organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4aR,6aS,10aR,10bS)-7,7,10a-Tri­methyl-1,4,4a,5,6,6a,7,8,9,10,10a,10b-dodeca­hydro-2H-naphtho­[2,1-c]pyran (Pyamber)

aCarbohydrate Chemistry Group, Industrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 8 September 2011; accepted 20 September 2011; online 8 October 2011)

The crystal structure of the title compound, C16H28O, features C—H⋯O hydrogen bonds making C(6) zigzag chains along one 21 screw axis. Within the limits of the data collection affected by crystal quality, the Hooft parameter gave correct indications of the known molecular chirality based on the single O atom anomalous dispersion in contrast to the indeterminate Flack value. Synthetic steps starting from manool are reported.

Related literature

For details of the synthesis, see: Evans & Grant (1997[Evans, G. B. & Grant, P. K. (1997). Tetrahedron Lett. 38, 4709-4712.]); Grant et al. (1988[Grant, P. K., Chee, K. L., Prasad, J. S. & Tho, M. Y. (1988). Aust. J. Chem. 41, 711-725.]); Vlad et al. (1978[Vlad, P. F., Ungur, N. D. & Koltsa, M. N. (1978). J. Gen. Chem. USSR, 48, 1776-1779.], 1983[Vlad, P. F., Koltsa, M. N., Ungur, N. D., Dragalina, G. A. & Panasyuk, T. E. (1983). Chem. Heterocycl. Compd, 19, 253-258.]). For the related structure methyl 8,9-ep­oxy-12-oxo-13-oxototarane-14β-carboxyl­ate, see: Cambie et al. (1988[Cambie, R. C., Clark, G. R., Rickard, C. E. F., Rutledge, P. S., Ryan, G. R. & Woodgate, P. D. (1988). Aust. J. Chem. 41, 1171-1189.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For determination of absolute configuration, see: Hooft et al. (2008[Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.]).

[Scheme 1]

Experimental

Crystal data
  • C16H28O

  • Mr = 236.38

  • Orthorhombic, P 21 21 21

  • a = 7.3497 (2) Å

  • b = 11.1642 (3) Å

  • c = 17.0758 (12) Å

  • V = 1401.13 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.50 mm−1

  • T = 123 K

  • 0.70 × 0.40 × 0.13 mm

Data collection
  • Rigaku Spider diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.687, Tmax = 1.0

  • 5141 measured reflections

  • 1969 independent reflections

  • 1823 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 58.9°

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.06

  • 1969 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 801 Friedel pairs

  • Flack parameter: −0.4 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.99 2.54 3.474 (2) 158
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear: Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: FSProcess in PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); data reduction: FSProcess in PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound ("pyamber") was synthesized from methyl ketone 1, which is readily synthesized from manool in multi-gram quantites (Grant et al., 1988), in 4 synthetic steps (Fig. 1). A Baeyer-Villager insertion reaction of neat 1 was achieved using mCPBA to afford the previously described acetate 2 in good yield (Evans & Grant, 1997). Treatment of 2 with aluminium bromide in anhydrous diethyl ether gave one major product, aldehyde 3, which was not characterized but then immediately reduced with lithium aluminium hydride to afford diol 4 in moderate yield for the two steps (Vlad et al., 1978). Cyclization through dehydration was readily achieved under Dean and Stark conditions to afford crystalline pyamber in good yield, following chromatography; the analytical data was identical to that previously reported by Vlad et al. (1983).

The title compound, C16H28O, crystallizes with one independent molecule in the asymmetric unit (Fig. 2). Only confirmation of structure was required for this study, with the absolute configurations of C5(S), C8(R), C9(S) & C10(S) expected from the synthesis. The Flack parameter is hardly convincing, though the Hooft equivalent parameter (Hooft et al., 2008) at -0.13 (17), with clear outliers removed [PLATON (Spek, 2009)], provides a probability of being false (P3) of 0.6 x 10-9 [P3(true) & P3(rac-twin) were 0.998,0.002 respectively]. The crystal quality/data collection also was not optimum (see experimental), but even including all measured data (2547 reflections) the Hooft equivalent parameter is -0.15 (17) while the Flack parameter changes to 0.2 (8).

There are very few structures reported with these same three fused six-membered rings (Allen, 2002. CSD version 5.32, with May 2011 update); each ring is in a standard chair conformation. The closest related compound is the epoxide structure methyl 8,9-epoxy-12-oxo-13-oxototarane-14β-carboxylate (Cambie et al., 1988) reported in the inverted configuration. The molecules pack in zigzag chains along the b 21 screw axis bound by one C—H···O hydrogen bond (Fig. 3, Table 1) described by the motif C(6) (Bernstein et al., 1995). These chains are efficiently interlocked in the other two cell directiions via van der Waals interactions.

Related literature top

For details of the synthesis, see: Evans & Grant (1997); Grant et al. (1988); Vlad et al. (1978, 1983). For the related structure methyl 8,9-epoxy-12-oxo-13-oxototarane-14β-carboxylate, see: Cambie et al. (1988). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995). For determination of absolute configuration, see: Hooft et al. (2008).

Experimental top

2-[(2S,4aS,8aS)-5,5,8a-Trimethyl-octahydro-1H-spiro[naphthalene -2,2'-oxirane]-1-yl]ethyl acetate (2): mCPBA (26.4 g, 50% b.w., 76.4 mmol) was added portionwise to a stirred solution of methyl ketone 1 (5 g, 19.1 mmol) in chloroform (150 ml). The round bottom flask was transferred to a rotavapor and the chloroform removed in vacuo at 40° C and the resulting paste left to rotate at 40° C overnight. The paste was redissolved in chloroform (200 ml) and stirred with calcium hydroxide (20 g) for 2 h, filtered through Celite® and then concentrated in vacuo. The resulting oil was purified by flash chromatography on silica gel (1:4 ethyl acetate:petrol) to afford compound 2 (3.7 g, 66%). 1H and 13C NMR were identical to that described in the literature (Evans & Grant, 1997).

2-[(2R,4aS,8aR)-2-(hydroxymethyl)-5,5,8a-trimethyl-decahydronaphthalen-1-yl] ethan-1-ol (4): Aluminium bromide (3.7 g, 13.8 mmol) was added portionwise to a solution of epoxy acetate 2 (3.7 g, 12.6 mmol) in anhydrous diethyl ether under an inert atmosphere. The reaction was stirred for 15 min and then quenched with aqueous sodium hydroxide (15% b.w., 50 ml). The diethyl ether solution was diluted further with diethyl ether (150 ml) and the organic layer was washed with water (50 ml), brine (50 ml), dried (MgSO4), and concentrated in vacuo to afford an oily solid which was used in the next step without purification.

The oily residue was redissolved in THF (50 ml) and stirred overnight with lithium aluminium hydride (1 g, excess) under an inert atmosphere. The next morning the reaction was deemed to be complete by TLC and quenched with water (1 ml), aqueous sodium hydroxide (15% b.w., 1 ml), and water (3 ml), filtered through Celite® and concentrated in vacuo to afford a solid residue. Purification of the crude residue was achieved by chromatography on silica gel (2:3 ethyl acetate:petrol) to afford diol 4 (1.80 g, 56%) as a crystalline solid. 1H NMR was identical to that previously described in the literature (Vlad et al., 1978). 13C NMR (125 MHz, CDCl3) δ 65.0, 64.5, 54.9, 48.1, 42.3, 40.6, 39.1, 38.4, 33.4, 33.3, 30.5, 29.6, 21.9, 21.6, 18.8, 14.0.

(4aR,6aS,10aR,10bS)-7,7,10a-Trimethyl-octahydro-1H-naphtho[2,1-c]pyran (Pyamber): p-TsOH.H2O (1.6 g, 8.4 mmol) was added portionwise to a stirred suspension of 4 (1.8 g, 7.1 mmol) in anhydrous toluene under an inert atmosphere. The resulting mixture was stirred at reflux under Dean and Stark conditions for 2 h, cooled to ambient temperature and then stirred with solid NaHCO3. After 1 h the suspension was filtered and the filtrate concentrated in vacuo. The crude residue was purified by flash chromatography on silica gel (1:24 ethyl acetate:petrol) to afford pyamber (1.48 g, 88%) as a white crystalline solid, m.p. 52–53° C. 1H NMR was identical to that described in the literature (Vlad et al., 1983). 13C NMR (125 MHz, CDCl3) δ 74.2, 69.1, 55.5, 54.1, 42.4, 38.5, 36.3, 35.9, 33.5, 33.3, 29.4, 25.2, 21.9, 21.0, 18.8, 14.3. C16H28O requires C, 81.29; H, 11.94. Found C, 81.10; H, 11.69.

Refinement top

After structural refinement it was noted that high angle data (d < 0.90 Å) had systematically Fo**2 << Fc**2; this reflected the poor profiles noticed for higher angle data, but may have also been affected by minor movement (some icing was noted). As a consequence data was limited to that within the d resolution of 0.90 Å. A further 8 reflections (one at low angle) within this shell were clearly outliers and so were excluded.

The methyl H atoms were constrained to an ideal geometry (C—H = 0.98 Å) with Uiso(H) = 1.5Ueq(C), but were allowed to rotate freely about the adjacent C—C bonds. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.99Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: FSProcess in PROCESS-AUTO (Rigaku, 1998); data reduction: FSProcess in PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Chemical synthesis of Pyamber
[Figure 2] Fig. 2. An ORTEP (Farrugia, 1999) view showing the asymmetric unit with 20% probabilility ellipsoids.
[Figure 3] Fig. 3. Mercury cell packing view (Macrae et al., 2008) showing the linking hydrogen bonds (dotted lines, Table 1). Symmetry (i) 1 - x, 1/2 + y, 1/2 - z.
(4aR,6aS,10aR,10bS)-7,7,10a- Trimethyl-1,4,4a,5,6,6a,7,8,9,10,10a,10b- dodecahydro-2H-naphtho[2,1-c]pyran top
Crystal data top
C16H28OF(000) = 528
Mr = 236.38Dx = 1.121 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 484 reflections
a = 7.3497 (2) Åθ = 6.6–72.0°
b = 11.1642 (3) ŵ = 0.50 mm1
c = 17.0758 (12) ÅT = 123 K
V = 1401.13 (11) Å3Needle, colourless
Z = 40.70 × 0.40 × 0.13 mm
Data collection top
Rigaku Spider
diffractometer
1969 independent reflections
Radiation source: Rigaku MM007 rotating anode1823 reflections with I > 2σ(I)
Rigaku VariMax-HF Confocal Optical System monochromatorRint = 0.033
Detector resolution: 10 pixels mm-1θmax = 58.9°, θmin = 6.5°
ω–scansh = 85
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1012
Tmin = 0.687, Tmax = 1.0l = 1218
5141 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.0905P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.14 e Å3
1969 reflectionsΔρmin = 0.12 e Å3
158 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0066 (8)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 780 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.4 (4)
Crystal data top
C16H28OV = 1401.13 (11) Å3
Mr = 236.38Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.3497 (2) ŵ = 0.50 mm1
b = 11.1642 (3) ÅT = 123 K
c = 17.0758 (12) Å0.70 × 0.40 × 0.13 mm
Data collection top
Rigaku Spider
diffractometer
1969 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1823 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 1.0Rint = 0.033
5141 measured reflectionsθmax = 58.9°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.14 e Å3
S = 1.06Δρmin = 0.12 e Å3
1969 reflectionsAbsolute structure: Flack (1983), 780 Friedel pairs
158 parametersAbsolute structure parameter: 0.4 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40780 (17)0.74765 (10)0.29584 (7)0.0466 (4)
C10.1359 (2)0.60896 (15)0.02512 (10)0.0351 (4)
H1A0.02260.61770.05600.042*
H1B0.17340.68990.00780.042*
C20.0957 (2)0.53268 (15)0.04708 (10)0.0393 (4)
H2A0.04580.45440.03050.047*
H2B0.00300.57320.07970.047*
C30.2675 (2)0.51266 (16)0.09533 (10)0.0390 (4)
H3A0.30910.59060.11640.047*
H3B0.23770.46040.14040.047*
C40.4228 (2)0.45576 (14)0.04894 (10)0.0348 (4)
C50.4558 (2)0.53078 (14)0.02654 (9)0.0313 (4)
H50.49360.61130.00670.038*
C60.6176 (2)0.48888 (15)0.07615 (9)0.0347 (4)
H6A0.58720.41140.10120.042*
H6B0.72420.47600.04170.042*
C70.6663 (2)0.57965 (16)0.13907 (10)0.0368 (4)
H7A0.71450.65290.11380.044*
H7B0.76350.54610.17270.044*
C80.5036 (2)0.61297 (15)0.19000 (10)0.0352 (4)
H80.46550.54050.22020.042*
C90.3432 (2)0.65343 (15)0.13913 (9)0.0322 (4)
H90.38810.72340.10810.039*
C100.2851 (2)0.55687 (14)0.07831 (9)0.0305 (4)
C110.1914 (2)0.70176 (16)0.19186 (10)0.0408 (5)
H11A0.09550.73870.15910.049*
H11B0.13600.63470.22140.049*
C120.2640 (3)0.79350 (16)0.24854 (11)0.0462 (5)
H12A0.30900.86370.21890.055*
H12B0.16380.82090.28290.055*
C130.5560 (2)0.71069 (16)0.24787 (10)0.0422 (5)
H13A0.65550.68090.28180.051*
H13B0.60260.78080.21860.051*
C140.5941 (3)0.46036 (17)0.10071 (10)0.0472 (5)
H14A0.68970.41080.07730.071*
H14B0.63670.54330.10470.071*
H14C0.56490.43000.15310.071*
C150.3821 (3)0.32245 (14)0.03348 (11)0.0431 (5)
H15A0.39200.27750.08260.065*
H15B0.25860.31420.01250.065*
H15C0.46980.29090.00450.065*
C160.2115 (2)0.44509 (14)0.12111 (10)0.0372 (4)
H16A0.14030.39640.08450.056*
H16B0.13380.47020.16480.056*
H16C0.31350.39780.14120.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0496 (8)0.0512 (7)0.0389 (6)0.0050 (7)0.0014 (6)0.0043 (6)
C10.0215 (10)0.0358 (9)0.0480 (10)0.0030 (8)0.0000 (8)0.0003 (8)
C20.0313 (10)0.0395 (9)0.0473 (10)0.0030 (9)0.0102 (8)0.0012 (8)
C30.0339 (10)0.0411 (9)0.0421 (9)0.0012 (8)0.0040 (8)0.0042 (8)
C40.0247 (9)0.0394 (9)0.0404 (9)0.0013 (8)0.0005 (8)0.0033 (8)
C50.0241 (9)0.0292 (9)0.0406 (9)0.0025 (7)0.0020 (8)0.0030 (8)
C60.0232 (9)0.0392 (9)0.0417 (9)0.0015 (8)0.0016 (8)0.0005 (8)
C70.0257 (10)0.0428 (10)0.0418 (9)0.0005 (8)0.0036 (8)0.0030 (8)
C80.0286 (9)0.0396 (10)0.0373 (9)0.0022 (8)0.0012 (7)0.0039 (8)
C90.0254 (9)0.0318 (9)0.0392 (9)0.0021 (7)0.0031 (7)0.0009 (8)
C100.0214 (9)0.0314 (9)0.0389 (9)0.0025 (7)0.0001 (8)0.0024 (7)
C110.0376 (11)0.0419 (10)0.0429 (9)0.0021 (9)0.0034 (9)0.0005 (9)
C120.0456 (11)0.0461 (11)0.0468 (10)0.0047 (10)0.0031 (10)0.0040 (9)
C130.0409 (11)0.0449 (11)0.0407 (9)0.0009 (9)0.0022 (10)0.0027 (9)
C140.0387 (11)0.0596 (12)0.0433 (10)0.0021 (10)0.0036 (9)0.0082 (9)
C150.0340 (11)0.0349 (9)0.0604 (11)0.0052 (8)0.0052 (10)0.0077 (9)
C160.0292 (10)0.0339 (9)0.0484 (10)0.0016 (8)0.0026 (8)0.0015 (8)
Geometric parameters (Å, º) top
O1—C131.424 (2)C8—C131.522 (2)
O1—C121.425 (2)C8—C91.532 (2)
C1—C21.527 (2)C8—H81.0000
C1—C101.538 (2)C9—C111.532 (2)
C1—H1A0.9900C9—C101.557 (2)
C1—H1B0.9900C9—H91.0000
C2—C31.524 (2)C10—C161.544 (2)
C2—H2A0.9900C11—C121.507 (2)
C2—H2B0.9900C11—H11A0.9900
C3—C41.528 (2)C11—H11B0.9900
C3—H3A0.9900C12—H12A0.9900
C3—H3B0.9900C12—H12B0.9900
C4—C141.539 (2)C13—H13A0.9900
C4—C151.541 (2)C13—H13B0.9900
C4—C51.556 (2)C14—H14A0.9800
C5—C61.533 (2)C14—H14B0.9800
C5—C101.562 (2)C14—H14C0.9800
C5—H51.0000C15—H15A0.9800
C6—C71.520 (2)C15—H15B0.9800
C6—H6A0.9900C15—H15C0.9800
C6—H6B0.9900C16—H16A0.9800
C7—C81.525 (2)C16—H16B0.9800
C7—H7A0.9900C16—H16C0.9800
C7—H7B0.9900
C13—O1—C12110.20 (12)C11—C9—C8109.31 (13)
C2—C1—C10113.79 (13)C11—C9—C10115.89 (13)
C2—C1—H1A108.8C8—C9—C10112.64 (13)
C10—C1—H1A108.8C11—C9—H9106.1
C2—C1—H1B108.8C8—C9—H9106.1
C10—C1—H1B108.8C10—C9—H9106.1
H1A—C1—H1B107.7C1—C10—C16109.57 (13)
C3—C2—C1110.99 (13)C1—C10—C9109.12 (12)
C3—C2—H2A109.4C16—C10—C9109.88 (12)
C1—C2—H2A109.4C1—C10—C5108.01 (11)
C3—C2—H2B109.4C16—C10—C5113.50 (13)
C1—C2—H2B109.4C9—C10—C5106.64 (12)
H2A—C2—H2B108.0C12—C11—C9111.05 (14)
C2—C3—C4113.55 (13)C12—C11—H11A109.4
C2—C3—H3A108.9C9—C11—H11A109.4
C4—C3—H3A108.9C12—C11—H11B109.4
C2—C3—H3B108.9C9—C11—H11B109.4
C4—C3—H3B108.9H11A—C11—H11B108.0
H3A—C3—H3B107.7O1—C12—C11112.49 (15)
C3—C4—C14107.42 (13)O1—C12—H12A109.1
C3—C4—C15110.21 (14)C11—C12—H12A109.1
C14—C4—C15106.83 (14)O1—C12—H12B109.1
C3—C4—C5108.80 (13)C11—C12—H12B109.1
C14—C4—C5109.28 (13)H12A—C12—H12B107.8
C15—C4—C5114.09 (14)O1—C13—C8112.80 (13)
C6—C5—C4114.48 (12)O1—C13—H13A109.0
C6—C5—C10111.54 (11)C8—C13—H13A109.0
C4—C5—C10116.34 (12)O1—C13—H13B109.0
C6—C5—H5104.3C8—C13—H13B109.0
C4—C5—H5104.3H13A—C13—H13B107.8
C10—C5—H5104.3C4—C14—H14A109.5
C7—C6—C5111.71 (13)C4—C14—H14B109.5
C7—C6—H6A109.3H14A—C14—H14B109.5
C5—C6—H6A109.3C4—C14—H14C109.5
C7—C6—H6B109.3H14A—C14—H14C109.5
C5—C6—H6B109.3H14B—C14—H14C109.5
H6A—C6—H6B107.9C4—C15—H15A109.5
C6—C7—C8112.41 (13)C4—C15—H15B109.5
C6—C7—H7A109.1H15A—C15—H15B109.5
C8—C7—H7A109.1C4—C15—H15C109.5
C6—C7—H7B109.1H15A—C15—H15C109.5
C8—C7—H7B109.1H15B—C15—H15C109.5
H7A—C7—H7B107.9C10—C16—H16A109.5
C13—C8—C7110.28 (13)C10—C16—H16B109.5
C13—C8—C9110.59 (13)H16A—C16—H16B109.5
C7—C8—C9110.61 (13)C10—C16—H16C109.5
C13—C8—H8108.4H16A—C16—H16C109.5
C7—C8—H8108.4H16B—C16—H16C109.5
C9—C8—H8108.4
C10—C1—C2—C356.49 (18)C2—C1—C10—C9168.00 (13)
C1—C2—C3—C456.36 (18)C2—C1—C10—C552.44 (17)
C2—C3—C4—C14170.86 (13)C11—C9—C10—C158.17 (17)
C2—C3—C4—C1573.11 (18)C8—C9—C10—C1174.92 (12)
C2—C3—C4—C552.67 (18)C11—C9—C10—C1661.98 (18)
C3—C4—C5—C6175.92 (12)C8—C9—C10—C1664.93 (16)
C14—C4—C5—C658.92 (17)C11—C9—C10—C5174.60 (13)
C15—C4—C5—C660.59 (18)C8—C9—C10—C558.48 (15)
C3—C4—C5—C1051.59 (17)C6—C5—C10—C1174.96 (12)
C14—C4—C5—C10168.59 (13)C4—C5—C10—C151.21 (17)
C15—C4—C5—C1071.91 (18)C6—C5—C10—C1663.35 (17)
C4—C5—C6—C7168.28 (13)C4—C5—C10—C1670.48 (16)
C10—C5—C6—C756.98 (17)C6—C5—C10—C957.78 (16)
C5—C6—C7—C853.70 (17)C4—C5—C10—C9168.39 (13)
C6—C7—C8—C13175.75 (14)C8—C9—C11—C1250.94 (18)
C6—C7—C8—C953.10 (19)C10—C9—C11—C12179.51 (14)
C13—C8—C9—C1150.14 (17)C13—O1—C12—C1160.46 (18)
C7—C8—C9—C11172.61 (13)C9—C11—C12—O156.93 (18)
C13—C8—C9—C10179.51 (13)C12—O1—C13—C860.03 (18)
C7—C8—C9—C1057.04 (17)C7—C8—C13—O1178.54 (14)
C2—C1—C10—C1671.65 (16)C9—C8—C13—O155.88 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.992.543.474 (2)158
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H28O
Mr236.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)7.3497 (2), 11.1642 (3), 17.0758 (12)
V3)1401.13 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.50
Crystal size (mm)0.70 × 0.40 × 0.13
Data collection
DiffractometerRigaku Spider
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.687, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
5141, 1969, 1823
Rint0.033
θmax (°)58.9
(sin θ/λ)max1)0.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.06
No. of reflections1969
No. of parameters158
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.12
Absolute structureFlack (1983), 780 Friedel pairs
Absolute structure parameter0.4 (4)

Computer programs: CrystalClear (Rigaku, 2005), FSProcess in PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), ORTEP in WinGX (Farrugia, 1999) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.992.543.474 (2)158
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

We thank the MacDiarmid Institute for Advanced Materials and Nanotechnology for funding of the diffractometer equipment.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCambie, R. C., Clark, G. R., Rickard, C. E. F., Rutledge, P. S., Ryan, G. R. & Woodgate, P. D. (1988). Aust. J. Chem. 41, 1171–1189.  CSD CrossRef CAS Google Scholar
First citationEvans, G. B. & Grant, P. K. (1997). Tetrahedron Lett. 38, 4709–4712.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGrant, P. K., Chee, K. L., Prasad, J. S. & Tho, M. Y. (1988). Aust. J. Chem. 41, 711–725.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96–103.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2005). CrystalClear: Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVlad, P. F., Koltsa, M. N., Ungur, N. D., Dragalina, G. A. & Panasyuk, T. E. (1983). Chem. Heterocycl. Compd, 19, 253–258.  CrossRef Google Scholar
First citationVlad, P. F., Ungur, N. D. & Koltsa, M. N. (1978). J. Gen. Chem. USSR, 48, 1776–1779.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds