organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Benzyl-6,7-di­hydro-5H-pyrrolo­[3,4-b]pyridine-5,7-dione

aDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China, bR&D Center, Jiangsu Yabang Pharmaceutical Group, Changzhou 213200, People's Republic of China, and cDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

(Received 26 September 2011; accepted 5 October 2011; online 8 October 2011)

In the title compound, C14H10N2O2, the dihedral angle between the heterocyclic ring system and the phenyl ring is 45.8 (5)°. Weak inter­molecular C—H⋯N hydrogen bonding is present in the crystal structure.

Related literature

The title compound is a key inter­mediate in the synthesis of the quinolone anti­biotic moxifloxacin [systematic name: 1-cyclo­propyl-7-[(1S,6S)-2,8-diaza­bicyclo­[4.3.0]non-8-yl]-6-fluoro-8-meth­oxy-4-oxo-quinoline-3-carb­oxy­lic acid], see: Petersen et al. (1993[Petersen, U., Krebs, A. & Schenke, T. (1993). Eur. Patent Appl. EP 92 122 058.]). For a related structure, see: Garduño-Beltrán et al. (2009[Garduño-Beltrán, O., Román-Bravo, P., Medrano, F. & Tlahuext, H. (2009). Acta Cryst. E65, o2581.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O2

  • Mr = 238.24

  • Monoclinic, P 21 /c

  • a = 11.8548 (6) Å

  • b = 12.3969 (8) Å

  • c = 8.1676 (4) Å

  • β = 107.45 (3)°

  • V = 1145.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.981, Tmax = 0.991

  • 2087 measured reflections

  • 2087 independent reflections

  • 1100 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.174

  • S = 1.00

  • 2087 reflections

  • 163 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯N2i 0.93 2.46 3.386 (3) 177
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Moxifloxacin (Petersen et al., 1993) is used to treat a variety of bacterial infections. This medication belongs to a class of drugs called quinolone antibiotics. The title compound is a key intermediate to synthesize it. As part of our studies in this area, we report here its crystal structure.

In the title compound, all bond lengths and angles show normal values. The dihedral angle between the heterocycle and benzyl group is 45.8 (5)° (Fig.1), similar to that found in a related strcture (Garduño-Beltrán et al., 2009). There is a intermolecular C—H···N hydrogen bond (Table 1) in the crystal structure.

Related literature top

The title compound is a key intermediate in the synthesis of the quinolone antibiotic moxifloxacin [systematic name: 1-cyclopropyl-7-[(1S,6S)-2,8-diazabicyclo[4.3.0]non-8-yl]-6-fluoro-8-methoxy-4-oxo-quinoline-3-carboxylic acid], see: Petersen et al. (1993). For a related structure, see: Garduño-Beltrán et al. (2009).

Experimental top

Benzylamine (3.85 ml, 35.2 mmol) was added to a suspension of 2,3-pyridinedicarboxylic anhydride (5 g, 33.5 mmol) in acetic acid (50 ml), and the mixture was heated under reflux for 18 h. It was then cooled to room temperature, concentrated in vacuo and the residue was triturated with diethyl ether to afford the title compound as a white solid in 57% yield. Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
6-Benzyl-6,7-dihydro-5H-pyrrolo[3,4-b]pyridine-5,7-dione top
Crystal data top
C14H10N2O2F(000) = 496
Mr = 238.24Dx = 1.382 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 11.8548 (6) Åθ = 10–13°
b = 12.3969 (8) ŵ = 0.10 mm1
c = 8.1676 (4) ÅT = 293 K
β = 107.45 (3)°Block, colorless
V = 1145.1 (2) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1100 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 25.4°, θmin = 1.8°
ω/2θ scansh = 1413
Absorption correction: ψ scan
(North et al., 1968)
k = 014
Tmin = 0.981, Tmax = 0.991l = 09
2087 measured reflections3 standard reflections every 200 reflections
2087 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.082P)2]
where P = (Fo2 + 2Fc2)/3
2087 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.17 e Å3
12 restraintsΔρmin = 0.13 e Å3
Crystal data top
C14H10N2O2V = 1145.1 (2) Å3
Mr = 238.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8548 (6) ŵ = 0.10 mm1
b = 12.3969 (8) ÅT = 293 K
c = 8.1676 (4) Å0.20 × 0.10 × 0.10 mm
β = 107.45 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1100 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.045
Tmin = 0.981, Tmax = 0.9913 standard reflections every 200 reflections
2087 measured reflections intensity decay: 1%
2087 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05812 restraints
wR(F2) = 0.174H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
2087 reflectionsΔρmin = 0.13 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2267 (2)0.6223 (2)0.0923 (3)0.0602 (7)
O10.20765 (18)0.43903 (17)0.1329 (3)0.0753 (7)
C10.4977 (3)0.7166 (3)0.2368 (5)0.0896 (11)
H1A0.46400.78100.18710.108*
N20.0141 (2)0.74370 (19)0.2194 (3)0.0711 (7)
O20.19962 (18)0.80705 (17)0.0885 (3)0.0782 (7)
C20.6005 (3)0.7199 (3)0.3733 (5)0.0957 (12)
H2B0.63270.78610.41700.115*
C30.6539 (3)0.6287 (3)0.4429 (4)0.0763 (9)
H3A0.72420.63070.53240.092*
C40.6038 (3)0.5337 (3)0.3807 (5)0.0980 (13)
H4A0.63980.46980.42890.118*
C50.5005 (3)0.5297 (3)0.2473 (5)0.0919 (12)
H5A0.46810.46300.20660.110*
C60.4446 (2)0.6219 (2)0.1734 (3)0.0577 (8)
C70.3308 (3)0.6186 (3)0.0307 (4)0.0758 (10)
H7A0.32820.67930.04540.091*
H7B0.32820.55300.03510.091*
C80.1751 (2)0.5306 (2)0.1379 (3)0.0570 (8)
C90.0735 (2)0.5705 (2)0.1955 (3)0.0505 (6)
C100.0010 (2)0.5161 (2)0.2533 (3)0.0493 (7)
H10A0.00400.44150.26530.059*
C110.0833 (3)0.5716 (2)0.2939 (4)0.0655 (8)
H11A0.13720.53420.33530.079*
C120.0940 (3)0.6819 (2)0.2785 (3)0.0633 (8)
H12A0.15500.71640.30750.076*
C130.0710 (2)0.6813 (2)0.1768 (3)0.0504 (6)
C140.1696 (3)0.7163 (2)0.1142 (3)0.0581 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0490 (14)0.0711 (16)0.0568 (14)0.0019 (13)0.0100 (11)0.0026 (13)
O10.0755 (15)0.0661 (14)0.0803 (15)0.0207 (12)0.0173 (12)0.0042 (11)
C10.063 (2)0.075 (2)0.118 (3)0.0018 (18)0.007 (2)0.021 (2)
N20.0711 (18)0.0628 (14)0.0755 (17)0.0089 (11)0.0162 (13)0.0014 (12)
O20.0702 (15)0.0627 (13)0.0928 (16)0.0110 (11)0.0108 (12)0.0161 (11)
C20.067 (2)0.084 (3)0.120 (3)0.014 (2)0.003 (2)0.005 (2)
C30.0509 (18)0.101 (3)0.076 (2)0.001 (2)0.0185 (16)0.001 (2)
C40.068 (2)0.079 (3)0.129 (3)0.009 (2)0.003 (2)0.014 (2)
C50.073 (3)0.072 (2)0.113 (3)0.0044 (19)0.000 (2)0.010 (2)
C60.0490 (16)0.071 (2)0.0572 (16)0.0014 (16)0.0227 (14)0.0005 (16)
C70.0562 (19)0.114 (3)0.0586 (18)0.0033 (18)0.0195 (16)0.0010 (18)
C80.0532 (18)0.0573 (19)0.0503 (17)0.0024 (15)0.0002 (13)0.0016 (13)
C90.0483 (15)0.0511 (12)0.0446 (15)0.0002 (12)0.0027 (12)0.0005 (12)
C100.0542 (17)0.0359 (12)0.0503 (15)0.0001 (10)0.0040 (12)0.0023 (11)
C110.0599 (18)0.0689 (14)0.0665 (19)0.0027 (14)0.0171 (15)0.0000 (16)
C120.0601 (19)0.0673 (15)0.0618 (18)0.0126 (14)0.0171 (14)0.0092 (16)
C130.0525 (15)0.0481 (12)0.0442 (14)0.0032 (12)0.0049 (12)0.0002 (12)
C140.0516 (18)0.060 (2)0.0516 (17)0.0023 (15)0.0014 (13)0.0026 (14)
Geometric parameters (Å, º) top
N1—C141.385 (4)C4—H4A0.9300
N1—C81.394 (3)C5—C61.367 (4)
N1—C71.467 (4)C5—H5A0.9300
O1—C81.203 (3)C6—C71.496 (4)
C1—C61.359 (4)C7—H7A0.9700
C1—C21.384 (5)C7—H7B0.9700
C1—H1A0.9300C8—C91.503 (4)
N2—C131.395 (3)C9—C101.306 (3)
N2—C121.411 (4)C9—C131.382 (4)
O2—C141.217 (3)C10—C111.315 (4)
C2—C31.336 (4)C10—H10A0.9300
C2—H2B0.9300C11—C121.376 (4)
C3—C41.347 (4)C11—H11A0.9300
C3—H3A0.9300C12—H12A0.9300
C4—C51.374 (4)C13—C141.474 (4)
C14—N1—C8112.4 (2)N1—C7—H7B109.0
C14—N1—C7124.4 (3)C6—C7—H7B109.0
C8—N1—C7123.2 (3)H7A—C7—H7B107.8
C6—C1—C2121.9 (3)O1—C8—N1126.2 (3)
C6—C1—H1A119.1O1—C8—C9128.0 (3)
C2—C1—H1A119.1N1—C8—C9105.8 (2)
C13—N2—C12113.2 (2)C10—C9—C13124.0 (3)
C3—C2—C1120.5 (3)C10—C9—C8129.5 (3)
C3—C2—H2B119.7C13—C9—C8106.5 (3)
C1—C2—H2B119.7C9—C10—C11117.1 (3)
C2—C3—C4118.7 (3)C9—C10—H10A121.5
C2—C3—H3A120.7C11—C10—H10A121.5
C4—C3—H3A120.7C10—C11—C12123.4 (3)
C3—C4—C5121.2 (3)C10—C11—H11A118.3
C3—C4—H4A119.4C12—C11—H11A118.3
C5—C4—H4A119.4C11—C12—N2121.3 (3)
C6—C5—C4121.2 (3)C11—C12—H12A119.4
C6—C5—H5A119.4N2—C12—H12A119.4
C4—C5—H5A119.4C9—C13—N2121.1 (3)
C1—C6—C5116.5 (3)C9—C13—C14109.8 (3)
C1—C6—C7121.8 (3)N2—C13—C14129.1 (2)
C5—C6—C7121.7 (3)O2—C14—N1125.2 (3)
N1—C7—C6112.7 (2)O2—C14—C13129.4 (3)
N1—C7—H7A109.0N1—C14—C13105.4 (2)
C6—C7—H7A109.0
C6—C1—C2—C32.8 (6)C13—C9—C10—C110.7 (4)
C1—C2—C3—C41.9 (6)C8—C9—C10—C11179.4 (2)
C2—C3—C4—C50.6 (6)C9—C10—C11—C120.1 (4)
C3—C4—C5—C60.3 (6)C10—C11—C12—N21.1 (4)
C2—C1—C6—C52.4 (5)C13—N2—C12—C111.4 (4)
C2—C1—C6—C7177.4 (3)C10—C9—C13—N20.2 (4)
C4—C5—C6—C11.1 (5)C8—C9—C13—N2179.9 (2)
C4—C5—C6—C7178.7 (3)C10—C9—C13—C14178.1 (2)
C14—N1—C7—C691.4 (3)C8—C9—C13—C141.8 (3)
C8—N1—C7—C687.6 (3)C12—N2—C13—C90.8 (4)
C1—C6—C7—N188.5 (4)C12—N2—C13—C14178.8 (2)
C5—C6—C7—N191.3 (4)C8—N1—C14—O2177.7 (3)
C14—N1—C8—O1179.2 (3)C7—N1—C14—O21.4 (4)
C7—N1—C8—O10.1 (4)C8—N1—C14—C131.1 (3)
C14—N1—C8—C90.0 (3)C7—N1—C14—C13179.8 (2)
C7—N1—C8—C9179.2 (2)C9—C13—C14—O2176.9 (3)
O1—C8—C9—C100.5 (5)N2—C13—C14—O21.2 (5)
N1—C8—C9—C10178.7 (3)C9—C13—C14—N11.8 (3)
O1—C8—C9—C13179.6 (3)N2—C13—C14—N1179.9 (2)
N1—C8—C9—C131.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N2i0.932.463.386 (3)177
Symmetry code: (i) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H10N2O2
Mr238.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.8548 (6), 12.3969 (8), 8.1676 (4)
β (°) 107.45 (3)
V3)1145.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.981, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2087, 2087, 1100
Rint0.045
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.174, 1.00
No. of reflections2087
No. of parameters163
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.13

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···N2i0.932.463.386 (3)177
Symmetry code: (i) x, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGarduño-Beltrán, O., Román-Bravo, P., Medrano, F. & Tlahuext, H. (2009). Acta Cryst. E65, o2581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPetersen, U., Krebs, A. & Schenke, T. (1993). Eur. Patent Appl. EP 92 122 058.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds