metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[(μ2-4,4′-bi­pyridine-κ2N:N′)(μ2-2,2-dimeth­yl­cyclo­pentane-1,3-di­carboxyl­ato-κ4O1,O1′:O3,O3′)cadmium]

aKey Laboratory of Functional Inorganic Materials Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 7 October 2011; accepted 14 October 2011; online 22 October 2011)

In the title polymeric compound, [Cd(C9H12O4)(C10H8N2)]n, the CdII atom is located on a twofold rotation axis and is coordinated by two 4,4′-bipyridine ligands and two 2,2-dimethyl­cyclo­pentane-1,3-dicarboxyl­ate ions. The carboxyl­ate ion and the N-heterocycle both function as bridges to link adjacent CdII atoms to result in the formation of a layer structure parallel to (010). The mid-point of the central C—C bond of the 4,4′-bipyridine ligand is located on an inversion center. In the crystal, the carboxyl­ate ion is disordered over a twofold rotation axis in respect of its methyl group and the cyclo­pentane ring.

Related literature

For the synthesis of (1R,3S)-1,2,2-trimethyl­cyclo­pentane-1,3-dicarb­oxy­lic acid, see: Adhya et al. (1956[Adhya, R. N., Ghosh, A. C. & Bardhan, J. C. (1956). J. Chem. Soc. pp. 358-361.]); Camps & Jaime (1981[Camps, P. & Jaime, C. (1981). Can. J. Chem. 59, 2848-2852.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C9H12O4)(C10H8N2)]

  • Mr = 452.77

  • Monoclinic, P 2/c

  • a = 9.8527 (5) Å

  • b = 7.2830 (4) Å

  • c = 14.6432 (9) Å

  • β = 100.879 (1)°

  • V = 1031.87 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 K

  • 0.18 × 0.15 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.829, Tmax = 0.872

  • 9640 measured reflections

  • 2364 independent reflections

  • 1774 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.171

  • S = 1.12

  • 2364 reflections

  • 150 parameters

  • 51 restraints

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.328 (5)
Cd1—O1 2.303 (5)
Cd1—O2 2.359 (5)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The compound is the racemic product resulting from the reaction of cadium(II) ions and the deprotonated, optically active (1R,3S)-1,2,2-trimethylcyclopentane-1,3-dicarboxylate ion. The 1-methyl group is cleaved under hydrothermal conditions to result in the formation of polymeric Cd(C10H8N2)(C9H12O4) (Scheme I), which is racemic. The carboxylate ion and the N-heterocycle both function as bridges to link adjacent six-coordinate CdII atoms to result in the formation of a layer structure (Fig. 1). Racemic 2,2-dimethylcyclopentane-1,3-dicarboxylic acid is not known in the chemical literature; (1R,3S)-,2,2-trimethylcyclopentane-1,3-dicarboxylic acid is known as apocamphoric acid; its synthesis involves several steps (Adhya et al., 1956; Camps & Jaime, 1981).

Related literature top

For the synthesis of (1R,3S)-1,2,2-trimethylcyclopentane-1,3-dicarboxylic acid, see: Adhya et al. (1956); Camps & Jaime (1981).

Experimental top

Cadmium nitrate (1 mmol), (+)-camphoric acid (1 mmol), 4,4'-bipyridine (1 mmol) and sodium hydroxide (2 mmol) were mixed in water (8 ml). The mixture was placed in a 23-ml, Teflon-lined, stainless-steel Parr bomb. This was heated at 413 K for 3 days. Colorless crystals were isolated when the bomb was cooled slowly to room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The 2,2-dimethylcyclopentadicarboxylate dianion is disordered over a twofold rotation axis in respect of the methyl groups and the cyclopentane ring; the carboxyl –CO2 unit is ordered. In the disordered part, all carbon-carbon distances were restrained to 1.50 ± 0.01 Å; the anisotropic temperature factors were restrained to be nearly isotropic.

The final difference Fourier map had a peak in the vicinity of H4a and a hole in the vicinity of Cd1.

The temperature factors of the two oxygen atoms are large, but are not significantly larger than that of the carbon atom to which they are connected. The temperature factors of the carbon atoms of the pyridine ring are also somewhat large; splitting the ring as two overlapping rings in a disorder model did not improve the refinement much.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of a portion of polymeric Cd(C10H8N2)(C9H12O4) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The carboxylate group is disordered over a twofold rotation axis.
Poly[(µ2-4,4'-bipyridine-κ2N:N')(µ2-2,2- dimethylcyclopentane-1,3-dicarboxylato- κ4O1,O1':O3,O3')cadmium] top
Crystal data top
[Cd(C9H12O4)(C10H8N2)]F(000) = 456
Mr = 452.77Dx = 1.457 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 7550 reflections
a = 9.8527 (5) Åθ = 3.1–27.4°
b = 7.2830 (4) ŵ = 1.08 mm1
c = 14.6432 (9) ÅT = 293 K
β = 100.879 (1)°Prism, colorless
V = 1031.87 (10) Å30.18 × 0.15 × 0.13 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2364 independent reflections
Radiation source: fine-focus sealed tube1774 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.829, Tmax = 0.872k = 98
9640 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0794P)2 + 2.2957P]
where P = (Fo2 + 2Fc2)/3
2364 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 1.03 e Å3
51 restraintsΔρmin = 1.27 e Å3
Crystal data top
[Cd(C9H12O4)(C10H8N2)]V = 1031.87 (10) Å3
Mr = 452.77Z = 2
Monoclinic, P2/cMo Kα radiation
a = 9.8527 (5) ŵ = 1.08 mm1
b = 7.2830 (4) ÅT = 293 K
c = 14.6432 (9) Å0.18 × 0.15 × 0.13 mm
β = 100.879 (1)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2364 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1774 reflections with I > 2σ(I)
Tmin = 0.829, Tmax = 0.872Rint = 0.040
9640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05451 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.12Δρmax = 1.03 e Å3
2364 reflectionsΔρmin = 1.27 e Å3
150 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.50000.62834 (9)0.25000.0559 (3)
O10.3446 (5)0.7854 (9)0.3202 (4)0.0823 (15)
O20.2784 (5)0.7239 (10)0.1742 (3)0.0863 (16)
N10.5040 (6)0.3945 (8)0.3589 (4)0.0662 (14)
C10.2552 (5)0.7942 (8)0.2473 (4)0.0550 (13)
C20.1213 (9)0.8972 (19)0.2457 (10)0.056 (9)0.50
H20.14361.00540.28550.067*0.50
C30.0477 (13)0.965 (3)0.1520 (10)0.089 (4)0.50
H3A0.06180.88050.10340.107*0.50
H3B0.08251.08480.13880.107*0.50
C40.1058 (14)0.977 (3)0.1565 (12)0.105 (5)0.50
H4A0.13581.10400.15440.126*0.50
H4B0.16090.91160.10470.126*0.50
C50.1204 (10)0.889 (3)0.2478 (13)0.080 (14)0.50
H50.11830.99370.29020.096*0.50
C60.0133 (11)0.7874 (13)0.2848 (7)0.055 (3)0.50
C70.0441 (18)0.764 (3)0.3889 (8)0.093 (5)0.50
H7A0.04920.88280.41810.140*0.50
H7B0.13070.70160.40720.140*0.50
H7C0.02820.69370.40780.140*0.50
C80.009 (5)0.5890 (13)0.261 (2)0.067 (5)0.50
H8A0.01220.57510.19440.100*0.50
H8B0.05990.52880.28800.100*0.50
H8C0.09800.53480.28430.100*0.50
C90.5964 (9)0.2616 (14)0.3637 (7)0.103 (3)
H90.66400.27440.32750.124*
C100.6011 (9)0.1056 (12)0.4177 (7)0.090 (3)
H100.66970.01790.41780.109*
C110.5015 (7)0.0832 (9)0.4713 (4)0.0557 (13)
C120.4087 (8)0.2236 (11)0.4689 (5)0.076 (2)
H120.34190.21710.50600.091*
C130.4122 (8)0.3746 (10)0.4125 (5)0.0710 (18)
H130.34650.46630.41250.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0517 (4)0.0662 (4)0.0532 (4)0.0000.0187 (2)0.000
O10.061 (3)0.110 (4)0.074 (3)0.018 (3)0.008 (2)0.020 (3)
O20.056 (2)0.140 (5)0.065 (3)0.005 (3)0.016 (2)0.014 (3)
N10.072 (3)0.069 (3)0.062 (3)0.007 (3)0.025 (3)0.013 (2)
C10.046 (3)0.059 (3)0.060 (3)0.004 (3)0.012 (2)0.005 (3)
C20.040 (10)0.058 (11)0.071 (11)0.010 (6)0.015 (6)0.001 (6)
C30.075 (7)0.105 (8)0.088 (8)0.012 (7)0.017 (6)0.028 (7)
C40.087 (8)0.126 (9)0.100 (9)0.030 (7)0.017 (7)0.040 (8)
C50.070 (16)0.080 (16)0.089 (15)0.005 (8)0.016 (9)0.000 (8)
C60.049 (5)0.060 (5)0.056 (5)0.006 (5)0.013 (5)0.001 (4)
C70.086 (8)0.110 (9)0.086 (8)0.007 (7)0.021 (7)0.005 (7)
C80.058 (9)0.065 (5)0.079 (11)0.002 (8)0.018 (8)0.003 (7)
C90.094 (6)0.113 (7)0.121 (7)0.026 (5)0.066 (5)0.055 (6)
C100.084 (5)0.095 (6)0.106 (6)0.027 (4)0.052 (5)0.040 (5)
C110.064 (3)0.062 (3)0.043 (3)0.002 (3)0.015 (2)0.003 (2)
C120.090 (5)0.079 (4)0.071 (4)0.015 (4)0.046 (4)0.015 (4)
C130.082 (4)0.074 (4)0.063 (4)0.011 (4)0.030 (3)0.007 (3)
Geometric parameters (Å, º) top
Cd1—N1i2.328 (5)C4—H4B0.9700
Cd1—N12.328 (5)C5—C1ii1.512 (9)
Cd1—O12.303 (5)C5—C61.520 (10)
Cd1—O1i2.303 (5)C5—H50.9800
Cd1—O2i2.359 (5)C6—C81.487 (9)
Cd1—O22.359 (5)C6—C71.507 (9)
Cd1—C1i2.691 (5)C7—H7A0.9600
O1—C11.250 (7)C7—H7B0.9600
O2—C11.247 (7)C7—H7C0.9600
N1—C131.313 (9)C8—H8A0.9600
N1—C91.322 (10)C8—H8B0.9600
C1—C5ii1.512 (9)C8—H8C0.9600
C1—C21.514 (9)C9—C101.380 (11)
C2—C31.509 (10)C9—H90.9300
C2—C61.526 (9)C10—C111.377 (9)
C2—H20.9800C10—H100.9300
C3—C41.528 (10)C11—C121.368 (10)
C3—H3A0.9700C11—C11iii1.478 (12)
C3—H3B0.9700C12—C131.379 (10)
C4—C51.513 (10)C12—H120.9300
C4—H4A0.9700C13—H130.9300
O1—Cd1—O1i120.4 (3)C5—C4—H4A110.6
O1—Cd1—N1i137.9 (2)C3—C4—H4A110.6
O1i—Cd1—N1i89.1 (2)C5—C4—H4B110.6
O1—Cd1—N189.1 (2)C3—C4—H4B110.6
O1i—Cd1—N1137.9 (2)H4A—C4—H4B108.7
N1i—Cd1—N186.0 (3)C1ii—C5—C4117.8 (11)
O1—Cd1—O2i106.12 (19)C1ii—C5—C6118.0 (11)
O1i—Cd1—O2i55.22 (17)C4—C5—C6107.5 (11)
N1i—Cd1—O2i115.6 (2)C1ii—C5—H5103.8
N1—Cd1—O2i89.9 (2)C4—C5—H5103.8
O1—Cd1—O255.22 (17)C6—C5—H5103.8
O1i—Cd1—O2106.12 (19)C8—C6—C797.0 (16)
N1i—Cd1—O289.9 (2)C8—C6—C5114 (2)
N1—Cd1—O2115.6 (2)C7—C6—C5114.2 (11)
O2i—Cd1—O2145.7 (3)C8—C6—C2114.1 (19)
O1—Cd1—C1i116.12 (19)C7—C6—C2114.7 (11)
O1i—Cd1—C1i27.62 (17)C5—C6—C2103.2 (7)
N1i—Cd1—C1i103.72 (19)C6—C7—H7A109.5
N1—Cd1—C1i114.8 (2)C6—C7—H7B109.5
O2i—Cd1—C1i27.59 (17)H7A—C7—H7B109.5
O2—Cd1—C1i128.4 (2)C6—C7—H7C109.5
C1—O1—Cd193.7 (4)H7A—C7—H7C109.5
C1—O2—Cd191.2 (4)H7B—C7—H7C109.5
C13—N1—C9115.7 (6)C6—C8—H8A109.5
C13—N1—Cd1124.5 (5)C6—C8—H8B109.5
C9—N1—Cd1119.6 (4)H8A—C8—H8B109.5
O2—C1—O1119.9 (5)C6—C8—H8C109.5
O2—C1—C5ii122.3 (8)H8A—C8—H8C109.5
O1—C1—C5ii117.8 (8)H8B—C8—H8C109.5
O2—C1—C2119.4 (7)N1—C9—C10125.5 (7)
O1—C1—C2120.7 (7)N1—C9—H9117.2
C3—C2—C1116.4 (10)C10—C9—H9117.2
C3—C2—C6105.3 (9)C11—C10—C9118.3 (7)
C1—C2—C6113.7 (10)C11—C10—H10120.9
C3—C2—H2107.0C9—C10—H10120.9
C1—C2—H2107.0C12—C11—C10116.2 (6)
C6—C2—H2107.0C12—C11—C11iii122.8 (7)
C2—C3—C4106.8 (10)C10—C11—C11iii121.0 (7)
C2—C3—H3A110.4C11—C12—C13121.3 (6)
C4—C3—H3A110.4C11—C12—H12119.4
C2—C3—H3B110.4C13—C12—H12119.4
C4—C3—H3B110.4N1—C13—C12122.9 (7)
H3A—C3—H3B108.6N1—C13—H13118.5
C5—C4—C3105.9 (11)C12—C13—H13118.5
O1i—Cd1—O1—C188.7 (4)C5ii—C1—C2—C3154 (14)
N1i—Cd1—O1—C139.8 (6)O2—C1—C2—C6101.9 (11)
N1—Cd1—O1—C1122.8 (5)O1—C1—C2—C681.0 (12)
O2i—Cd1—O1—C1147.5 (4)C5ii—C1—C2—C632 (13)
O2—Cd1—O1—C10.3 (4)C1—C2—C3—C4153.2 (14)
C1i—Cd1—O1—C1119.8 (4)C6—C2—C3—C426.3 (19)
O1—Cd1—O2—C10.3 (4)C2—C3—C4—C58 (2)
O1i—Cd1—O2—C1115.9 (4)C3—C4—C5—C1ii149.5 (17)
N1i—Cd1—O2—C1155.1 (4)C3—C4—C5—C613 (2)
N1—Cd1—O2—C169.6 (5)C1ii—C5—C6—C841 (2)
O2i—Cd1—O2—C164.9 (4)C4—C5—C6—C895 (2)
C1i—Cd1—O2—C197.3 (5)C1ii—C5—C6—C770 (2)
O1—Cd1—N1—C1315.5 (6)C4—C5—C6—C7154.3 (15)
O1i—Cd1—N1—C13153.2 (6)C1ii—C5—C6—C2165.3 (14)
N1i—Cd1—N1—C13122.6 (7)C4—C5—C6—C229.1 (17)
O2i—Cd1—N1—C13121.7 (6)C3—C2—C6—C891 (2)
O2—Cd1—N1—C1334.6 (7)C1—C2—C6—C838.0 (19)
C1i—Cd1—N1—C13134.1 (6)C3—C2—C6—C7158.8 (13)
O1—Cd1—N1—C9170.5 (7)C1—C2—C6—C772.7 (16)
O1i—Cd1—N1—C932.9 (8)C3—C2—C6—C533.8 (14)
N1i—Cd1—N1—C951.3 (7)C1—C2—C6—C5162.4 (12)
O2i—Cd1—N1—C964.4 (7)C13—N1—C9—C101.7 (15)
O2—Cd1—N1—C9139.3 (7)Cd1—N1—C9—C10172.8 (9)
C1i—Cd1—N1—C952.0 (8)N1—C9—C10—C110.4 (17)
Cd1—O2—C1—O10.6 (7)C9—C10—C11—C122.6 (13)
Cd1—O2—C1—C5ii179.7 (11)C9—C10—C11—C11iii178.3 (9)
Cd1—O2—C1—C2176.6 (7)C10—C11—C12—C132.7 (12)
Cd1—O1—C1—O20.6 (7)C11iii—C11—C12—C13178.2 (8)
Cd1—O1—C1—C5ii179.8 (10)C9—N1—C13—C121.5 (12)
Cd1—O1—C1—C2176.5 (7)Cd1—N1—C13—C12172.6 (6)
O2—C1—C2—C320.7 (16)C11—C12—C13—N10.7 (13)
O1—C1—C2—C3156.4 (11)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z+1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cd(C9H12O4)(C10H8N2)]
Mr452.77
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)9.8527 (5), 7.2830 (4), 14.6432 (9)
β (°) 100.879 (1)
V3)1031.87 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.08
Crystal size (mm)0.18 × 0.15 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.829, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
9640, 2364, 1774
Rint0.040
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.171, 1.12
No. of reflections2364
No. of parameters150
No. of restraints51
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 1.27

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—N12.328 (5)Cd1—O22.359 (5)
Cd1—O12.303 (5)
 

Acknowledgements

This work is supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (grant No. ZD200903), the Innovation Team of the Education Bureau of Heilongjiang Province (grant No. 2010 t d03), the Key Project of the Education Bureau of Heilongjiang Province (grant No. 12511z023) and the University of Malaya.

References

First citationAdhya, R. N., Ghosh, A. C. & Bardhan, J. C. (1956). J. Chem. Soc. pp. 358–361.  CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationCamps, P. & Jaime, C. (1981). Can. J. Chem. 59, 2848–2852.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds