organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[4-(1H-Tetra­zol-5-yl)phen­­oxy]benzaldehyde

aCollege of Science, Northwest A&F University, Yangling Shaanxi 712100, People's Republic of China
*Correspondence e-mail: duzt@nwsuaf.edu.cn

(Received 19 October 2011; accepted 24 October 2011; online 29 October 2011)

The asymmetric unit of the title compound, C14H10N4O2, contains two independent mol­ecules with similar structures. In one mol­ecule, the tetra­zole ring is oriented at dihedral angles of 17.71 (16) and 57.13 (17)°, respectively, to the central benzene ring and the terminal benzene ring; in the other mol­ecule, the corresponding dihedral angles are 16.46 (18) and 75.87 (18)°. Inter­molecular N—H⋯N hydrogen bonds and weak C—H⋯O and C—H⋯N hydrogen bonds occur in the crystal structure.

Related literature

For the synthesis of 5-substituted 1H-tetra­zoles, see: Ostrovskii et al. (2008[Ostrovskii, V. A., Koldobskii, G. I., Trifonov, R. E., Alan, R. K., Christopher, A. R., Eric, F. V. S. & Richard, J. K. T. (2008). Comprehensive Heterocyclic Chemistry III, p. 257. Oxford: Elsevier.]); Saikia & Phukan (2009[Saikia, I. & Phukan, P. (2009). Tetrahedron Lett. 50, 5083-5087.]); Nasrollahzadeh et al. (2009[Nasrollahzadeh, M., Bayat, Y., Habibi, D. & Moshaee, S. (2009). Tetrahedron Lett. 50, 4435-4438.]); Teimouri & Najafi Chermahini (2011[Teimouri, A. & Najafi Chermahini, A. (2011). Polyhedron, 30, 2606-2610.]). For related structures, see: Li et al. (2008[Li, G.-Q., Wu, A.-Q., Li, Y., Zheng, F.-K. & Guo, G.-C. (2008). Acta Cryst. E64, o1368.]); Hu et al. (2009[Hu, D.-Y., Chu, X.-W. & Qu, Z.-R. (2009). Acta Cryst. E65, o2463.]); Xu et al. (2010[Xu, L., Gu, L.-Y., Zhao, D.-Y., Wang, B. & Kang, T.-G. (2010). Acta Cryst. E66, o742.]); Deng et al. (2010[Deng, J.-H., Yuan, X.-L. & Mei, G.-Q. (2010). Inorg. Chem. Commun. 13, 1585-1589.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N4O2

  • Mr = 266.26

  • Triclinic, [P \overline 1]

  • a = 9.854 (4) Å

  • b = 9.948 (4) Å

  • c = 14.139 (6) Å

  • α = 98.537 (4)°

  • β = 106.668 (4)°

  • γ = 99.737 (4)°

  • V = 1279.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 9274 measured reflections

  • 4683 independent reflections

  • 2623 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.142

  • S = 1.01

  • 4683 reflections

  • 369 parameters

  • 30 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N8i 0.91 (3) 1.94 (3) 2.849 (4) 174 (2)
N5—H2N⋯N4ii 0.90 (3) 2.03 (3) 2.924 (3) 176 (3)
C4—H4⋯O4 0.93 2.54 3.420 (4) 158
C17—H17⋯N3ii 0.93 2.58 3.365 (4) 143
C23—H23⋯O2iii 0.93 2.42 3.262 (6) 151
Symmetry codes: (i) x+1, y-1, z+1; (ii) x-1, y, z-1; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrazoles play a variety of roles in coordination chemistry, medicinal chemistry, materials chemistry etc. (Ostrovskii et al., 2008). We intended to find a new way for preparation of tetrazoles using a new solid acid which is regarded as a green catalyst. In order to confirm the verity of the final product, the single crystal X-ray analysis was performed and the structure is reported here.

Compared with the other phenyltetrazole coplanar structures reported by Li et al. (2008) and Xu et al. (2010), there is torsion between tetrazole rings and neighboring phenyl rings, with a dihedral angle 17.7 (1)° and 16.4 (4)°, respectively.

Related literature top

For the synthesis of 5-substituted 1H-tetrazoles, see: Ostrovskii et al. (2008); Saikia & Phukan (2009); Nasrollahzadeh et al. (2009); Teimouri & Najafi Chermahini (2011). For related structures, see: Li et al. (2008); Hu et al. (2009); Xu et al. (2010); Deng et al. (2010).

Experimental top

A solution of 4-(4-formylphenoxy)benzonitrile (892 mg, 4 mmol) and sodium azide (780 mg, 12 mmol) in dry DMF (15 mL) at the presence of sulfuric acid on silica gel (5% load, 400 mg ) was heated to 80°C. When the reaction was completed, the solid acid was filtered, 2 mL water was added to the filtration, and then was extracted with ethyl acetate (20 mL × 3). The ethyl acetate layers were combined and washed by 20 mL water, and then 15 mL saturated sodium chloride and dried over anhydrous sodium sulfate. The solution was evaporated and the residue was separated on silica gel column chromatography with a gradient of petroleum ether and ethyl acetate as eluent to yield 570 mg the title compound. The compound was then dissolved in methanol, and colorless crystals were formed on slow evaporation at room temperature over one week.

Refinement top

The H1N and H2N atoms were located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.93 Å and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
4-[4-(1H-Tetrazol-5-yl)phenoxy]benzaldehyde top
Crystal data top
C14H10N4O2Z = 4
Mr = 266.26F(000) = 552
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.854 (4) ÅCell parameters from 1475 reflections
b = 9.948 (4) Åθ = 2.2–21.0°
c = 14.139 (6) ŵ = 0.10 mm1
α = 98.537 (4)°T = 296 K
β = 106.668 (4)°Block, colourless
γ = 99.737 (4)°0.23 × 0.21 × 0.19 mm
V = 1279.8 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2623 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.5°, θmin = 2.2°
ϕ and ω scansh = 1111
9274 measured reflectionsk = 1012
4683 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.4163P]
where P = (Fo2 + 2Fc2)/3
4683 reflections(Δ/σ)max < 0.001
369 parametersΔρmax = 0.41 e Å3
30 restraintsΔρmin = 0.30 e Å3
Crystal data top
C14H10N4O2γ = 99.737 (4)°
Mr = 266.26V = 1279.8 (9) Å3
Triclinic, P1Z = 4
a = 9.854 (4) ÅMo Kα radiation
b = 9.948 (4) ŵ = 0.10 mm1
c = 14.139 (6) ÅT = 296 K
α = 98.537 (4)°0.23 × 0.21 × 0.19 mm
β = 106.668 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
2623 reflections with I > 2σ(I)
9274 measured reflectionsRint = 0.035
4683 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05630 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.41 e Å3
4683 reflectionsΔρmin = 0.30 e Å3
369 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8863 (3)0.1795 (3)1.0915 (2)0.0414 (7)
C20.7457 (3)0.1392 (3)1.0126 (2)0.0415 (7)
C30.6554 (3)0.2318 (3)1.0004 (2)0.0514 (8)
H30.68620.32051.04160.062*
C40.5208 (3)0.1945 (3)0.9283 (2)0.0602 (8)
H40.45980.25680.92090.072*
C50.4773 (3)0.0638 (3)0.8672 (2)0.0543 (8)
C60.5645 (3)0.0298 (3)0.8772 (2)0.0597 (8)
H60.53350.11770.83490.072*
C70.6986 (3)0.0072 (3)0.9504 (2)0.0533 (8)
H70.75800.05640.95830.064*
C80.3025 (3)0.0912 (3)0.7196 (2)0.0558 (8)
C90.1567 (3)0.0772 (4)0.6724 (3)0.0728 (10)
H90.08800.02090.69140.087*
C100.1142 (4)0.1482 (4)0.5964 (3)0.0820 (11)
H100.01550.14010.56470.098*
C110.2142 (4)0.2309 (4)0.5662 (3)0.0718 (9)
C120.3588 (4)0.2389 (3)0.6127 (2)0.0668 (9)
H120.42740.29210.59180.080*
C130.4051 (3)0.1701 (3)0.6898 (2)0.0629 (9)
H130.50370.17690.72080.075*
C140.1805 (5)0.3200 (5)0.4876 (3)0.1064 (14)
H140.25550.37250.47200.128*
C150.0013 (3)0.7097 (3)0.1508 (2)0.0430 (7)
C160.1047 (3)0.7403 (3)0.2513 (2)0.0455 (7)
C170.1222 (4)0.6369 (3)0.3065 (2)0.0667 (9)
H170.06650.54680.27820.080*
C180.2201 (4)0.6649 (3)0.4020 (2)0.0747 (11)
H180.23180.59360.43730.090*
C190.3005 (3)0.7972 (3)0.4453 (2)0.0587 (8)
C200.2850 (3)0.9026 (3)0.3926 (2)0.0606 (9)
H200.33970.99270.42190.073*
C210.1884 (3)0.8738 (3)0.2964 (2)0.0530 (8)
H210.17880.94510.26090.064*
C220.4087 (4)0.7458 (3)0.6065 (2)0.0612 (9)
C230.2899 (4)0.7028 (3)0.6363 (3)0.0678 (9)
H230.20270.72800.60820.081*
C240.3016 (3)0.6222 (3)0.7079 (3)0.0627 (9)
H240.22170.59270.72820.075*
C250.4307 (3)0.5845 (3)0.7501 (2)0.0551 (8)
C260.5488 (4)0.6304 (3)0.7202 (3)0.0644 (9)
H260.63650.60650.74890.077*
C270.5387 (4)0.7110 (3)0.6487 (3)0.0663 (9)
H270.61890.74160.62900.080*
C280.4455 (4)0.4991 (3)0.8268 (3)0.0734 (10)
H280.53600.47950.85380.088*
N10.9674 (3)0.0935 (3)1.12958 (18)0.0499 (6)
N21.0895 (3)0.1684 (2)1.20221 (19)0.0581 (7)
N31.0818 (3)0.2977 (2)1.20764 (19)0.0584 (7)
N40.9565 (2)0.3084 (2)1.13952 (18)0.0503 (6)
N50.0625 (3)0.5829 (2)0.09329 (18)0.0466 (6)
N60.1563 (3)0.5921 (2)0.00568 (18)0.0545 (6)
N70.1514 (3)0.7233 (2)0.00983 (18)0.0565 (7)
N80.0556 (3)0.7999 (2)0.09919 (18)0.0520 (6)
O10.3385 (2)0.0200 (2)0.79639 (17)0.0707 (7)
O20.0601 (4)0.3220 (4)0.4469 (3)0.1609 (14)
O30.4057 (2)0.8339 (2)0.53920 (17)0.0789 (7)
O40.3497 (3)0.4526 (3)0.8575 (2)0.0967 (9)
H2N0.053 (3)0.499 (3)0.107 (2)0.058 (9)*
H1N0.954 (3)0.001 (3)1.117 (2)0.081 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0474 (17)0.0281 (14)0.0483 (17)0.0103 (13)0.0123 (14)0.0106 (13)
C20.0441 (16)0.0303 (14)0.0494 (17)0.0101 (12)0.0107 (14)0.0121 (12)
C30.0529 (19)0.0350 (15)0.0599 (19)0.0138 (14)0.0082 (16)0.0058 (14)
C40.0524 (19)0.0473 (18)0.076 (2)0.0198 (16)0.0077 (17)0.0148 (17)
C50.0447 (18)0.0490 (18)0.0581 (19)0.0046 (15)0.0008 (15)0.0153 (15)
C60.065 (2)0.0373 (16)0.061 (2)0.0086 (15)0.0021 (17)0.0003 (14)
C70.0558 (19)0.0388 (16)0.0597 (19)0.0161 (14)0.0080 (16)0.0082 (14)
C80.053 (2)0.0499 (18)0.0533 (19)0.0130 (16)0.0014 (16)0.0058 (15)
C90.046 (2)0.094 (3)0.073 (2)0.0132 (19)0.0095 (18)0.024 (2)
C100.052 (2)0.119 (3)0.070 (2)0.031 (2)0.004 (2)0.022 (2)
C110.069 (2)0.093 (3)0.060 (2)0.041 (2)0.0175 (19)0.0136 (18)
C120.071 (2)0.069 (2)0.061 (2)0.0207 (19)0.0215 (19)0.0127 (18)
C130.0494 (19)0.068 (2)0.063 (2)0.0149 (17)0.0072 (17)0.0101 (18)
C140.090 (3)0.133 (3)0.086 (3)0.070 (2)0.007 (2)0.011 (2)
C150.0487 (17)0.0287 (14)0.0513 (17)0.0090 (13)0.0157 (14)0.0082 (13)
C160.0487 (17)0.0318 (15)0.0509 (17)0.0096 (13)0.0088 (14)0.0062 (13)
C170.083 (2)0.0308 (16)0.062 (2)0.0002 (16)0.0051 (18)0.0075 (15)
C180.096 (3)0.0411 (18)0.062 (2)0.0041 (18)0.009 (2)0.0154 (16)
C190.058 (2)0.0500 (19)0.0533 (19)0.0019 (16)0.0007 (16)0.0103 (16)
C200.0534 (19)0.0372 (17)0.073 (2)0.0035 (14)0.0022 (17)0.0066 (16)
C210.0505 (18)0.0336 (15)0.067 (2)0.0050 (14)0.0064 (16)0.0148 (14)
C220.059 (2)0.0532 (19)0.0505 (19)0.0055 (17)0.0011 (17)0.0063 (16)
C230.053 (2)0.065 (2)0.071 (2)0.0110 (17)0.0019 (18)0.0117 (19)
C240.053 (2)0.061 (2)0.071 (2)0.0094 (17)0.0178 (17)0.0098 (18)
C250.058 (2)0.0457 (18)0.0545 (19)0.0123 (16)0.0111 (17)0.0031 (15)
C260.053 (2)0.062 (2)0.070 (2)0.0134 (17)0.0078 (18)0.0096 (18)
C270.051 (2)0.072 (2)0.068 (2)0.0037 (17)0.0157 (18)0.0101 (19)
C280.085 (3)0.060 (2)0.080 (3)0.026 (2)0.030 (2)0.011 (2)
N10.0518 (16)0.0326 (14)0.0574 (16)0.0109 (12)0.0044 (13)0.0101 (12)
N20.0553 (16)0.0395 (14)0.0648 (17)0.0116 (12)0.0032 (13)0.0093 (12)
N30.0588 (17)0.0371 (14)0.0655 (17)0.0109 (12)0.0001 (14)0.0086 (12)
N40.0510 (15)0.0313 (13)0.0593 (15)0.0086 (11)0.0048 (13)0.0077 (11)
N50.0557 (15)0.0295 (13)0.0505 (15)0.0124 (12)0.0078 (12)0.0106 (11)
N60.0652 (17)0.0411 (14)0.0505 (16)0.0131 (12)0.0072 (13)0.0103 (12)
N70.0693 (17)0.0396 (14)0.0541 (16)0.0144 (13)0.0083 (14)0.0107 (12)
N80.0654 (16)0.0334 (13)0.0548 (15)0.0156 (12)0.0108 (13)0.0132 (12)
O10.0513 (13)0.0620 (14)0.0781 (16)0.0014 (11)0.0063 (12)0.0215 (12)
O20.142 (3)0.222 (4)0.138 (3)0.066 (3)0.038 (3)0.081 (3)
O30.0761 (16)0.0672 (15)0.0615 (15)0.0176 (12)0.0099 (13)0.0190 (12)
O40.129 (2)0.0865 (19)0.111 (2)0.0483 (18)0.071 (2)0.0389 (17)
Geometric parameters (Å, º) top
C1—N41.325 (3)C16—C211.388 (4)
C1—N11.335 (3)C17—C181.373 (4)
C1—C21.455 (4)C17—H170.9300
C2—C31.381 (3)C18—C191.366 (4)
C2—C71.389 (4)C18—H180.9300
C3—C41.372 (4)C19—C201.378 (4)
C3—H30.9300C19—O31.381 (3)
C4—C51.373 (4)C20—C211.374 (4)
C4—H40.9300C20—H200.9300
C5—C61.366 (4)C21—H210.9300
C5—O11.396 (3)C22—C271.375 (4)
C6—C71.374 (4)C22—C231.378 (4)
C6—H60.9300C22—O31.384 (4)
C7—H70.9300C23—C241.374 (4)
C8—C131.375 (4)C23—H230.9300
C8—C91.372 (4)C24—C251.381 (4)
C8—O11.378 (3)C24—H240.9300
C9—C101.377 (4)C25—C261.378 (4)
C9—H90.9300C25—C281.464 (4)
C10—C111.380 (5)C26—C271.373 (4)
C10—H100.9300C26—H260.9300
C11—C121.369 (4)C27—H270.9300
C11—C141.520 (5)C28—O41.200 (4)
C12—C131.381 (4)C28—H280.9300
C12—H120.9300N1—N21.349 (3)
C13—H130.9300N1—H1N0.91 (3)
C14—O21.166 (4)N2—N31.294 (3)
C14—H140.9300N3—N41.363 (3)
C15—N81.325 (3)N5—N61.343 (3)
C15—N51.332 (3)N5—H2N0.90 (3)
C15—C161.455 (4)N6—N71.291 (3)
C16—C171.385 (4)N7—N81.362 (3)
N4—C1—N1107.5 (2)C18—C17—H17119.4
N4—C1—C2126.2 (2)C16—C17—H17119.4
N1—C1—C2126.3 (2)C19—C18—C17120.1 (3)
C3—C2—C7119.0 (3)C19—C18—H18119.9
C3—C2—C1119.8 (2)C17—C18—H18119.9
C7—C2—C1121.1 (2)C18—C19—C20120.1 (3)
C4—C3—C2120.8 (3)C18—C19—O3124.1 (3)
C4—C3—H3119.6C20—C19—O3115.7 (3)
C2—C3—H3119.6C21—C20—C19119.7 (3)
C5—C4—C3119.0 (3)C21—C20—H20120.1
C5—C4—H4120.5C19—C20—H20120.1
C3—C4—H4120.5C20—C21—C16121.2 (3)
C6—C5—C4121.5 (3)C20—C21—H21119.4
C6—C5—O1117.8 (3)C16—C21—H21119.4
C4—C5—O1120.6 (3)C27—C22—C23120.9 (3)
C5—C6—C7119.3 (3)C27—C22—O3117.3 (3)
C5—C6—H6120.3C23—C22—O3121.6 (3)
C7—C6—H6120.3C24—C23—C22119.3 (3)
C6—C7—C2120.3 (3)C24—C23—H23120.4
C6—C7—H7119.8C22—C23—H23120.4
C2—C7—H7119.8C23—C24—C25120.7 (3)
C13—C8—C9121.2 (3)C23—C24—H24119.6
C13—C8—O1122.7 (3)C25—C24—H24119.6
C9—C8—O1116.1 (3)C24—C25—C26119.1 (3)
C8—C9—C10118.7 (3)C24—C25—C28121.5 (3)
C8—C9—H9120.7C26—C25—C28119.4 (3)
C10—C9—H9120.7C27—C26—C25120.9 (3)
C9—C10—C11121.6 (3)C27—C26—H26119.5
C9—C10—H10119.2C25—C26—H26119.5
C11—C10—H10119.2C26—C27—C22119.2 (3)
C12—C11—C10118.1 (3)C26—C27—H27120.4
C12—C11—C14115.6 (4)C22—C27—H27120.4
C10—C11—C14126.3 (4)O4—C28—C25124.9 (4)
C11—C12—C13121.7 (3)O4—C28—H28117.5
C11—C12—H12119.2C25—C28—H28117.5
C13—C12—H12119.2C1—N1—N2109.5 (2)
C8—C13—C12118.6 (3)C1—N1—H1N133 (2)
C8—C13—H13120.7N2—N1—H1N117 (2)
C12—C13—H13120.7N3—N2—N1106.1 (2)
O2—C14—C11119.7 (5)N2—N3—N4110.5 (2)
O2—C14—H14120.2C1—N4—N3106.4 (2)
C11—C14—H14120.2C15—N5—N6109.9 (2)
N8—C15—N5107.1 (2)C15—N5—H2N129.8 (18)
N8—C15—C16127.5 (2)N6—N5—H2N120.1 (18)
N5—C15—C16125.4 (2)N7—N6—N5106.0 (2)
C17—C16—C21117.8 (3)N6—N7—N8110.5 (2)
C17—C16—C15120.6 (2)C15—N8—N7106.5 (2)
C21—C16—C15121.6 (3)C8—O1—C5118.2 (2)
C18—C17—C16121.2 (3)C19—O3—C22119.9 (2)
N4—C1—C2—C317.7 (4)C19—C20—C21—C160.5 (5)
N1—C1—C2—C3161.4 (3)C17—C16—C21—C200.1 (4)
N4—C1—C2—C7163.8 (3)C15—C16—C21—C20178.0 (3)
N1—C1—C2—C717.1 (4)C27—C22—C23—C241.0 (5)
C7—C2—C3—C40.3 (4)O3—C22—C23—C24176.1 (3)
C1—C2—C3—C4178.3 (3)C22—C23—C24—C250.1 (5)
C2—C3—C4—C50.8 (5)C23—C24—C25—C260.8 (5)
C3—C4—C5—C60.5 (5)C23—C24—C25—C28179.7 (3)
C3—C4—C5—O1176.9 (3)C24—C25—C26—C270.8 (5)
C4—C5—C6—C70.3 (5)C28—C25—C26—C27179.8 (3)
O1—C5—C6—C7176.1 (3)C25—C26—C27—C220.1 (5)
C5—C6—C7—C20.9 (5)C23—C22—C27—C261.0 (5)
C3—C2—C7—C60.6 (4)O3—C22—C27—C26176.3 (3)
C1—C2—C7—C6179.1 (3)C24—C25—C28—O41.9 (5)
C13—C8—C9—C102.4 (5)C26—C25—C28—O4179.2 (3)
O1—C8—C9—C10178.8 (3)N4—C1—N1—N20.0 (3)
C8—C9—C10—C110.8 (6)C2—C1—N1—N2179.2 (3)
C9—C10—C11—C121.3 (5)C1—N1—N2—N30.0 (3)
C9—C10—C11—C14176.4 (3)N1—N2—N3—N40.1 (3)
C10—C11—C12—C131.8 (5)N1—C1—N4—N30.1 (3)
C14—C11—C12—C13176.1 (3)C2—C1—N4—N3179.1 (3)
C9—C8—C13—C121.9 (5)N2—N3—N4—C10.1 (3)
O1—C8—C13—C12179.4 (3)N8—C15—N5—N60.5 (3)
C11—C12—C13—C80.3 (5)C16—C15—N5—N6179.3 (3)
C12—C11—C14—O2177.7 (4)C15—N5—N6—N70.3 (3)
C10—C11—C14—O20.0 (7)N5—N6—N7—N80.1 (3)
N8—C15—C16—C17162.4 (3)N5—C15—N8—N70.4 (3)
N5—C15—C16—C1717.4 (4)C16—C15—N8—N7179.4 (3)
N8—C15—C16—C2115.7 (5)N6—N7—N8—C150.2 (3)
N5—C15—C16—C21164.5 (3)C13—C8—O1—C521.7 (4)
C21—C16—C17—C180.8 (5)C9—C8—O1—C5159.5 (3)
C15—C16—C17—C18178.9 (3)C6—C5—O1—C8120.5 (3)
C16—C17—C18—C191.4 (6)C4—C5—O1—C863.0 (4)
C17—C18—C19—C201.0 (5)C18—C19—O3—C2217.6 (5)
C17—C18—C19—O3177.2 (3)C20—C19—O3—C22166.1 (3)
C18—C19—C20—C210.1 (5)C27—C22—O3—C19128.5 (3)
O3—C19—C20—C21176.6 (3)C23—C22—O3—C1956.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N8i0.91 (3)1.94 (3)2.849 (4)174 (2)
N5—H2N···N4ii0.90 (3)2.03 (3)2.924 (3)176 (3)
C4—H4···O40.932.543.420 (4)158
C17—H17···N3ii0.932.583.365 (4)143
C23—H23···O2iii0.932.423.262 (6)151
Symmetry codes: (i) x+1, y1, z+1; (ii) x1, y, z1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H10N4O2
Mr266.26
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.854 (4), 9.948 (4), 14.139 (6)
α, β, γ (°)98.537 (4), 106.668 (4), 99.737 (4)
V3)1279.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9274, 4683, 2623
Rint0.035
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.142, 1.01
No. of reflections4683
No. of parameters369
No. of restraints30
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N8i0.91 (3)1.94 (3)2.849 (4)174 (2)
N5—H2N···N4ii0.90 (3)2.03 (3)2.924 (3)176 (3)
C4—H4···O40.932.543.420 (4)158
C17—H17···N3ii0.932.583.365 (4)143
C23—H23···O2iii0.932.423.262 (6)151
Symmetry codes: (i) x+1, y1, z+1; (ii) x1, y, z1; (iii) x, y+1, z+1.
 

Acknowledgements

Financial support from the Fundamental Research Funds for the Central Universities in NWSUAF (No. QN2009048) and the opening project of Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin (BRTD1004) as well as the National Natural Science Foundation of China (20802058) are greatly appreciated.

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, J.-H., Yuan, X.-L. & Mei, G.-Q. (2010). Inorg. Chem. Commun. 13, 1585–1589.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, D.-Y., Chu, X.-W. & Qu, Z.-R. (2009). Acta Cryst. E65, o2463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, G.-Q., Wu, A.-Q., Li, Y., Zheng, F.-K. & Guo, G.-C. (2008). Acta Cryst. E64, o1368.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasrollahzadeh, M., Bayat, Y., Habibi, D. & Moshaee, S. (2009). Tetrahedron Lett. 50, 4435–4438.  Web of Science CrossRef CAS Google Scholar
First citationOstrovskii, V. A., Koldobskii, G. I., Trifonov, R. E., Alan, R. K., Christopher, A. R., Eric, F. V. S. & Richard, J. K. T. (2008). Comprehensive Heterocyclic Chemistry III, p. 257. Oxford: Elsevier.  Google Scholar
First citationSaikia, I. & Phukan, P. (2009). Tetrahedron Lett. 50, 5083–5087.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeimouri, A. & Najafi Chermahini, A. (2011). Polyhedron, 30, 2606–2610.  Web of Science CrossRef CAS Google Scholar
First citationXu, L., Gu, L.-Y., Zhao, D.-Y., Wang, B. & Kang, T.-G. (2010). Acta Cryst. E66, o742.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds