar structure, see: Camara et al. (2003[Camara, M., Daiguebonne, C., Boubekeur, K., Roisnel, T., Gérault, Y., Baux, C., Dret, F. L. & Guillou, O. (2003). C. R. Chim. 6, 405-415.]); Zhang et al. (2009[Zhang, X.-J., Xing, Y.-H., Wang, C.-G., Han, J., Li, J., Ge, M.-F., Zeng, X.-Q. & Niu, S.-Y. (2009). Inorg. Chim. Acta, 362, 1058-1064.]).

[Scheme 1]

Experimental

Crystal data
  • [KLu(C2O4)2(H2O)4]

  • Mr = 462.17

  • Tetragonal, I 41 /a

  • a = 11.3337 (16) Å

  • c = 8.9121 (18) Å

  • V = 1144.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.05 mm−1

  • T = 293 K

  • 0.08 × 0.08 × 0.06 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.546, Tmax = 0.604

  • 5421 measured reflections

  • 655 independent reflections

  • 594 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.014

  • wR(F2) = 0.035

  • S = 1.13

  • 655 reflections

  • 41 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H2⋯O1i 0.85 2.06 2.836 (4) 151
O3—H1⋯O3ii 0.85 2.06 2.891 (3) 166
Symmetry codes: (i) [-x+1, -y+{\script{1\over 2}}, z]; (ii) [y+{\script{1\over 4}}, -x+{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Lanthanide complexes with spectroscopic and magnetic properties are currently of considerable interest; the oxalate ligand can serve as bridging ligand in high dimensional frameworks (Camara et al., 2003; Zhang et al., 2009). In this paper, we present here the synthesis and crystal structure of the title compound.

The title compound was obtained as a byproduct by the decomposition of 1,3,5-triazine-2,4,6-tricarboxylate ligand. In the title compound, [LuK(C2O4)2(H2O)4]n, the eight-coordinated lutetium(III) ion lies on a 4-fold inverse axis in a distorted dodecahedron defined by eight oxygen atoms from four oxalate ligands, and while the eight-coordinated potassium is also locate on a 4-fold inverseaxis in a distorted dodecahedron defined by four oxygen atoms from oxalate ligands and four oxygen atoms from water molecules (Fig. 1, Table 1).

In the packing structure, each oxalate ligand links two Lu(III) and two K atoms to form a three-dimensional open framework with channels running along [001] (Fig. 2).

Related literature top

For background to the oxalate ligand as a bridging ligand in high dimensional frameworks and for a similar structure, see: Camara et al. (2003); Zhang et al. (2009).

Experimental top

The title compound was obtained as a byproduct caused by the decomposition of 1,3,5-triazine-2,4,6-tricarboxylate ligand. Lu(NO3)3.6H2O (14.07 mg, 0.03 mmol) and the potassium salt of 1,3,5-triazine-2,4,6-tricarboxylate (9.8 mg, 0.03 mmol) were dissolved in 15 ml water. After stirring at room temperature for 0.5 h, the solution was allowed to stand for about one week; colorless block crystals were obtained in 40% yield.

Refinement top

Water H atoms were initially located in a differece Fourier map, but they were treated as riding on their parent atoms with O—H = 0.85 Å, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms, Symmetry codes: (I) 1 - x, 1 - y, -z; (II) 1.25 - y, -1/4 + x, -1/4 + z; (III) x, -1/2 + y, -z; (IV) 0.25+Y, 0.75-X, -0.25-Z; (V) 0.75 - y, -1/4 + x, -0.25 - z; (VI) -1/4 + y, 0.75 - x, -1/4 + z; (VII) 1 - x, 0.5 - y, z; (VIII) 0.75 - y, -1/4 + x, 0.75 - z; (IX) 1/4 + y, 0.75 - x, 0.75 - z.
[Figure 2] Fig. 2. A partial packing view, showing the three-dimensional open framework along [001].
Poly[tetraaquadi-µ4-oxalato-lutetium(III)potassium] top
Crystal data top
[KLu(C2O4)2(H2O)4]Dx = 2.682 Mg m3
Mr = 462.17Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 4696 reflections
Hall symbol: -I 4adθ = 3.1–27.5°
a = 11.3337 (16) ŵ = 9.05 mm1
c = 8.9121 (18) ÅT = 293 K
V = 1144.8 (3) Å3Block, colorless
Z = 40.08 × 0.08 × 0.06 mm
F(000) = 872
Data collection top
Rigaku R-AXIS RAPID
diffractometer
655 independent reflections
Radiation source: fine-focus sealed tube594 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω scanθmax = 27.5°, θmin = 3.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1314
Tmin = 0.546, Tmax = 0.604k = 1414
5421 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.014Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.035H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0077P)2 + 3.796P]
where P = (Fo2 + 2Fc2)/3
655 reflections(Δ/σ)max = 0.001
41 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[KLu(C2O4)2(H2O)4]Z = 4
Mr = 462.17Mo Kα radiation
Tetragonal, I41/aµ = 9.05 mm1
a = 11.3337 (16) ÅT = 293 K
c = 8.9121 (18) Å0.08 × 0.08 × 0.06 mm
V = 1144.8 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
655 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
594 reflections with I > 2σ(I)
Tmin = 0.546, Tmax = 0.604Rint = 0.038
5421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0140 restraints
wR(F2) = 0.035H-atom parameters constrained
S = 1.13Δρmax = 0.64 e Å3
655 reflectionsΔρmin = 0.40 e Å3
41 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.3564 (3)0.0435 (3)0.4179 (4)0.0588 (9)
H20.39810.00600.36980.088*
H10.33560.01060.49950.088*
O20.5074 (2)0.36714 (18)0.0938 (2)0.0216 (5)
O10.5037 (2)0.55246 (18)0.1842 (2)0.0229 (5)
C10.5028 (3)0.4761 (3)0.0803 (3)0.0167 (6)
K10.50000.25000.37500.0300 (3)
Lu10.50000.25000.12500.01106 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.081 (2)0.0483 (19)0.0472 (19)0.0081 (17)0.0202 (18)0.0078 (15)
O20.0371 (13)0.0112 (9)0.0164 (11)0.0010 (8)0.0012 (9)0.0000 (8)
O10.0411 (13)0.0127 (10)0.0149 (10)0.0009 (9)0.0012 (10)0.0011 (8)
C10.0198 (14)0.0159 (14)0.0143 (14)0.0008 (11)0.0012 (11)0.0010 (11)
K10.0351 (5)0.0351 (5)0.0199 (7)0.0000.0000.000
Lu10.01045 (9)0.01045 (9)0.01229 (13)0.0000.0000.000
Geometric parameters (Å, º) top
O3—K12.876 (3)K1—O2iv2.837 (2)
O3—H20.8499K1—O3ii2.876 (3)
O3—H10.8500K1—O3iii2.876 (3)
O2—C11.242 (4)K1—O3iv2.876 (3)
O2—Lu12.361 (2)Lu1—O1v2.300 (2)
O2—K12.837 (2)Lu1—O1vi2.300 (2)
O1—C11.267 (4)Lu1—O1vii2.300 (2)
O1—Lu1i2.300 (2)Lu1—O1i2.300 (2)
C1—C1i1.531 (6)Lu1—O2viii2.361 (2)
K1—O2ii2.837 (2)Lu1—O2ii2.361 (2)
K1—O2iii2.837 (2)Lu1—O2ix2.361 (2)
K1—O3—H298.9O2iv—K1—O3iv120.99 (8)
K1—O3—H1128.9O2—K1—O3iv97.09 (9)
H2—O3—H1107.2O3—K1—O3iv91.015 (18)
C1—O2—Lu1118.51 (19)O3ii—K1—O3iv91.015 (18)
C1—O2—K1123.38 (18)O3iii—K1—O3iv164.71 (13)
Lu1—O2—K1117.74 (8)O1v—Lu1—O1vi93.01 (2)
C1—O1—Lu1i119.80 (19)O1v—Lu1—O1vii93.01 (2)
O2—C1—O1127.4 (3)O1vi—Lu1—O1vii153.50 (11)
O2—C1—C1i116.4 (3)O1v—Lu1—O1i153.50 (11)
O1—C1—C1i116.2 (3)O1vi—Lu1—O1i93.01 (2)
O2ii—K1—O2iii141.27 (5)O1vii—Lu1—O1i93.01 (2)
O2ii—K1—O2iv141.27 (6)O1v—Lu1—O2viii81.67 (8)
O2iii—K1—O2iv55.93 (8)O1vi—Lu1—O2viii69.06 (7)
O2ii—K1—O255.93 (8)O1vii—Lu1—O2viii137.39 (7)
O2iii—K1—O2141.27 (6)O1i—Lu1—O2viii76.48 (8)
O2iv—K1—O2141.27 (5)O1v—Lu1—O2137.39 (7)
O2ii—K1—O373.75 (8)O1vi—Lu1—O281.67 (8)
O2iii—K1—O397.09 (9)O1vii—Lu1—O276.48 (8)
O2iv—K1—O368.99 (8)O1i—Lu1—O269.06 (7)
O2—K1—O3120.99 (8)O2viii—Lu1—O2133.04 (6)
O2ii—K1—O3ii120.99 (8)O1v—Lu1—O2ii69.06 (7)
O2iii—K1—O3ii68.99 (8)O1vi—Lu1—O2ii76.48 (8)
O2iv—K1—O3ii97.09 (9)O1vii—Lu1—O2ii81.67 (8)
O2—K1—O3ii73.75 (8)O1i—Lu1—O2ii137.39 (7)
O3—K1—O3ii164.71 (13)O2viii—Lu1—O2ii133.04 (6)
O2ii—K1—O3iii97.09 (9)O2—Lu1—O2ii68.60 (10)
O2iii—K1—O3iii120.99 (8)O1v—Lu1—O2ix76.48 (8)
O2iv—K1—O3iii73.75 (8)O1vi—Lu1—O2ix137.39 (7)
O2—K1—O3iii68.99 (8)O1vii—Lu1—O2ix69.06 (7)
O3—K1—O3iii91.015 (18)O1i—Lu1—O2ix81.67 (8)
O3ii—K1—O3iii91.015 (18)O2viii—Lu1—O2ix68.60 (10)
O2ii—K1—O3iv68.99 (8)O2—Lu1—O2ix133.04 (6)
O2iii—K1—O3iv73.75 (8)O2ii—Lu1—O2ix133.04 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1/2, z; (iii) y+1/4, x+3/4, z+3/4; (iv) y+3/4, x1/4, z+3/4; (v) x, y1/2, z; (vi) y1/4, x+3/4, z1/4; (vii) y+5/4, x1/4, z1/4; (viii) y+3/4, x1/4, z1/4; (ix) y+1/4, x+3/4, z1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O1ii0.852.062.836 (4)151
O3—H1···O3x0.852.062.891 (3)166
Symmetry codes: (ii) x+1, y+1/2, z; (x) y+1/4, x+1/4, z+1/4.

Experimental details

Crystal data
Chemical formula[KLu(C2O4)2(H2O)4]
Mr462.17
Crystal system, space groupTetragonal, I41/a
Temperature (K)293
a, c (Å)11.3337 (16), 8.9121 (18)
V3)1144.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)9.05
Crystal size (mm)0.08 × 0.08 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.546, 0.604
No. of measured, independent and
observed [I > 2σ(I)] reflections
5421, 655, 594
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.014, 0.035, 1.13
No. of reflections655
No. of parameters41
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.40

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H2···O1i0.852.062.836 (4)150.9
O3—H1···O3ii0.852.062.891 (3)165.9
Symmetry codes: (i) x+1, y+1/2, z; (ii) y+1/4, x+1/4, z+1/4.
 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402 and 2010 t d03) and Heilongjiang University.

References

First citationCamara, M., Daiguebonne, C., Boubekeur, K., Roisnel, T., Gérault, Y., Baux, C., Dret, F. L. & Guillou, O. (2003). C. R. Chim. 6, 405–415.  Web of Science CSD CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-J., Xing, Y.-H., Wang, C.-G., Han, J., Li, J., Ge, M.-F., Zeng, X.-Q. & Niu, S.-Y. (2009). Inorg. Chim. Acta, 362, 1058–1064.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds