metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bromido(pyrimidinyl-κC5)bis­­(tri­phenyl­phosphane-κP)palladium(II)

aDepartment of Hair Styling and Design, Hungkuang University, Shalu 433, Taichung, Taiwan, bDepartment of Applied Cosmetology, National Tainan Institute of Nursing, Tainan City 700, Taiwan, cInstrumentation Center, College of Science, National Taiwan University, Taipei 106, Taiwan, and dDepartment of Applied Cosmetology, Hungkuang University, Shalu 433, Taichung, Taiwan
*Correspondence e-mail: ghlee@ntu.edu.tw, khyih@sunrise.hk.edu.tw

(Received 11 November 2011; accepted 18 November 2011; online 25 November 2011)

In the title complex, [PdBr(C4H3N2)(C18H15P)2], the geometry around the Pd atom is distorted square-planar with the Pd atom displaced by 0.0334 (14) Å from the BrP2C plane. The two Ph3P ligands are in trans positions, defining a P—Pd—P angle of 171.78 (5)°, while the pyrimidinyl and bromide ligands are trans to each other [C—Pd—Br = 174.63 (14)°].

Related literature

For reactions in organic synthesis that form C—C bonds, see: Steffen et al. (2005[Steffen, A., Sladek, M. I., Braun, T., Neumann, B. & Stammler, H. G. (2005). Organometallics, 24, 4057-4064.]); Beeby et al. (2004[Beeby, A., Bettington, S., Fairlamb, I. J. S., Goeta, A. E., Kapdi, A. R., Niemela, E. H. & Thompson, A. L. (2004). New J. Chem. 28, 600-605.]); Chin et al. (1988[Chin, C. H., Yeo, S. L., Loh, Z. H., Vittal, J. J., Henderson, W. & Hor, T. S. A. (1988). J. Chem. Soc. Dalton Trans. pp. 3777-3784.]); Dobrzynski & Angelici (1975[Dobrzynski, E. D. & Angelici, R. J. (1975). Inorg. Chem. 14, 1513-1518.]). For Pd—C(carbene) bond lengths, see: Cardin et al. (1972[Cardin, D. J., Cetinkaya, B. & Lappert, M. F. (1972). Chem. Rev. 72, 545-574.]) and for Pd—Br bond lengths, see: Yih & Lee (2008[Yih, K. H. & Lee, G. H. (2008). J. Chin. Chem. Soc. 55, 109-114.]); Yih et al. (2009[Yih, K. H., Wang, H. F., Huang, K. F., Kwan, C. C. & Lee, G. H. (2009). J. Chin. Chem. Soc. 56, 718-724.]). For related structures of pyrimidin­yl–metal complexes, see: Hong et al. (2002[Hong, F. U., Huang, Y. L., Chen, P. P. & Chang, Y. C. (2002). J. Organomet. Chem. 655, 49-54.]).

[Scheme 1]

Experimental

Crystal data
  • [PdBr(C4H3N2)(C18H15P)2]

  • Mr = 789.93

  • Monoclinic, P 21 /c

  • a = 15.0953 (10) Å

  • b = 12.0379 (8) Å

  • c = 19.8066 (13) Å

  • β = 109.7481 (13)°

  • V = 3387.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 150 K

  • 0.35 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.563, Tmax = 0.808

  • 19582 measured reflections

  • 7764 independent reflections

  • 5553 reflections with I > 2σ(I)

  • Rint = 0.079

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.132

  • S = 1.01

  • 7764 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.98 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Palladium-complexes catalyzed formation of C—C bonds are some of the most important reactions in organic synthesis (Dobrzynski & Angelici, 1975). Intramolecular reductive elimination of Pd—N binuclear complex [Pd(µ-C9H6N)(µ-dppm)]2(Cl)2 yielding the organic compound 2,2'-biquinoline has been reported (Chin et al., 1988). A pyridyl-bridged palladium complex was reported as an effective precatalyst for the Suzuki cross-coupling reactions of a variety of organoboronic acids and aryl bromides (Beeby, et al., 2004). Pyrimidinyl nickel complexes have been used as catalysts for C—C coupling reactions (Steffen et al., 2005). To our knowledge, no 3,5-pyrimidinyl palladium crystal structure has been described so far.

To synthesize the pyrimidinyl metal compound, [Pd(PPh3)4] was used to react with 5-bromopyrimidine in dichloromethane at room temperature. As a result, a two triphenylphosphine displaced complex [Pd(Br)(C4H3N2)(PPh3)2] was isolated with 97% yield. The X-ray crystal structure analysis has been carried out to provide structural information.

The molecular structure of the title compound is shown in Fig. 1. The palladium atom has a distorted square planar environment, being displaced by 0.0396Å from the least-squares plane and with all angles about the Pd center within ± 2.6° of 90°. The Pd—C1 bond distance, 2.000 (5) Å, is longer than other PdII-carbon(carbonyl) distances, and similar to Pd—C(carbene) distances (Cardin et al., 1972). Two PPh3 ligands are in trans position: P1—Pd—P2, 171.78 (5)°, while the pyrimidinyl ligand and bromide are trans to each other: C1—Pd—Br, 174.63 (14)°. The phosphorus atoms approach tetrahedral geometry as expected. The largest angular deviation from ideal tetrahedral geometry is 119.31 (16)° for C5—P1—Pd. The mean Pd—N distance (> 4.25Å) indicates no bonding interaction between the nitrogen atom and the palladium metal atom. Within the pyrimidinyl ligand itself, the geometry is consistent with a significant partial double bond character in the C—C and C—N bonds. The C—N bond distances (1.315 (7) ~1.351 (6) Å) are typical for a C—N bond having partial double bond character and are certainly much shorter than the normal C—N (1.47 Å) single bond. The Pd—C1 (2.000 (5) Å), Pd—P (2.3175 (13), 2.3325 (13) Å) and Pd—Br (2.4907 (6) Å) lengths are in agreement with reported values (Yih et al., 2008, 2009).

TThe 31P{1H} NMR spectra of (I) shows a singlet resonances at δ 24.2. In the 1H NMR spectra, the 2,6-H and 4-H protons of the pyrimidinyl group exhibit two singlet resonances at δ 7.75 and at δ 8.05. The 13C{1H} NMR spectra of (I) reveals two singlets at δ 151.9 and at δ 161.4 which are assigned to the 4-C and 2,6-C carbon atom of the pyrimidinyl group. There is a triplet resonance at δ 154.4 (2JP—C = 5.91 Hz), which is assigned to the 1-C of pyrimidinyl group. In the FAB mass spectra, base peak with the typical Pd isotope distribution is in agreement with the [M+] molecular mass of (I).

Related literature top

For reactions in organic synthesis that form C—C bonds, see: Steffen et al. (2005); Beeby et al. (2004); Chin et al. (1988); Dobrzynski & Angelici (1975). For Pd—C(carbene) bond lengths, see: Cardin et al. (1972) and for Pd—Br bond lengths, see: Yih & Lee (2008); Yih et al. (2009). For related structures of pyrimidinyl–metal complexes, see: Hong et al. (2002).

Experimental top

The synthesis of the title compound (I) was carried out as follows. CH2Cl2 (20 ml) was added to a flask (100 ml) containing Pd(PPh3)4 (1.155 g, 1.0 mmol) and 5-Bromopyrimidine (0.191 g, 1.2 mmol) at ambient temperature. The mixture was stirred for about 1 day. The solvent was concentrated to 10 ml, and 20 ml of diethyl ether was added to the solution. The yellow solids were formed which were isolated by filtration (G4), washed with n-hexane (2 × 10 ml) and subsequently dried under vacuum yielding 0.774 g (97%) of [Pd(PPh3)2(C4H3N2)Br], (I). Spectroscopic data: 31P{1H} NMR: δ 24.2 (s, PPh3). 1H NMR: δ 7.27–7.70 (m, 30H, 2PPh3), 7.75 (s, 2H, 2,6-H of pyrimidinyl), 8.05 (s, 1H, 4-H of pyrimidinyl). 13C{1H} NMR: δ 128.3 (m, o-C of Ph), 130.2 (m, p-C of Ph), 134.5 (m, m-C of Ph), 151.9 (s, 4-C of pyrimidinyl), 154.4 (t, 1-C of pyrimidinyl, 2JP—C = 5.91 Hz), 161.4 (s, 2,6-C of pyrimidinyl). MS (FAB, NBA, m/z): 789 [M+], 709 [M+ - Br], 630 [M+ - Br - pyrimidinyl]. Anal. Calcd. for C40H33BrN2P2Pd: C, 60.82; H, 4.21; N, 3.55. Found: C, 60.94; H, 4.31; N, 3.18.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

Palladium-complexes catalyzed formation of C—C bonds are some of the most important reactions in organic synthesis (Dobrzynski & Angelici, 1975). Intramolecular reductive elimination of Pd—N binuclear complex [Pd(µ-C9H6N)(µ-dppm)]2(Cl)2 yielding the organic compound 2,2'-biquinoline has been reported (Chin et al., 1988). A pyridyl-bridged palladium complex was reported as an effective precatalyst for the Suzuki cross-coupling reactions of a variety of organoboronic acids and aryl bromides (Beeby, et al., 2004). Pyrimidinyl nickel complexes have been used as catalysts for C—C coupling reactions (Steffen et al., 2005). To our knowledge, no 3,5-pyrimidinyl palladium crystal structure has been described so far.

To synthesize the pyrimidinyl metal compound, [Pd(PPh3)4] was used to react with 5-bromopyrimidine in dichloromethane at room temperature. As a result, a two triphenylphosphine displaced complex [Pd(Br)(C4H3N2)(PPh3)2] was isolated with 97% yield. The X-ray crystal structure analysis has been carried out to provide structural information.

The molecular structure of the title compound is shown in Fig. 1. The palladium atom has a distorted square planar environment, being displaced by 0.0396Å from the least-squares plane and with all angles about the Pd center within ± 2.6° of 90°. The Pd—C1 bond distance, 2.000 (5) Å, is longer than other PdII-carbon(carbonyl) distances, and similar to Pd—C(carbene) distances (Cardin et al., 1972). Two PPh3 ligands are in trans position: P1—Pd—P2, 171.78 (5)°, while the pyrimidinyl ligand and bromide are trans to each other: C1—Pd—Br, 174.63 (14)°. The phosphorus atoms approach tetrahedral geometry as expected. The largest angular deviation from ideal tetrahedral geometry is 119.31 (16)° for C5—P1—Pd. The mean Pd—N distance (> 4.25Å) indicates no bonding interaction between the nitrogen atom and the palladium metal atom. Within the pyrimidinyl ligand itself, the geometry is consistent with a significant partial double bond character in the C—C and C—N bonds. The C—N bond distances (1.315 (7) ~1.351 (6) Å) are typical for a C—N bond having partial double bond character and are certainly much shorter than the normal C—N (1.47 Å) single bond. The Pd—C1 (2.000 (5) Å), Pd—P (2.3175 (13), 2.3325 (13) Å) and Pd—Br (2.4907 (6) Å) lengths are in agreement with reported values (Yih et al., 2008, 2009).

TThe 31P{1H} NMR spectra of (I) shows a singlet resonances at δ 24.2. In the 1H NMR spectra, the 2,6-H and 4-H protons of the pyrimidinyl group exhibit two singlet resonances at δ 7.75 and at δ 8.05. The 13C{1H} NMR spectra of (I) reveals two singlets at δ 151.9 and at δ 161.4 which are assigned to the 4-C and 2,6-C carbon atom of the pyrimidinyl group. There is a triplet resonance at δ 154.4 (2JP—C = 5.91 Hz), which is assigned to the 1-C of pyrimidinyl group. In the FAB mass spectra, base peak with the typical Pd isotope distribution is in agreement with the [M+] molecular mass of (I).

For reactions in organic synthesis that form C—C bonds, see: Steffen et al. (2005); Beeby et al. (2004); Chin et al. (1988); Dobrzynski & Angelici (1975). For Pd—C(carbene) bond lengths, see: Cardin et al. (1972) and for Pd—Br bond lengths, see: Yih & Lee (2008); Yih et al. (2009). For related structures of pyrimidinyl–metal complexes, see: Hong et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids.
trans-Bromido(pyrimidinyl-κC5)bis(triphenylphosphane- κP)palladium(II) top
Crystal data top
[PdBr(C4H3N2)(C18H15P)2]F(000) = 1592
Mr = 789.93Dx = 1.549 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1845 reflections
a = 15.0953 (10) Åθ = 2.7–21.4°
b = 12.0379 (8) ŵ = 1.85 mm1
c = 19.8066 (13) ÅT = 150 K
β = 109.7481 (13)°Block, colourless
V = 3387.5 (4) Å30.35 × 0.20 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7764 independent reflections
Radiation source: fine-focus sealed tube5553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1919
Tmin = 0.563, Tmax = 0.808k = 1511
19582 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0532P)2]
where P = (Fo2 + 2Fc2)/3
7764 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.98 e Å3
Crystal data top
[PdBr(C4H3N2)(C18H15P)2]V = 3387.5 (4) Å3
Mr = 789.93Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.0953 (10) ŵ = 1.85 mm1
b = 12.0379 (8) ÅT = 150 K
c = 19.8066 (13) Å0.35 × 0.20 × 0.12 mm
β = 109.7481 (13)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
7764 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
5553 reflections with I > 2σ(I)
Tmin = 0.563, Tmax = 0.808Rint = 0.079
19582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.01Δρmax = 0.87 e Å3
7764 reflectionsΔρmin = 0.98 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd0.22914 (2)0.92402 (3)0.419184 (18)0.01789 (11)
Br0.12499 (4)0.89245 (4)0.29305 (3)0.03315 (16)
P10.20103 (9)1.11231 (10)0.39822 (6)0.0196 (3)
P20.23800 (8)0.73438 (10)0.44478 (6)0.0193 (3)
N10.3674 (4)0.9979 (4)0.6421 (2)0.0379 (12)
N20.4851 (3)0.9595 (4)0.5908 (3)0.0399 (12)
C10.3223 (3)0.9531 (4)0.5168 (2)0.0203 (10)
C20.4173 (3)0.9424 (4)0.5278 (3)0.0278 (12)
H20.43550.92150.48810.033*
C30.4553 (4)0.9840 (5)0.6442 (3)0.0414 (15)
H30.50260.99280.68990.050*
C40.3027 (4)0.9829 (4)0.5762 (3)0.0267 (11)
H40.23850.99410.57120.032*
C50.2605 (3)1.2118 (4)0.4690 (2)0.0223 (10)
C60.3583 (3)1.2133 (4)0.4915 (3)0.0260 (11)
H60.39071.16350.47080.031*
C70.4086 (4)1.2873 (4)0.5441 (3)0.0307 (12)
H70.47541.28760.55960.037*
C80.3617 (4)1.3609 (5)0.5739 (3)0.0326 (13)
H80.39651.41150.61000.039*
C90.2654 (4)1.3611 (4)0.5517 (3)0.0316 (13)
H90.23341.41180.57220.038*
C100.2140 (4)1.2861 (4)0.4986 (3)0.0277 (11)
H100.14721.28640.48300.033*
C110.0758 (3)1.1278 (4)0.3800 (2)0.0203 (10)
C120.0392 (3)1.1108 (4)0.4351 (3)0.0257 (11)
H120.08091.10150.48290.031*
C130.0575 (4)1.1071 (4)0.4209 (3)0.0306 (12)
H130.08181.09730.45890.037*
C140.1174 (4)1.1178 (4)0.3517 (3)0.0307 (12)
H140.18351.11350.34170.037*
C150.0831 (4)1.1347 (4)0.2967 (3)0.0316 (12)
H150.12551.14320.24900.038*
C160.0137 (4)1.1395 (4)0.3100 (3)0.0282 (12)
H160.03711.15070.27170.034*
C170.2291 (3)1.1726 (4)0.3237 (2)0.0220 (10)
C180.1997 (4)1.2801 (4)0.3004 (3)0.0343 (13)
H180.15891.31900.31960.041*
C190.2303 (5)1.3305 (5)0.2486 (3)0.0438 (16)
H190.21021.40360.23260.053*
C200.2897 (4)1.2739 (6)0.2209 (3)0.0441 (16)
H200.31081.30830.18590.053*
C210.3181 (4)1.1688 (6)0.2435 (3)0.0430 (15)
H210.35881.13040.22400.052*
C220.2884 (4)1.1175 (5)0.2944 (3)0.0310 (12)
H220.30871.04410.30950.037*
C230.3086 (3)0.6555 (4)0.4031 (3)0.0200 (10)
C240.3176 (3)0.6939 (4)0.3389 (3)0.0234 (11)
H240.29230.76410.32010.028*
C250.3631 (3)0.6297 (4)0.3030 (3)0.0272 (11)
H250.36770.65540.25900.033*
C260.4019 (3)0.5289 (4)0.3304 (3)0.0284 (12)
H260.43250.48500.30500.034*
C270.3962 (4)0.4918 (4)0.3948 (3)0.0300 (12)
H270.42460.42330.41450.036*
C280.3497 (4)0.5535 (4)0.4304 (3)0.0274 (11)
H280.34530.52670.47420.033*
C290.2855 (3)0.6946 (4)0.5396 (2)0.0212 (10)
C300.2263 (4)0.6664 (4)0.5774 (3)0.0276 (12)
H300.16030.66190.55320.033*
C310.2627 (4)0.6449 (4)0.6502 (3)0.0345 (13)
H310.22160.62610.67570.041*
C320.3587 (5)0.6506 (4)0.6860 (3)0.0387 (15)
H320.38360.63470.73580.046*
C330.4183 (4)0.6795 (4)0.6493 (3)0.0361 (14)
H330.48410.68490.67410.043*
C340.3826 (4)0.7007 (4)0.5763 (3)0.0271 (11)
H340.42410.71930.55110.032*
C350.1230 (3)0.6683 (4)0.4145 (2)0.0210 (10)
C360.1117 (4)0.5551 (4)0.4014 (3)0.0320 (12)
H360.16540.51040.40620.038*
C370.0238 (4)0.5062 (5)0.3814 (3)0.0405 (14)
H370.01660.42870.37200.049*
C380.0542 (4)0.5725 (6)0.3752 (3)0.0434 (16)
H380.11500.53990.36150.052*
C390.0443 (4)0.6833 (5)0.3887 (3)0.0382 (14)
H390.09800.72730.38490.046*
C400.0440 (3)0.7326 (5)0.4079 (3)0.0295 (12)
H400.05040.81030.41660.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd0.02109 (19)0.01465 (19)0.01659 (18)0.00208 (14)0.00463 (14)0.00003 (15)
Br0.0432 (3)0.0249 (3)0.0245 (3)0.0058 (2)0.0025 (2)0.0019 (2)
P10.0242 (6)0.0159 (6)0.0184 (6)0.0005 (5)0.0068 (5)0.0003 (5)
P20.0209 (6)0.0172 (6)0.0190 (6)0.0009 (5)0.0057 (5)0.0001 (5)
N10.051 (3)0.038 (3)0.023 (2)0.005 (2)0.010 (2)0.006 (2)
N20.034 (3)0.046 (3)0.035 (3)0.009 (2)0.005 (2)0.002 (2)
C10.026 (3)0.012 (2)0.021 (2)0.0011 (19)0.007 (2)0.0037 (19)
C20.022 (3)0.036 (3)0.024 (3)0.001 (2)0.007 (2)0.001 (2)
C30.043 (4)0.046 (4)0.026 (3)0.015 (3)0.001 (3)0.000 (3)
C40.027 (3)0.016 (3)0.038 (3)0.002 (2)0.012 (2)0.003 (2)
C50.034 (3)0.016 (2)0.017 (2)0.001 (2)0.007 (2)0.001 (2)
C60.027 (3)0.027 (3)0.026 (3)0.000 (2)0.011 (2)0.002 (2)
C70.031 (3)0.029 (3)0.028 (3)0.009 (2)0.005 (2)0.003 (2)
C80.046 (3)0.031 (3)0.022 (3)0.016 (3)0.013 (3)0.008 (2)
C90.052 (4)0.019 (3)0.030 (3)0.005 (2)0.022 (3)0.008 (2)
C100.034 (3)0.025 (3)0.026 (3)0.001 (2)0.013 (2)0.001 (2)
C110.024 (3)0.013 (2)0.023 (2)0.0009 (19)0.007 (2)0.001 (2)
C120.028 (3)0.022 (3)0.025 (3)0.000 (2)0.006 (2)0.003 (2)
C130.032 (3)0.031 (3)0.033 (3)0.001 (2)0.017 (2)0.003 (2)
C140.025 (3)0.027 (3)0.040 (3)0.003 (2)0.010 (2)0.006 (3)
C150.030 (3)0.025 (3)0.035 (3)0.005 (2)0.004 (2)0.005 (2)
C160.032 (3)0.029 (3)0.024 (3)0.004 (2)0.011 (2)0.003 (2)
C170.029 (3)0.020 (3)0.015 (2)0.003 (2)0.005 (2)0.001 (2)
C180.049 (4)0.024 (3)0.029 (3)0.001 (3)0.012 (3)0.001 (2)
C190.069 (4)0.023 (3)0.035 (3)0.013 (3)0.012 (3)0.007 (3)
C200.049 (4)0.058 (4)0.026 (3)0.026 (3)0.013 (3)0.003 (3)
C210.039 (3)0.062 (5)0.032 (3)0.002 (3)0.017 (3)0.010 (3)
C220.027 (3)0.038 (3)0.025 (3)0.000 (2)0.006 (2)0.004 (2)
C230.016 (2)0.019 (2)0.024 (2)0.0029 (19)0.005 (2)0.004 (2)
C240.028 (3)0.017 (2)0.024 (2)0.005 (2)0.007 (2)0.001 (2)
C250.032 (3)0.026 (3)0.026 (3)0.002 (2)0.012 (2)0.001 (2)
C260.029 (3)0.025 (3)0.036 (3)0.003 (2)0.017 (2)0.005 (2)
C270.038 (3)0.019 (3)0.034 (3)0.008 (2)0.014 (2)0.008 (2)
C280.034 (3)0.021 (3)0.030 (3)0.001 (2)0.014 (2)0.001 (2)
C290.027 (3)0.013 (2)0.022 (2)0.0030 (19)0.005 (2)0.001 (2)
C300.042 (3)0.018 (3)0.026 (3)0.001 (2)0.015 (2)0.002 (2)
C310.057 (4)0.026 (3)0.028 (3)0.002 (3)0.024 (3)0.004 (2)
C320.068 (4)0.022 (3)0.021 (3)0.013 (3)0.009 (3)0.003 (2)
C330.043 (3)0.021 (3)0.032 (3)0.015 (2)0.005 (3)0.003 (2)
C340.030 (3)0.021 (3)0.027 (3)0.007 (2)0.005 (2)0.003 (2)
C350.021 (2)0.021 (3)0.020 (2)0.0008 (19)0.007 (2)0.001 (2)
C360.027 (3)0.029 (3)0.038 (3)0.000 (2)0.009 (2)0.004 (3)
C370.038 (3)0.036 (3)0.046 (4)0.014 (3)0.012 (3)0.010 (3)
C380.030 (3)0.064 (5)0.036 (3)0.023 (3)0.011 (3)0.008 (3)
C390.024 (3)0.053 (4)0.037 (3)0.004 (3)0.009 (3)0.002 (3)
C400.031 (3)0.033 (3)0.024 (3)0.000 (2)0.010 (2)0.005 (2)
Geometric parameters (Å, º) top
Pd—C12.000 (5)C18—C191.397 (8)
Pd—P12.3175 (13)C18—H180.9500
Pd—P22.3325 (13)C19—C201.379 (9)
Pd—Br2.4907 (6)C19—H190.9500
P1—C111.811 (5)C20—C211.362 (8)
P1—C171.818 (5)C20—H200.9500
P1—C51.832 (5)C21—C221.379 (7)
P2—C351.817 (5)C21—H210.9500
P2—C231.821 (5)C22—H220.9500
P2—C291.834 (5)C23—C281.399 (7)
N1—C31.324 (7)C23—C241.401 (7)
N1—C41.351 (6)C24—C251.379 (7)
N2—C31.315 (7)C24—H240.9500
N2—C21.335 (7)C25—C261.376 (7)
C1—C41.356 (7)C25—H250.9500
C1—C21.381 (6)C26—C271.382 (7)
C2—H20.9500C26—H260.9500
C3—H30.9500C27—C281.369 (7)
C4—H40.9500C27—H270.9500
C5—C101.383 (7)C28—H280.9500
C5—C61.391 (7)C29—C301.388 (7)
C6—C71.385 (7)C29—C341.401 (7)
C6—H60.9500C30—C311.382 (7)
C7—C81.386 (7)C30—H300.9500
C7—H70.9500C31—C321.383 (8)
C8—C91.369 (7)C31—H310.9500
C8—H80.9500C32—C331.379 (8)
C9—C101.404 (7)C32—H320.9500
C9—H90.9500C33—C341.385 (7)
C10—H100.9500C33—H330.9500
C11—C121.393 (7)C34—H340.9500
C11—C161.394 (7)C35—C361.386 (7)
C12—C131.392 (7)C35—C401.391 (7)
C12—H120.9500C36—C371.382 (7)
C13—C141.369 (7)C36—H360.9500
C13—H130.9500C37—C381.394 (8)
C14—C151.371 (7)C37—H370.9500
C14—H140.9500C38—C391.358 (8)
C15—C161.395 (7)C38—H380.9500
C15—H150.9500C39—C401.390 (7)
C16—H160.9500C39—H390.9500
C17—C221.389 (7)C40—H400.9500
C17—C181.396 (7)
C1—Pd—P191.64 (13)C18—C17—P1120.2 (4)
C1—Pd—P289.49 (13)C17—C18—C19119.9 (5)
P1—Pd—P2171.78 (5)C17—C18—H18120.0
C1—Pd—Br174.63 (14)C19—C18—H18120.0
P1—Pd—Br87.38 (3)C20—C19—C18119.9 (5)
P2—Pd—Br92.24 (3)C20—C19—H19120.1
C11—P1—C17108.2 (2)C18—C19—H19120.1
C11—P1—C5107.1 (2)C21—C20—C19120.2 (5)
C17—P1—C599.9 (2)C21—C20—H20119.9
C11—P1—Pd104.60 (15)C19—C20—H20119.9
C17—P1—Pd117.19 (16)C20—C21—C22120.8 (6)
C5—P1—Pd119.31 (16)C20—C21—H21119.6
C35—P2—C23105.2 (2)C22—C21—H21119.6
C35—P2—C29102.9 (2)C21—C22—C17120.4 (5)
C23—P2—C29104.1 (2)C21—C22—H22119.8
C35—P2—Pd112.25 (16)C17—C22—H22119.8
C23—P2—Pd114.27 (16)C28—C23—C24118.3 (4)
C29—P2—Pd116.86 (15)C28—C23—P2122.2 (4)
C3—N1—C4113.8 (5)C24—C23—P2119.4 (4)
C3—N2—C2115.1 (5)C25—C24—C23120.0 (5)
C4—C1—C2114.0 (4)C25—C24—H24120.0
C4—C1—Pd126.6 (4)C23—C24—H24120.0
C2—C1—Pd119.3 (4)C26—C25—C24120.7 (5)
N2—C2—C1124.0 (5)C26—C25—H25119.6
N2—C2—H2118.0C24—C25—H25119.6
C1—C2—H2118.0C25—C26—C27119.8 (5)
N2—C3—N1127.9 (5)C25—C26—H26120.1
N2—C3—H3116.1C27—C26—H26120.1
N1—C3—H3116.1C28—C27—C26120.2 (5)
N1—C4—C1125.1 (5)C28—C27—H27119.9
N1—C4—H4117.5C26—C27—H27119.9
C1—C4—H4117.5C27—C28—C23121.0 (5)
C10—C5—C6119.4 (5)C27—C28—H28119.5
C10—C5—P1124.0 (4)C23—C28—H28119.5
C6—C5—P1116.5 (4)C30—C29—C34119.0 (5)
C7—C6—C5120.1 (5)C30—C29—P2121.1 (4)
C7—C6—H6119.9C34—C29—P2119.7 (4)
C5—C6—H6119.9C31—C30—C29120.4 (5)
C6—C7—C8120.2 (5)C31—C30—H30119.8
C6—C7—H7119.9C29—C30—H30119.8
C8—C7—H7119.9C30—C31—C32120.2 (5)
C9—C8—C7120.3 (5)C30—C31—H31119.9
C9—C8—H8119.9C32—C31—H31119.9
C7—C8—H8119.9C33—C32—C31120.0 (5)
C8—C9—C10119.9 (5)C33—C32—H32120.0
C8—C9—H9120.1C31—C32—H32120.0
C10—C9—H9120.1C32—C33—C34120.2 (5)
C5—C10—C9120.1 (5)C32—C33—H33119.9
C5—C10—H10119.9C34—C33—H33119.9
C9—C10—H10119.9C33—C34—C29120.1 (5)
C12—C11—C16118.9 (4)C33—C34—H34120.0
C12—C11—P1119.5 (4)C29—C34—H34120.0
C16—C11—P1120.9 (4)C36—C35—C40118.8 (5)
C13—C12—C11120.8 (5)C36—C35—P2122.4 (4)
C13—C12—H12119.6C40—C35—P2118.7 (4)
C11—C12—H12119.6C37—C36—C35121.2 (5)
C14—C13—C12119.5 (5)C37—C36—H36119.4
C14—C13—H13120.2C35—C36—H36119.4
C12—C13—H13120.2C36—C37—C38118.8 (6)
C13—C14—C15120.7 (5)C36—C37—H37120.6
C13—C14—H14119.7C38—C37—H37120.6
C15—C14—H14119.7C39—C38—C37120.8 (5)
C14—C15—C16120.6 (5)C39—C38—H38119.6
C14—C15—H15119.7C37—C38—H38119.6
C16—C15—H15119.7C38—C39—C40120.3 (5)
C11—C16—C15119.6 (5)C38—C39—H39119.9
C11—C16—H16120.2C40—C39—H39119.9
C15—C16—H16120.2C39—C40—C35120.0 (5)
C22—C17—C18118.8 (5)C39—C40—H40120.0
C22—C17—P1120.6 (4)C35—C40—H40120.0

Experimental details

Crystal data
Chemical formula[PdBr(C4H3N2)(C18H15P)2]
Mr789.93
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)15.0953 (10), 12.0379 (8), 19.8066 (13)
β (°) 109.7481 (13)
V3)3387.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.85
Crystal size (mm)0.35 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.563, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
19582, 7764, 5553
Rint0.079
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.132, 1.01
No. of reflections7764
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.98

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the National Science Council of the Republic of China for financial support (NSC100–2113-M-241–001-MY3).

References

First citationBeeby, A., Bettington, S., Fairlamb, I. J. S., Goeta, A. E., Kapdi, A. R., Niemela, E. H. & Thompson, A. L. (2004). New J. Chem. 28, 600–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCardin, D. J., Cetinkaya, B. & Lappert, M. F. (1972). Chem. Rev. 72, 545–574.  CrossRef CAS Web of Science Google Scholar
First citationChin, C. H., Yeo, S. L., Loh, Z. H., Vittal, J. J., Henderson, W. & Hor, T. S. A. (1988). J. Chem. Soc. Dalton Trans. pp. 3777–3784.  Google Scholar
First citationDobrzynski, E. D. & Angelici, R. J. (1975). Inorg. Chem. 14, 1513–1518.  CrossRef CAS Web of Science Google Scholar
First citationHong, F. U., Huang, Y. L., Chen, P. P. & Chang, Y. C. (2002). J. Organomet. Chem. 655, 49–54.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteffen, A., Sladek, M. I., Braun, T., Neumann, B. & Stammler, H. G. (2005). Organometallics, 24, 4057–4064.  Web of Science CSD CrossRef CAS Google Scholar
First citationYih, K. H. & Lee, G. H. (2008). J. Chin. Chem. Soc. 55, 109–114.  CAS Google Scholar
First citationYih, K. H., Wang, H. F., Huang, K. F., Kwan, C. C. & Lee, G. H. (2009). J. Chin. Chem. Soc. 56, 718–724.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds