metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1638-m1639

trans-Di­aqua­bis­­(4-fluoro­benzoato-κO)bis­­(nicotinamide-κN1)nickel(II)

aKafkas University, Department of Chemistry, 36100 Kars, Turkey, and bHacettepe University, Department of Physics, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 21 October 2011; accepted 26 October 2011; online 29 October 2011)

In the mononuclear NiII title complex, [Ni(C7H4FO2)2(C6H6N2O)2(H2O)2], the NiII atom, located on an inversion center, is coordinated by two nicotinamide and two 4-fluoro­benzoate ligands and two water mol­ecules in a distorted N2O4 octa­hedral geometry. The dihedral angle between the carboxyl­ate group and the adjacent benzene ring is 8.95 (8)°, while the pyridine ring and the benzene ring are oriented at a dihedral angle of 75.01 (7)°. The water mol­ecule links the adjacent carboxyl­ate O atom via an intra­molecular O—H⋯O hydrogen bond. In the crystal, O—H⋯O, N—H⋯O, C—H⋯O and C—H⋯F hydrogen bonds link the mol­ecules into a three-dimensional network. ππ stacking between parallel pyridine rings [centroid–centroid distance = 3.7287 (11) Å] is also observed.

Related literature

For literature on niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For information on the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.], 2007)[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]; Necefoğlu et al. (2011[Necefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m619-m620.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H4FO2)2(C6H6N2O)2(H2O)2]

  • Mr = 617.18

  • Monoclinic, P 21 /c

  • a = 12.2001 (5) Å

  • b = 8.8473 (4) Å

  • c = 17.1341 (5) Å

  • β = 136.080 (2)°

  • V = 1282.86 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 100 K

  • 0.29 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.803, Tmax = 0.861

  • 11926 measured reflections

  • 3220 independent reflections

  • 2874 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.077

  • S = 1.04

  • 3220 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O1 2.0500 (9)
Ni1—O4 2.0872 (10)
Ni1—N1 2.1033 (13)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O3i 0.84 (3) 2.15 (3) 2.8363 (19) 139 (2)
N2—H22⋯O4ii 0.86 (3) 2.28 (3) 2.955 (2) 135 (2)
O4—H41⋯O3iii 0.841 (18) 1.94 (2) 2.7654 (16) 166 (3)
O4—H42⋯O2 0.88 (3) 1.70 (2) 2.5663 (14) 168 (4)
C6—H6⋯O4iv 0.93 2.52 3.402 (3) 159
C8—H8⋯F1v 0.93 2.53 3.1358 (18) 123
C9—H9⋯F1v 0.93 2.55 3.129 (2) 121
C10—H10⋯O2vi 0.93 2.57 3.4060 (19) 150
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+1, -y+1, -z+2; (vi) x, y+1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The asymmetric unit of the title mononuclear NiII complex, (Fig. 1), contains one-half molecule, the NiII atom being located on an inversion center. It consists of two nicotinamide (NA), two 4-fluorobenzoate (PFB) ligands and two coordinated water molecules, all ligands coordinating in a monodentate manner. The crystal structures of similar omplexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2] (Hökelek & Necefouglu, 1998), [Co(C9H9O2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009b) have also been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the CuII atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title complex, the four symmetry related O atoms (O1, O1', O4 and O4') in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1 and N1') in the axial positions. The near equalities of the C1—O1 [1.2695 (18) Å] and C1—O2 [1.2560 (16) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The Ni—O bond lengths are 2.0500 (9) Å (for benzoate oxygen) and 2.0872 (10) Å (for water oxygen), and the Ni—N bond length is 2.1033 (13) Å, close to standard values (Allen et al., 1987). The intramolecular O—H···O hydrogen bonds (Table 1) link the water molecules to the carboxylate groups. The Ni atom is displaced out of the mean-plane of the carboxylate group (O1/C1/O2) by 0.5609 (1) Å. The dihedral angle between the planar carboxylate group and the adjacent benzene ring A (C2—C7) is 8.95 (8)°. The benzene A (C2—C7) and the pyridine B (N1/C8—C12) rings are oriented at a dihedral angle of A/B = 75.01 (7)°.

In the crystal, intermolecular O—H···O, N—H···O, C—H···O and C—H···F hydrogen bonds (Table 1) link the molecules into a three-dimensional network. There also exists a ππ contact between the pyridine rings, Cg2—Cg2i, may further stabilize the structure [centroid-centroid distance = 3.729 (1) Å; symmetry code: (i) 2 - x, -y, 1 - z; Cg2 is the centroid of the ring B (N1/C8—C12)].

Related literature top

For literature on niacin, see: Krishnamachari (1974). For information on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b); Hökelek & Necefouğlu (1998, 2007); Necefoğlu et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of NiSO4.6H2O (1.31 g, 5 mmol) in H2O (25 ml) and NA (1.22 g, 10 mmol) in H2O (25 ml) with sodium 4-fluorobenzoate (1.62 g, 10 mmol) in H2O (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for two weeks, giving blue single crystals.

Refinement top

Atoms H41 and H42 (for water molecules) and H21 and H22 (for NH2 groups) were located in a difference Fourier map and were freely refined. The C-bound H-atoms were positioned geometrically with C—H = 0.93 Å, for aromatic H-atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code ('): -x, 1-y, 1-z].
trans-Diaquabis(4-fluorobenzoato-κO)bis(nicotinamide- κN1)nickel(II) top
Crystal data top
[Ni(C7H4FO2)2(C6H6N2O)2(H2O)2]F(000) = 636
Mr = 617.18Dx = 1.598 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6642 reflections
a = 12.2001 (5) Åθ = 2.4–28.5°
b = 8.8473 (4) ŵ = 0.83 mm1
c = 17.1341 (5) ÅT = 100 K
β = 136.080 (2)°Block, blue
V = 1282.86 (10) Å30.29 × 0.22 × 0.18 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3220 independent reflections
Radiation source: fine-focus sealed tube2874 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1616
Tmin = 0.803, Tmax = 0.861k = 1111
11926 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.038P)2 + 0.689P]
where P = (Fo2 + 2Fc2)/3
3220 reflections(Δ/σ)max < 0.001
203 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Ni(C7H4FO2)2(C6H6N2O)2(H2O)2]V = 1282.86 (10) Å3
Mr = 617.18Z = 2
Monoclinic, P21/cMo Kα radiation
a = 12.2001 (5) ŵ = 0.83 mm1
b = 8.8473 (4) ÅT = 100 K
c = 17.1341 (5) Å0.29 × 0.22 × 0.18 mm
β = 136.080 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3220 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2874 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.861Rint = 0.028
11926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
3220 reflectionsΔρmin = 0.57 e Å3
203 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.50000.50000.00935 (8)
O10.18950 (11)0.45525 (13)0.66805 (8)0.0129 (2)
O20.35932 (12)0.35155 (14)0.66999 (8)0.0182 (2)
O30.04376 (12)1.15787 (12)0.34180 (8)0.0152 (2)
O40.11757 (12)0.41708 (13)0.46215 (8)0.0127 (2)
H410.088 (2)0.333 (2)0.4293 (16)0.020 (5)*
H420.209 (3)0.398 (3)0.532 (2)0.049 (7)*
N10.08897 (13)0.71649 (14)0.52032 (9)0.0114 (2)
N20.00057 (17)0.93579 (17)0.26006 (11)0.0180 (3)
H210.003 (2)0.841 (3)0.2615 (17)0.030 (6)*
H220.033 (3)0.984 (3)0.203 (2)0.037 (6)*
F10.65268 (11)0.13200 (13)1.13785 (7)0.0274 (2)
C10.31188 (15)0.37925 (17)0.71362 (11)0.0124 (3)
C20.40420 (15)0.31422 (18)0.82813 (11)0.0132 (3)
C30.36738 (18)0.3548 (2)0.88572 (12)0.0192 (3)
H30.28660.42360.85380.023*
C40.45092 (19)0.2929 (2)0.99065 (12)0.0229 (4)
H40.42700.31901.02960.027*
C50.56940 (17)0.1923 (2)1.03506 (11)0.0185 (3)
C60.60852 (17)0.14784 (19)0.98051 (12)0.0176 (3)
H60.68850.07791.01270.021*
C70.52424 (16)0.21111 (18)0.87575 (11)0.0152 (3)
H70.54870.18400.83720.018*
C80.18734 (16)0.78640 (18)0.62049 (11)0.0130 (3)
H80.21780.73580.68130.016*
C90.24541 (16)0.93048 (18)0.63733 (11)0.0141 (3)
H90.31440.97500.70820.017*
C100.19927 (17)1.00725 (17)0.54715 (12)0.0130 (3)
H100.23531.10480.55600.016*
C110.09784 (15)0.93567 (17)0.44284 (11)0.0107 (3)
C120.04647 (15)0.79094 (17)0.43349 (11)0.0112 (3)
H120.02050.74300.36390.013*
C130.04432 (16)1.01818 (17)0.34384 (11)0.0121 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01259 (13)0.00808 (15)0.00725 (12)0.00057 (10)0.00710 (10)0.00028 (9)
O10.0143 (4)0.0119 (5)0.0089 (4)0.0004 (4)0.0072 (4)0.0005 (4)
O20.0158 (5)0.0271 (7)0.0124 (4)0.0011 (5)0.0104 (4)0.0016 (5)
O30.0245 (5)0.0088 (5)0.0148 (4)0.0002 (4)0.0149 (4)0.0003 (4)
O40.0166 (5)0.0115 (6)0.0104 (4)0.0011 (4)0.0098 (4)0.0014 (4)
N10.0136 (5)0.0107 (6)0.0113 (5)0.0001 (5)0.0094 (4)0.0003 (5)
N20.0330 (7)0.0096 (7)0.0146 (6)0.0006 (6)0.0183 (6)0.0000 (5)
F10.0278 (5)0.0348 (6)0.0115 (4)0.0072 (5)0.0114 (4)0.0094 (4)
C10.0127 (6)0.0111 (7)0.0097 (5)0.0039 (6)0.0068 (5)0.0015 (5)
C20.0127 (6)0.0146 (8)0.0098 (5)0.0017 (6)0.0073 (5)0.0007 (5)
C30.0187 (7)0.0240 (9)0.0143 (6)0.0063 (7)0.0117 (6)0.0035 (6)
C40.0254 (7)0.0318 (10)0.0152 (6)0.0062 (8)0.0159 (6)0.0027 (7)
C50.0176 (6)0.0214 (9)0.0092 (6)0.0001 (7)0.0072 (5)0.0030 (6)
C60.0143 (6)0.0181 (8)0.0147 (6)0.0036 (6)0.0086 (5)0.0032 (6)
C70.0146 (6)0.0169 (8)0.0135 (6)0.0008 (6)0.0100 (5)0.0004 (6)
C80.0154 (6)0.0130 (8)0.0103 (5)0.0009 (6)0.0091 (5)0.0007 (5)
C90.0164 (6)0.0140 (8)0.0103 (5)0.0015 (6)0.0091 (5)0.0018 (6)
C100.0163 (6)0.0097 (7)0.0139 (6)0.0016 (6)0.0112 (6)0.0011 (5)
C110.0130 (6)0.0110 (7)0.0105 (5)0.0021 (6)0.0092 (5)0.0023 (5)
C120.0132 (6)0.0112 (7)0.0097 (5)0.0001 (6)0.0085 (5)0.0004 (5)
C130.0146 (6)0.0122 (7)0.0114 (6)0.0001 (6)0.0100 (5)0.0005 (5)
Geometric parameters (Å, º) top
Ni1—O12.0500 (9)C2—C71.386 (2)
Ni1—O1i2.0500 (9)C3—C41.390 (2)
Ni1—O42.0872 (10)C3—H30.9300
Ni1—O4i2.0872 (10)C4—H40.9300
Ni1—N12.1033 (13)C5—C41.369 (2)
Ni1—N1i2.1033 (13)C6—C51.378 (2)
O1—C11.2695 (18)C6—C71.3906 (19)
O2—C11.2560 (16)C6—H60.9300
O3—C131.2363 (18)C7—H70.9300
O4—H410.84 (2)C8—C91.384 (2)
O4—H420.88 (3)C8—H80.9300
N1—C81.3421 (17)C9—C101.3830 (19)
N1—C121.3435 (17)C9—H90.9300
N2—C131.3264 (19)C10—C111.3930 (19)
N2—H210.84 (2)C10—H100.9300
N2—H220.86 (2)C12—C111.383 (2)
F1—C51.3570 (16)C12—H120.9300
C1—C21.5051 (18)C13—C111.4970 (18)
C2—C31.3939 (19)
O1i—Ni1—O1180.0C4—C3—C2120.28 (14)
O1—Ni1—O492.09 (4)C4—C3—H3119.9
O1i—Ni1—O487.91 (4)C3—C4—H4120.9
O1—Ni1—O4i87.91 (4)C5—C4—C3118.16 (13)
O1i—Ni1—O4i92.09 (4)C5—C4—H4120.9
O1—Ni1—N191.03 (4)F1—C5—C4118.72 (13)
O1i—Ni1—N188.97 (4)F1—C5—C6117.82 (14)
O1—Ni1—N1i88.97 (4)C4—C5—C6123.46 (13)
O1i—Ni1—N1i91.03 (4)C5—C6—C7117.73 (14)
O4—Ni1—O4i180.00 (5)C5—C6—H6121.1
O4—Ni1—N189.05 (4)C7—C6—H6121.1
O4i—Ni1—N190.95 (4)C2—C7—C6120.67 (13)
O4—Ni1—N1i90.95 (4)C2—C7—H7119.7
O4i—Ni1—N1i89.05 (4)C6—C7—H7119.7
N1i—Ni1—N1180.00 (8)N1—C8—C9122.88 (13)
C1—O1—Ni1127.09 (9)N1—C8—H8118.6
Ni1—O4—H41117.0 (13)C9—C8—H8118.6
Ni1—O4—H4297.2 (15)C8—C9—H9120.5
H41—O4—H42105 (2)C10—C9—C8118.96 (13)
C8—N1—Ni1120.72 (9)C10—C9—H9120.5
C8—N1—C12117.81 (13)C9—C10—C11118.73 (14)
C12—N1—Ni1121.44 (9)C9—C10—H10120.6
C13—N2—H21123.2 (14)C11—C10—H10120.6
C13—N2—H22116.9 (15)C10—C11—C13119.43 (13)
H21—N2—H22120 (2)C12—C11—C10118.63 (12)
O1—C1—C2116.65 (12)C12—C11—C13121.92 (12)
O2—C1—O1125.40 (12)N1—C12—C11122.98 (12)
O2—C1—C2117.93 (13)N1—C12—H12118.5
C3—C2—C1120.28 (13)C11—C12—H12118.5
C7—C2—C1120.01 (12)O3—C13—N2121.96 (13)
C7—C2—C3119.70 (13)O3—C13—C11120.56 (12)
C2—C3—H3119.9N2—C13—C11117.48 (14)
O4—Ni1—O1—C110.42 (12)O2—C1—C2—C78.4 (2)
O4i—Ni1—O1—C1169.58 (12)C1—C2—C3—C4178.94 (15)
N1—Ni1—O1—C199.50 (12)C7—C2—C3—C40.3 (2)
N1i—Ni1—O1—C180.50 (12)C1—C2—C7—C6178.74 (14)
O1—Ni1—N1—C824.63 (11)C3—C2—C7—C60.1 (2)
O1i—Ni1—N1—C8155.37 (11)C2—C3—C4—C50.2 (3)
O1—Ni1—N1—C12157.13 (10)F1—C5—C4—C3179.47 (15)
O1i—Ni1—N1—C1222.87 (10)C6—C5—C4—C31.0 (3)
O4—Ni1—N1—C8116.70 (11)C7—C6—C5—F1179.28 (14)
O4i—Ni1—N1—C863.30 (11)C7—C6—C5—C41.2 (3)
O4—Ni1—N1—C1265.06 (10)C5—C6—C7—C20.6 (2)
O4i—Ni1—N1—C12114.94 (10)N1—C8—C9—C100.7 (2)
Ni1—O1—C1—O220.1 (2)C8—C9—C10—C111.0 (2)
Ni1—O1—C1—C2158.24 (10)C9—C10—C11—C120.4 (2)
Ni1—N1—C8—C9178.10 (10)C9—C10—C11—C13178.87 (13)
C12—N1—C8—C90.2 (2)N1—C12—C11—C100.5 (2)
Ni1—N1—C12—C11177.43 (10)N1—C12—C11—C13177.86 (12)
C8—N1—C12—C110.86 (19)O3—C13—C11—C1023.7 (2)
O1—C1—C2—C38.6 (2)O3—C13—C11—C12154.64 (13)
O1—C1—C2—C7170.00 (14)N2—C13—C11—C10155.73 (14)
O2—C1—C2—C3172.92 (14)N2—C13—C11—C1225.9 (2)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O3ii0.84 (3)2.15 (3)2.8363 (19)139 (2)
N2—H22···O4iii0.86 (3)2.28 (3)2.955 (2)135 (2)
O4—H41···O3iv0.841 (18)1.94 (2)2.7654 (16)166 (3)
O4—H42···O20.88 (3)1.70 (2)2.5663 (14)168 (4)
C6—H6···O4v0.932.523.402 (3)159
C8—H8···F1vi0.932.533.1358 (18)123
C9—H9···F1vi0.932.553.129 (2)121
C10—H10···O2vii0.932.573.4060 (19)150
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+1/2, z+1/2; (iv) x, y1, z; (v) x+1, y1/2, z+3/2; (vi) x+1, y+1, z+2; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(C7H4FO2)2(C6H6N2O)2(H2O)2]
Mr617.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.2001 (5), 8.8473 (4), 17.1341 (5)
β (°) 136.080 (2)
V3)1282.86 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.29 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.803, 0.861
No. of measured, independent and
observed [I > 2σ(I)] reflections
11926, 3220, 2874
Rint0.028
(sin θ/λ)max1)0.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.077, 1.04
No. of reflections3220
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.57

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—O12.0500 (9)Ni1—N12.1033 (13)
Ni1—O42.0872 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O3i0.84 (3)2.15 (3)2.8363 (19)139 (2)
N2—H22···O4ii0.86 (3)2.28 (3)2.955 (2)135 (2)
O4—H41···O3iii0.841 (18)1.94 (2)2.7654 (16)166 (3)
O4—H42···O20.88 (3)1.70 (2)2.5663 (14)168 (4)
C6—H6···O4iv0.932.523.402 (3)159
C8—H8···F1v0.932.533.1358 (18)123
C9—H9···F1v0.932.553.129 (2)121
C10—H10···O2vi0.932.573.4060 (19)150
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y1/2, z+3/2; (v) x+1, y+1, z+2; (vi) x, y+1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 106 T472).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m619–m620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 11| November 2011| Pages m1638-m1639
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds