metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1-tert-Butyl-3-(pyridin-2-ylmethyl-κN)imidazol-2-yl­­idene-κC1]carbonyl­di­chlorido(di­methyl sulfoxide-κS)ruthenium(II)

aCollege of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, People's Republic of China
*Correspondence e-mail: chyong2008happy@163.com

(Received 3 July 2011; accepted 14 October 2011; online 22 October 2011)

In the title complex, [RuCl2(C13H17N3)(C2H6OS)(CO)], the coordination environment around the Ru atom is slightly distorted octa­hedral. The Cl atoms are mutually trans to the dimethyl sulfoxide ligand and the imidazole carbene C atom, respectively. The carbonyl ligand is located trans to the pyridine N atom.

Related literature

For general background to N-heterocyclic carbene (NHC) complexes, see: Hahn et al. (2006[Hahn, F. E. (2006). Angew. Chem. Int. Ed. 45, 1348-1352.]); Lee et al. (2007[Lee, H. M., Lee, C.-C. & Cheng, P.-Y. (2007). Curr. Org. Chem. 11, 1491-1524.]); Mas-Marza et al. (2005[Mas-Marza, E., Sanau, M. & Peris, E. (2005). Inorg. Chem. 44, 9961-9967.]); Kaufhold et al. (2008[Kaufhold, O., Hahn, F. E., Pape, T. & Hepp, A. (2008). J. Organomet. Chem. 693, 3435-3440.]); Araki et al. (2008[Araki, K., Kuwata, S. & Ikariya, T. (2008). Organometallics, 27, 2176-2178.]); Son et al. (2004[Son, K. H., Park, S. U., Lee, Y.-S., Kim, B. Y., Choi, C. H., Lah, M. S., Jang, Y. H., Jang, D.-J. & Chung, Y. K. (2004). Inorg. Chem. 43, 6896-6898.]); Poyatos et al. (2006[Poyatos, M., Maisse-Francis, A., Bellemin-Laponnaz, S., Peris, E. & Gade, L. H. (2006). J. Organomet. Chem. 691, 2713-2720.]). For our previous work on Ru–NHC complexes, see: Cheng, Sun et al. (2009[Cheng, Y., Sun, J.-F., Yang, H.-L., Xu, H.-J., Li, Y.-Z., Chen, X.-T. & Xue, Z.-L. (2009). Organometallics, 28, 819-823.]); Cheng, Xu et al. (2009[Cheng, Y., Xu, H.-J., Sun, J.-F., Li, Y.-Z., Chen, X.-T. & Xue, Z.-L. (2009). Dalton Trans. pp. 7132-7140.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl2(C13H17N3)(C2H6OS)(CO)]

  • Mr = 493.40

  • Orthorhombic, P b c a

  • a = 14.3297 (14) Å

  • b = 15.7428 (16) Å

  • c = 17.1867 (16) Å

  • V = 3877.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 291 K

  • 0.26 × 0.22 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.74, Tmax = 0.79

  • 20132 measured reflections

  • 3815 independent reflections

  • 3401 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.110

  • S = 1.06

  • 3815 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −1.30 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Heterocyclic carbenes (NHCs) complexes have attracted increasing attention as they have been proven to act as efficient homogeneous catalyst (Hahn et al. 2006). Pyridine-functionalized bidentate carbene ligands have been frequently used as versatile ancillary ligands in organometallic complexes in recent years (Lee et al. 2007). A lot of bidentate pyridinefunctionalized NHC complexes have been prepared, some of which showed catalytic activities in reactions such as hydrosilylation of acetylenes, cyclization of acetylenic carboxylic acids, hydrogen transfer to ketones (Mas-Marza et al. 2005). However, few reports have been published on Ru complexes containing bidentate pyridine-functionalized NHC ligands (Kaufhold et al. 2008, Araki et al. 2008, Son et al. 2004, Poyatos et al. 2006). We have reported the synthesis and characterization of pyridine functionalized Ru(II)-NHC nitrosyl or carbonyl complexes and their catalytic activity in hydrogen transfer of ketones (Cheng, Sun et al., 2009; Cheng, Xu et al., 2009). Herein, we report a new pyridine functionalized Ru-NHC carbonyl complex with dimethyl sulfoxide.

The structure of the title complex shows that the coordination geometry around the ruthenium atom can be rationalized as a slightly distorted octahedron. Two chloride atoms occupy mutually trans to the dimethylsulfoxide and imidazole carbene carbon respectively. The CO group is located trans to the pyridine nitrogen (Fig.1).

Related literature top

For general background to N-Heterocyclic carbene (NHC) complexes, see: Hahn et al. (2006); Lee et al. (2007); Mas-Marza et al. (2005); Kaufhold et al. (2008); Araki et al. (2008); Son et al. (2004); Poyatos et al. (2006). For our previous work on Ru–NHC complexes, see: Cheng, Sun et al. (2009); Cheng, Xu et al. (2009).

Experimental top

A mixture of 3-tert-butyl-1-picolylimidazolium Bromide (1.0 mmol), silver oxide (1.0 mmol) and CH2Cl2 (30 ml) was stirred at room temperature for 12 h, and was then filtered through Celite to remove unreacted silver oxide and insoluble residues. [Ru(CO)2Cl2]n (1.0 mmol) was added to the pale yellow solution, stirred for 12 h at room temperature and then filtered through Celite to remove the silver halide. The products were chromatographed using silica gel. Elution with CH2Cl2: MeOH (40:1) afforded a pale yellow band that contained the trans-[(3-tert-butyl-1-picolylimidazol-2-ylidene)biscolorodicarbonylruthenium], Removal of the volatiles under vacuum gave the products as pale yellow powders.

Exposured the saturated dimethyl sulfoxide solution of the trans-[(3-tert-butyl-1-picolylimidazol-2-ylidene)biscolorodicarbonylruthenium] in air, yellow-rectangle crystals were obtained one month later, which were title complex confirmed by X-ray structure determination. It shows that dimethyl sulfoxide displaced one molecule of CO in previous compound, and the structure converted from trans to cis.

Refinement top

The structures were solved by direct methods and refined on F2 against all reflections by full-matrix least-squares methods with SHELXTL program. The hydrogen atoms in the compound were positioned geometrically (C—H = 0.93Å and O—H = 0.83 Å) and refined in the riding-model approximation, with Uiso(H) set to 1.2Ueq(O). All non-hydrogen atoms were refined with anisotropic thermal parameters. The highest peak and deepest hole residual peak in the final difference Fourier map are located at 0.33Å and 1.30 Å, respectively, from atom Ru.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex showing 30% probability ellipsoids. Hydrogen atoms are omitted for clarity.[symmetry codes: (i)'-x + 1/2, -y, z + 1/2' (ii)'-x, y + 1/2, -z + 1/2']
[1-tert-Butyl-3-(pyridin-2-ylmethyl-κN)imidazol-2- ylidene-κC1]carbonyldichlorido(dimethyl sulfoxide-κS)ruthenium(II) top
Crystal data top
[RuCl2(C13H17N3)(C2H6OS)(CO)]F(000) = 2000
Mr = 493.40Dx = 1.691 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2216 reflections
a = 14.3297 (14) Åθ = 2.3–23.2°
b = 15.7428 (16) ŵ = 1.21 mm1
c = 17.1867 (16) ÅT = 291 K
V = 3877.1 (7) Å3Cuboid, yellow
Z = 80.26 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3815 independent reflections
Radiation source: sealed tube3401 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
phi and ω scansθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1617
Tmin = 0.74, Tmax = 0.79k = 1219
20132 measured reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.07P)2 + 1.99P]
where P = (Fo2 + 2Fc2)/3
3815 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 1.30 e Å3
Crystal data top
[RuCl2(C13H17N3)(C2H6OS)(CO)]V = 3877.1 (7) Å3
Mr = 493.40Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.3297 (14) ŵ = 1.21 mm1
b = 15.7428 (16) ÅT = 291 K
c = 17.1867 (16) Å0.26 × 0.22 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
3815 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3401 reflections with I > 2σ(I)
Tmin = 0.74, Tmax = 0.79Rint = 0.044
20132 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
3815 reflectionsΔρmin = 1.30 e Å3
231 parameters
Special details top

Experimental. The single crystals was mounted on a glass fibre with silicon grease. Diffraction data were collected on a Bruker SMART Apex CCD diffractometer using graphite-monochromated MoKa (l =0.71073 Å) radiation and corrllected for absorption using SADABS program.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7924 (2)0.1922 (3)0.4198 (2)0.0412 (8)
H10.78840.13780.44040.049*
C20.8640 (3)0.2469 (3)0.4455 (3)0.0460 (10)
H20.90690.22920.48270.055*
C30.8685 (3)0.3279 (3)0.4137 (3)0.0504 (10)
H30.91570.36490.42910.060*
C40.8029 (2)0.3541 (2)0.3591 (2)0.0374 (8)
H40.80460.40850.33800.045*
C50.7357 (2)0.2968 (2)0.33735 (19)0.0307 (7)
C60.6614 (3)0.3243 (2)0.2791 (2)0.0389 (8)
H6A0.60100.32490.30470.047*
H6B0.67480.38170.26170.047*
C70.6571 (3)0.3016 (3)0.1371 (2)0.0487 (10)
H70.66250.35860.12330.058*
C80.6478 (3)0.2344 (3)0.0883 (2)0.0485 (10)
H80.64650.23660.03430.058*
C90.6444 (2)0.1815 (2)0.21162 (19)0.0276 (6)
C100.6203 (3)0.0776 (3)0.0934 (2)0.0403 (8)
C110.6801 (3)0.0038 (3)0.1278 (3)0.0501 (10)
H11A0.74510.01620.12080.075*
H11B0.66500.04830.10160.075*
H11C0.66700.00200.18240.075*
C120.5139 (3)0.0597 (3)0.1032 (3)0.0512 (10)
H12A0.49760.06280.15730.077*
H12B0.49980.00400.08370.077*
H12C0.47890.10130.07460.077*
C130.6446 (3)0.0843 (3)0.0066 (2)0.0577 (12)
H13A0.60020.12060.01880.087*
H13B0.64250.02880.01660.087*
H13C0.70610.10760.00080.087*
C140.4160 (3)0.1148 (3)0.3901 (3)0.0518 (11)
H14A0.44410.07820.42800.078*
H14B0.39130.08120.34820.078*
H14C0.36640.14660.41390.078*
C150.4341 (3)0.2282 (3)0.2722 (3)0.0524 (10)
H15A0.37930.25590.29200.079*
H15B0.41580.18230.23870.079*
H15C0.47090.26820.24330.079*
C160.5656 (2)0.0265 (2)0.2880 (2)0.0351 (7)
Cl10.78532 (6)0.05000 (6)0.29450 (6)0.0388 (2)
Cl20.63074 (7)0.05755 (7)0.44994 (6)0.0496 (3)
N10.72873 (19)0.21741 (17)0.36515 (15)0.0303 (6)
N20.65692 (19)0.26818 (19)0.21148 (17)0.0325 (6)
N30.6403 (2)0.1616 (2)0.13376 (18)0.0364 (7)
O10.5227 (2)0.03364 (19)0.27652 (19)0.0556 (8)
O20.51299 (19)0.25707 (19)0.40880 (16)0.0488 (7)
Ru10.636122 (18)0.119715 (16)0.318107 (15)0.02810 (12)
S10.50232 (6)0.18683 (6)0.35263 (5)0.0356 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0356 (18)0.053 (2)0.0345 (18)0.0042 (16)0.0116 (14)0.0115 (16)
C20.041 (2)0.047 (2)0.050 (2)0.0011 (16)0.0079 (16)0.0176 (19)
C30.043 (2)0.054 (2)0.054 (3)0.0021 (18)0.0030 (17)0.020 (2)
C40.0343 (17)0.0377 (19)0.0402 (19)0.0088 (15)0.0031 (14)0.0128 (16)
C50.0319 (16)0.0288 (16)0.0316 (16)0.0009 (13)0.0054 (13)0.0038 (13)
C60.0436 (19)0.0327 (18)0.040 (2)0.0098 (15)0.0052 (16)0.0053 (15)
C70.056 (2)0.049 (2)0.041 (2)0.0112 (19)0.0021 (18)0.0076 (18)
C80.066 (3)0.044 (2)0.036 (2)0.0120 (19)0.0048 (18)0.0055 (17)
C90.0219 (15)0.0351 (17)0.0259 (16)0.0020 (12)0.0013 (11)0.0008 (13)
C100.0396 (19)0.051 (2)0.0300 (18)0.0049 (17)0.0043 (14)0.0075 (16)
C110.035 (2)0.051 (2)0.064 (3)0.0041 (17)0.0020 (18)0.010 (2)
C120.034 (2)0.063 (3)0.057 (2)0.0003 (18)0.0081 (17)0.010 (2)
C130.068 (3)0.075 (3)0.030 (2)0.009 (2)0.0055 (18)0.010 (2)
C140.037 (2)0.063 (3)0.055 (3)0.0163 (18)0.0153 (18)0.011 (2)
C150.035 (2)0.066 (3)0.057 (2)0.0095 (18)0.0167 (18)0.002 (2)
C160.0285 (16)0.0331 (18)0.0437 (19)0.0018 (14)0.0075 (14)0.0018 (15)
Cl10.0302 (4)0.0355 (4)0.0508 (5)0.0019 (3)0.0024 (3)0.0006 (4)
Cl20.0601 (6)0.0520 (6)0.0366 (5)0.0054 (4)0.0026 (4)0.0137 (4)
N10.0292 (14)0.0306 (14)0.0309 (14)0.0006 (11)0.0028 (10)0.0047 (11)
N20.0327 (14)0.0343 (15)0.0306 (14)0.0040 (12)0.0035 (11)0.0037 (12)
N30.0383 (16)0.0379 (16)0.0331 (16)0.0044 (12)0.0029 (11)0.0039 (13)
O10.0553 (17)0.0423 (16)0.069 (2)0.0183 (14)0.0067 (15)0.0039 (14)
O20.0422 (14)0.0581 (17)0.0462 (15)0.0040 (13)0.0044 (12)0.0214 (13)
Ru10.02643 (17)0.02881 (18)0.02905 (18)0.00223 (10)0.00179 (9)0.00097 (10)
S10.0285 (4)0.0435 (5)0.0348 (4)0.0005 (3)0.0018 (3)0.0040 (4)
Geometric parameters (Å, º) top
C1—N11.368 (4)C10—C121.560 (5)
C1—C21.409 (5)C11—H11A0.9600
C1—H10.9300C11—H11B0.9600
C2—C31.389 (6)C11—H11C0.9600
C2—H20.9300C12—H12A0.9600
C3—C41.391 (6)C12—H12B0.9600
C3—H30.9300C12—H12C0.9600
C4—C51.372 (5)C13—H13A0.9600
C4—H40.9300C13—H13B0.9600
C5—N11.341 (4)C13—H13C0.9600
C5—C61.526 (5)C14—S11.797 (4)
C6—N21.461 (4)C14—H14A0.9600
C6—H6A0.9700C14—H14B0.9600
C6—H6B0.9700C14—H14C0.9600
C7—C81.357 (6)C15—S11.815 (4)
C7—N21.383 (5)C15—H15A0.9600
C7—H70.9300C15—H15B0.9600
C8—N31.391 (5)C15—H15C0.9600
C8—H80.9300C16—O11.146 (4)
C9—N21.376 (4)C16—Ru11.855 (3)
C9—N31.376 (5)Cl1—Ru12.4372 (9)
C9—Ru12.076 (3)Cl2—Ru12.4692 (10)
C10—N31.521 (5)N1—Ru12.186 (3)
C10—C131.536 (5)O2—S11.476 (3)
C10—C111.560 (6)Ru1—S12.2682 (9)
N1—C1—C2121.6 (4)C10—C13—H13B109.5
N1—C1—H1119.2H13A—C13—H13B109.5
C2—C1—H1119.2C10—C13—H13C109.5
C3—C2—C1118.1 (4)H13A—C13—H13C109.5
C3—C2—H2120.9H13B—C13—H13C109.5
C1—C2—H2120.9S1—C14—H14A109.5
C2—C3—C4120.4 (4)S1—C14—H14B109.5
C2—C3—H3119.8H14A—C14—H14B109.5
C4—C3—H3119.8S1—C14—H14C109.5
C5—C4—C3117.5 (4)H14A—C14—H14C109.5
C5—C4—H4121.2H14B—C14—H14C109.5
C3—C4—H4121.2S1—C15—H15A109.5
N1—C5—C4124.7 (3)S1—C15—H15B109.5
N1—C5—C6116.5 (3)H15A—C15—H15B109.5
C4—C5—C6118.8 (3)S1—C15—H15C109.5
N2—C6—C5112.4 (3)H15A—C15—H15C109.5
N2—C6—H6A109.1H15B—C15—H15C109.5
C5—C6—H6A109.1O1—C16—Ru1173.5 (3)
N2—C6—H6B109.1C5—N1—C1117.7 (3)
C5—C6—H6B109.1C5—N1—Ru1124.7 (2)
H6A—C6—H6B107.9C1—N1—Ru1117.1 (2)
C8—C7—N2105.9 (4)C9—N2—C7112.3 (3)
C8—C7—H7127.1C9—N2—C6127.2 (3)
N2—C7—H7127.1C7—N2—C6120.3 (3)
C7—C8—N3107.7 (4)C9—N3—C8110.8 (3)
C7—C8—H8126.2C9—N3—C10130.5 (3)
N3—C8—H8126.2C8—N3—C10118.4 (3)
N2—C9—N3103.3 (3)C16—Ru1—C998.96 (14)
N2—C9—Ru1118.3 (2)C16—Ru1—N1171.94 (13)
N3—C9—Ru1138.4 (3)C9—Ru1—N187.79 (11)
N3—C10—C13109.9 (3)C16—Ru1—S188.94 (11)
N3—C10—C11111.8 (3)C9—Ru1—S193.48 (9)
C13—C10—C11107.2 (3)N1—Ru1—S195.09 (7)
N3—C10—C12107.0 (3)C16—Ru1—Cl194.29 (11)
C13—C10—C12109.8 (3)C9—Ru1—Cl190.81 (9)
C11—C10—C12111.2 (3)N1—Ru1—Cl181.13 (7)
C10—C11—H11A109.5S1—Ru1—Cl1174.18 (3)
C10—C11—H11B109.5C16—Ru1—Cl285.74 (12)
H11A—C11—H11B109.5C9—Ru1—Cl2175.13 (10)
C10—C11—H11C109.5N1—Ru1—Cl287.62 (8)
H11A—C11—H11C109.5S1—Ru1—Cl285.31 (4)
H11B—C11—H11C109.5Cl1—Ru1—Cl290.09 (3)
C10—C12—H12A109.5O2—S1—C14108.05 (19)
C10—C12—H12B109.5O2—S1—C15106.6 (2)
H12A—C12—H12B109.5C14—S1—C1597.4 (2)
C10—C12—H12C109.5O2—S1—Ru1115.63 (11)
H12A—C12—H12C109.5C14—S1—Ru1112.44 (15)
H12B—C12—H12C109.5C15—S1—Ru1115.05 (15)
C10—C13—H13A109.5
N1—C1—C2—C30.0 (6)C13—C10—N3—C819.2 (5)
C1—C2—C3—C41.0 (6)C11—C10—N3—C8138.1 (4)
C2—C3—C4—C51.1 (6)C12—C10—N3—C899.9 (4)
C3—C4—C5—N10.1 (5)N2—C9—Ru1—C16153.9 (2)
C3—C4—C5—C6178.5 (3)N3—C9—Ru1—C1625.5 (4)
N1—C5—C6—N256.8 (4)N2—C9—Ru1—N130.6 (2)
C4—C5—C6—N2124.7 (3)N3—C9—Ru1—N1150.1 (3)
N2—C7—C8—N31.1 (5)N2—C9—Ru1—S164.4 (2)
C4—C5—N1—C10.9 (5)N3—C9—Ru1—S1115.0 (3)
C6—C5—N1—C1177.5 (3)N2—C9—Ru1—Cl1111.7 (2)
C4—C5—N1—Ru1170.0 (3)N3—C9—Ru1—Cl169.0 (3)
C6—C5—N1—Ru111.6 (4)C5—N1—Ru1—C926.9 (3)
C2—C1—N1—C50.9 (5)C1—N1—Ru1—C9144.0 (3)
C2—C1—N1—Ru1170.7 (3)C5—N1—Ru1—S166.4 (3)
N3—C9—N2—C72.2 (4)C1—N1—Ru1—S1122.7 (2)
Ru1—C9—N2—C7177.3 (3)C5—N1—Ru1—Cl1118.1 (3)
N3—C9—N2—C6176.7 (3)C1—N1—Ru1—Cl152.9 (2)
Ru1—C9—N2—C62.8 (4)C5—N1—Ru1—Cl2151.5 (3)
C8—C7—N2—C92.1 (4)C1—N1—Ru1—Cl237.6 (2)
C8—C7—N2—C6177.0 (3)C16—Ru1—S1—O2158.69 (19)
C5—C6—N2—C955.1 (5)C9—Ru1—S1—O2102.40 (17)
C5—C6—N2—C7130.8 (4)N1—Ru1—S1—O214.31 (16)
N2—C9—N3—C81.5 (4)Cl2—Ru1—S1—O272.87 (15)
Ru1—C9—N3—C8177.9 (3)C16—Ru1—S1—C1433.9 (2)
N2—C9—N3—C10174.9 (3)C9—Ru1—S1—C14132.85 (19)
Ru1—C9—N3—C104.5 (6)N1—Ru1—S1—C14139.06 (19)
C7—C8—N3—C90.3 (5)Cl2—Ru1—S1—C1451.88 (17)
C7—C8—N3—C10174.6 (3)C16—Ru1—S1—C1576.3 (2)
C13—C10—N3—C9167.8 (3)C9—Ru1—S1—C1522.6 (2)
C11—C10—N3—C948.9 (5)N1—Ru1—S1—C15110.71 (19)
C12—C10—N3—C973.0 (5)Cl2—Ru1—S1—C15162.11 (18)

Experimental details

Crystal data
Chemical formula[RuCl2(C13H17N3)(C2H6OS)(CO)]
Mr493.40
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)291
a, b, c (Å)14.3297 (14), 15.7428 (16), 17.1867 (16)
V3)3877.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.74, 0.79
No. of measured, independent and
observed [I > 2σ(I)] reflections
20132, 3815, 3401
Rint0.044
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.110, 1.06
No. of reflections3815
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 1.30

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the National BasicResearch Program of China (No. 2006CB806104 and 2007CB925102). We are also grateful to the Doctoral Startup Foundation of Anhui Normal University.

References

First citationAraki, K., Kuwata, S. & Ikariya, T. (2008). Organometallics, 27, 2176–2178.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, Y., Sun, J.-F., Yang, H.-L., Xu, H.-J., Li, Y.-Z., Chen, X.-T. & Xue, Z.-L. (2009). Organometallics, 28, 819–823.  Web of Science CSD CrossRef CAS Google Scholar
First citationCheng, Y., Xu, H.-J., Sun, J.-F., Li, Y.-Z., Chen, X.-T. & Xue, Z.-L. (2009). Dalton Trans. pp. 7132–7140.  Web of Science CSD CrossRef Google Scholar
First citationHahn, F. E. (2006). Angew. Chem. Int. Ed. 45, 1348–1352.  Web of Science CrossRef CAS Google Scholar
First citationKaufhold, O., Hahn, F. E., Pape, T. & Hepp, A. (2008). J. Organomet. Chem. 693, 3435–3440.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, H. M., Lee, C.-C. & Cheng, P.-Y. (2007). Curr. Org. Chem. 11, 1491–1524.  Web of Science CrossRef CAS Google Scholar
First citationMas-Marza, E., Sanau, M. & Peris, E. (2005). Inorg. Chem. 44, 9961–9967.  PubMed CAS Google Scholar
First citationPoyatos, M., Maisse-Francis, A., Bellemin-Laponnaz, S., Peris, E. & Gade, L. H. (2006). J. Organomet. Chem. 691, 2713–2720.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSon, K. H., Park, S. U., Lee, Y.-S., Kim, B. Y., Choi, C. H., Lah, M. S., Jang, Y. H., Jang, D.-J. & Chung, Y. K. (2004). Inorg. Chem. 43, 6896–6898.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds