organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-2-(3-phenyl­allyl­­idene)-2,3,4,9-tetra­hydro-1H-carbazol-1-one

aPost Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India, bDepartment of Engineering Chemistry, Christ University, Bangalore 560 029, Karnataka, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 13 October 2011; accepted 4 November 2011; online 12 November 2011)

Mol­ecules of the title compound, C21H16BrNO, are linked through pairs of N—H⋯O inter­molecular hydrogen bonds into centrosymmetric R22(10) dimers. One of the C atoms of the cyclohex-2-enone ring is disordered with refined occupancies of 0.61 (2) and 0.39 (2).

Related literature

For the biological activity of carbazole derivatives, see: Shufen et al. (1995[Shufen, Z., Danhong, Z. & Jinzong, Y. (1995). Dyes Pigments 27, 287-296.]); Magnus et al. (1992[Magnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70-78.]); Abraham (1975[Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.]); Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.]); Phillipson & Zenk (1980[Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.]); Bergman & Pelcman (1990[Bergman, J. & Pelcman, B. (1990). Pure Appl. Chem. 62, 1967-1976.]); Bonesi et al. (2004[Bonesi, S. M., Crevatin, L. K. & Erra-Balsells, R. (2004). Photochem. Photobiol. Sci. 3, 381-388.]); Chakraborty et al. (1965[Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681-685.]); Kirtikar & Basu (1933[Kirtikar, K. R. & Basu, B. D. (1933). Indian Medicinal Plants, edited by L. M. Basu, 2nd ed., pp. 2131-2133. Allahabad: Central Council for Research in Ayurveda & Siddha, (Deptt. of AYUSH, Min. of Health & Family Welfare), Govt. of India.]); Chakraborty et al. (1973[Chakraborty, D. P., Das, K. C., Das, B. P. & Chowdhury, B. K. (1973). Trans. Bose Res. Inst. 38, 1-10.]); Knolker & Reddy, 2002[Knolker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303-4427.]. For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16BrNO

  • Mr = 378.26

  • Monoclinic, P 21 /c

  • a = 17.3682 (7) Å

  • b = 14.9974 (8) Å

  • c = 6.6861 (3) Å

  • β = 92.226 (2)°

  • V = 1740.27 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 293 K

  • 0.20 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.629, Tmax = 0.685

  • 16684 measured reflections

  • 4319 independent reflections

  • 2158 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.137

  • S = 0.97

  • 4319 reflections

  • 231 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.82 (3) 2.02 (3) 2.813 (3) 161 (3)
Symmetry code: (i) -x, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole alkaloids obtained from naturally occurring sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Bergman & Pelcman, 1990; Bonesi et al., 2004; Chakraborty et al., 1965; Kirtikar & Basu, 1933). Aminocarbazoles are widely used as intermediates for the preparation of carbazole-based synthetic dyes, agrochemicals, pharmaceuticals and light-sensitive materials (Shufen et al., 1995). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). These types of compounds possess significant antibiotic, anti-carcinogenic, antiviral and anti-inflammatory properties (Chakraborty et al., 1973). The chemists have been attracted towards these compounds due to their biological activities and potential applications as pharmacological agents (Knolker & Reddy, 2002). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. One of the C atoms of the cyclohexane ring is disordered with refined occupancies of 0.61 (2) and 0.39 (2). The disordered position of C10B in the cyclohexane ring in the carbazole ring system adopts envelope conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.242 (7) Å, q3 = 0.171 (6) Å, φ2 = 117.3 (13)° and Δs(C10B & C13)= 1.5 (5)°. The sum of the bond angles around N1 [358.3°] is in accordance with sp2 hybridization.

The crystal packing reveals that symmetry-related molecules are linked through N—H···O intermolecular hydrogen bonds into cyclic centrosymmetric R22(10) dimers.

Related literature top

For the biological activity of carbazole derivatives, see: Shufen et al. (1995); Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Bergman & Pelcman (1990); Bonesi et al. (2004); Chakraborty et al. (1965); Kirtikar & Basu (1933); Chakraborty et al. (1973); Knolker & Reddy, 2002. For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The mixed aldol condensation reaction of 6-bromo-1-oxo-1,2,3, 4-tetrahydrocarbazole reacted with cinnamaldehyde in the presence of alcoholic KOH, afforded a single product, substituted 6-Bromo-2-(3-phenyl-allylidene) -2,3,4,9-tetrahydro-carbazol-1-one. This was purified by using column chromatography over silica gel (mesh 60–80). During elution of the column with petroleum ether (60–80°C) and ethyl acetate [1:2] mixture, a yellowish solid was obtained. It was recrystallized from the solvent mixture ethyl acetate and acetone (8:2).

Refinement top

The N-bound H atom was located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) for all H atoms.

Structure description top

Carbazole alkaloids obtained from naturally occurring sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Bergman & Pelcman, 1990; Bonesi et al., 2004; Chakraborty et al., 1965; Kirtikar & Basu, 1933). Aminocarbazoles are widely used as intermediates for the preparation of carbazole-based synthetic dyes, agrochemicals, pharmaceuticals and light-sensitive materials (Shufen et al., 1995). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). These types of compounds possess significant antibiotic, anti-carcinogenic, antiviral and anti-inflammatory properties (Chakraborty et al., 1973). The chemists have been attracted towards these compounds due to their biological activities and potential applications as pharmacological agents (Knolker & Reddy, 2002). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. One of the C atoms of the cyclohexane ring is disordered with refined occupancies of 0.61 (2) and 0.39 (2). The disordered position of C10B in the cyclohexane ring in the carbazole ring system adopts envelope conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.242 (7) Å, q3 = 0.171 (6) Å, φ2 = 117.3 (13)° and Δs(C10B & C13)= 1.5 (5)°. The sum of the bond angles around N1 [358.3°] is in accordance with sp2 hybridization.

The crystal packing reveals that symmetry-related molecules are linked through N—H···O intermolecular hydrogen bonds into cyclic centrosymmetric R22(10) dimers.

For the biological activity of carbazole derivatives, see: Shufen et al. (1995); Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Bergman & Pelcman (1990); Bonesi et al. (2004); Chakraborty et al. (1965); Kirtikar & Basu (1933); Chakraborty et al. (1973); Knolker & Reddy, 2002. For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
6-Bromo-2-(3-phenylallylidene)-2,3,4,9-tetrahydro-1H-carbazol-1-one top
Crystal data top
C21H16BrNOF(000) = 768
Mr = 378.26Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2134 reflections
a = 17.3682 (7) Åθ = 1.2–28.3°
b = 14.9974 (8) ŵ = 2.37 mm1
c = 6.6861 (3) ÅT = 293 K
β = 92.226 (2)°Block, yellow
V = 1740.27 (14) Å30.20 × 0.17 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4319 independent reflections
Radiation source: fine-focus sealed tube2158 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 28.3°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2323
Tmin = 0.629, Tmax = 0.685k = 1820
16684 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.6068P]
where P = (Fo2 + 2Fc2)/3
4319 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C21H16BrNOV = 1740.27 (14) Å3
Mr = 378.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.3682 (7) ŵ = 2.37 mm1
b = 14.9974 (8) ÅT = 293 K
c = 6.6861 (3) Å0.20 × 0.17 × 0.16 mm
β = 92.226 (2)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4319 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2158 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.685Rint = 0.044
16684 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.46 e Å3
4319 reflectionsΔρmin = 0.55 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.39020 (2)0.32240 (3)0.51370 (6)0.1026 (2)
O10.08065 (12)0.45133 (15)0.1631 (3)0.0688 (6)
N10.08292 (14)0.42507 (17)0.1535 (3)0.0552 (6)
H10.0713 (17)0.458 (2)0.059 (4)0.067 (9)*
C20.15712 (17)0.40282 (18)0.2075 (4)0.0528 (7)
C30.22410 (18)0.4135 (2)0.1039 (4)0.0641 (8)
H30.22290.43780.02420.077*
C40.29216 (19)0.3873 (2)0.1963 (5)0.0675 (8)
H40.33810.39370.13060.081*
C50.2929 (2)0.3509 (2)0.3901 (5)0.0692 (9)
C60.22789 (19)0.3375 (2)0.4921 (4)0.0622 (8)
H60.22990.31180.61870.075*
C70.15750 (17)0.36386 (18)0.4003 (4)0.0505 (7)
C80.08023 (17)0.36309 (18)0.4592 (3)0.0485 (6)
C90.04470 (19)0.3290 (2)0.6440 (4)0.0658 (8)
H9A0.04870.26450.64530.079*0.61 (2)
H9B0.07430.35130.75950.079*0.61 (2)
H9C0.05470.37120.75190.079*0.39 (2)
H9D0.06910.27300.68230.079*0.39 (2)
C110.08446 (18)0.38062 (19)0.4825 (4)0.0538 (7)
C120.04532 (17)0.41447 (18)0.3044 (3)0.0506 (7)
C130.03659 (16)0.40161 (17)0.3067 (3)0.0477 (6)
C140.15949 (18)0.3978 (2)0.4961 (4)0.0586 (7)
H140.18260.42830.38860.070*
C150.20892 (18)0.3753 (2)0.6550 (4)0.0631 (8)
H150.18870.34160.76130.076*
C160.28207 (19)0.4001 (2)0.6583 (4)0.0676 (8)
H160.30110.43110.54640.081*
C170.33642 (18)0.3850 (2)0.8155 (5)0.0658 (8)
C180.3143 (2)0.3524 (2)1.0019 (5)0.0780 (10)
H180.26250.34031.03130.094*
C190.3677 (3)0.3376 (3)1.1451 (6)0.0984 (13)
H190.35210.31451.26920.118*
C200.4435 (3)0.3568 (3)1.1050 (8)0.1123 (16)
H200.47950.34701.20190.135*
C210.4661 (2)0.3902 (4)0.9231 (8)0.1155 (16)
H210.51780.40330.89620.139*
C220.4137 (2)0.4048 (3)0.7794 (6)0.0882 (11)
H220.43000.42820.65610.106*
C10A0.0342 (11)0.3529 (15)0.665 (2)0.058 (4)0.39 (2)
H10A0.03530.40160.76020.069*0.39 (2)
H10B0.05940.30260.72580.069*0.39 (2)
C10B0.0401 (7)0.3148 (9)0.6188 (17)0.059 (2)0.61 (2)
H10C0.06190.31690.75010.071*0.61 (2)
H10D0.04870.25510.56630.071*0.61 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0700 (3)0.1349 (5)0.1014 (3)0.0016 (2)0.0135 (2)0.0210 (2)
O10.0752 (13)0.0818 (16)0.0491 (10)0.0044 (11)0.0026 (9)0.0253 (10)
N10.0740 (16)0.0542 (16)0.0373 (11)0.0027 (13)0.0008 (11)0.0120 (11)
C20.0742 (19)0.0405 (16)0.0434 (13)0.0007 (14)0.0004 (13)0.0012 (12)
C30.082 (2)0.060 (2)0.0505 (15)0.0032 (17)0.0076 (15)0.0044 (14)
C40.071 (2)0.064 (2)0.0688 (19)0.0054 (17)0.0094 (15)0.0014 (16)
C50.073 (2)0.064 (2)0.070 (2)0.0028 (16)0.0075 (17)0.0020 (16)
C60.074 (2)0.062 (2)0.0499 (15)0.0001 (16)0.0078 (14)0.0063 (14)
C70.0710 (18)0.0384 (16)0.0417 (13)0.0026 (13)0.0026 (12)0.0030 (11)
C80.0729 (18)0.0351 (15)0.0372 (12)0.0008 (13)0.0034 (12)0.0007 (11)
C90.082 (2)0.071 (2)0.0438 (15)0.0037 (18)0.0009 (14)0.0188 (14)
C110.0754 (19)0.0448 (17)0.0409 (13)0.0034 (15)0.0012 (12)0.0033 (12)
C120.0739 (18)0.0415 (16)0.0363 (12)0.0008 (14)0.0002 (12)0.0021 (11)
C130.0715 (18)0.0374 (15)0.0343 (12)0.0006 (13)0.0028 (12)0.0011 (11)
C140.075 (2)0.0493 (18)0.0510 (15)0.0002 (15)0.0005 (14)0.0049 (13)
C150.074 (2)0.061 (2)0.0544 (16)0.0034 (16)0.0019 (14)0.0079 (14)
C160.076 (2)0.064 (2)0.0621 (18)0.0054 (17)0.0012 (15)0.0070 (15)
C170.069 (2)0.056 (2)0.0716 (19)0.0089 (16)0.0036 (16)0.0021 (16)
C180.086 (2)0.075 (2)0.074 (2)0.0008 (19)0.0086 (18)0.0047 (18)
C190.132 (4)0.091 (3)0.074 (2)0.016 (3)0.019 (3)0.006 (2)
C200.105 (4)0.130 (4)0.105 (3)0.033 (3)0.037 (3)0.021 (3)
C210.070 (2)0.158 (5)0.119 (4)0.018 (3)0.014 (3)0.026 (3)
C220.073 (2)0.100 (3)0.091 (2)0.006 (2)0.001 (2)0.005 (2)
C10A0.084 (7)0.049 (10)0.041 (6)0.023 (8)0.017 (5)0.013 (5)
C10B0.088 (4)0.048 (6)0.042 (4)0.006 (5)0.009 (3)0.010 (3)
Geometric parameters (Å, º) top
Br1—C51.900 (3)C11—C10B1.532 (11)
O1—C121.237 (3)C11—C10A1.529 (16)
N1—C21.366 (4)C12—C131.435 (4)
N1—C131.373 (3)C14—C151.432 (4)
N1—H10.82 (3)C14—H140.9300
C2—C31.386 (4)C15—C161.325 (4)
C2—C71.415 (4)C15—H150.9300
C3—C41.370 (4)C16—C171.458 (4)
C3—H30.9300C16—H160.9300
C4—C51.406 (4)C17—C181.379 (4)
C4—H40.9300C17—C221.387 (4)
C5—C61.357 (5)C18—C191.377 (5)
C6—C71.403 (4)C18—H180.9300
C6—H60.9300C19—C201.363 (6)
C7—C81.413 (4)C19—H190.9300
C8—C131.374 (4)C20—C211.359 (6)
C8—C91.492 (4)C20—H200.9300
C9—C10A1.429 (17)C21—C221.366 (5)
C9—C10B1.491 (12)C21—H210.9300
C9—H9A0.9700C22—H220.9300
C9—H9B0.9700C10A—H10A0.9700
C9—H9C0.9700C10A—H10B0.9700
C9—H9D0.9700C10B—H10C0.9700
C11—C141.335 (4)C10B—H10D0.9700
C11—C121.483 (4)
C2—N1—C13108.3 (2)C14—C11—C10A121.7 (6)
C2—N1—H1123 (2)C12—C11—C10A117.9 (7)
C13—N1—H1127 (2)C10B—C11—C10A24.7 (5)
N1—C2—C3129.9 (2)O1—C12—C13122.0 (2)
N1—C2—C7108.2 (2)O1—C12—C11122.5 (3)
C3—C2—C7121.9 (3)C13—C12—C11115.5 (2)
C4—C3—C2117.9 (3)N1—C13—C8109.8 (2)
C4—C3—H3121.1N1—C13—C12124.6 (2)
C2—C3—H3121.1C8—C13—C12125.6 (2)
C3—C4—C5120.3 (3)C11—C14—C15128.3 (3)
C3—C4—H4119.9C11—C14—H14115.8
C5—C4—H4119.9C15—C14—H14115.8
C6—C5—C4122.8 (3)C16—C15—C14123.3 (3)
C6—C5—Br1119.5 (2)C16—C15—H15118.3
C4—C5—Br1117.7 (3)C14—C15—H15118.3
C5—C6—C7117.9 (3)C15—C16—C17128.1 (3)
C5—C6—H6121.1C15—C16—H16116.0
C7—C6—H6121.1C17—C16—H16116.0
C6—C7—C8134.2 (2)C18—C17—C22117.9 (3)
C6—C7—C2119.2 (3)C18—C17—C16122.7 (3)
C8—C7—C2106.6 (2)C22—C17—C16119.4 (3)
C13—C8—C7107.0 (2)C19—C18—C17120.9 (4)
C13—C8—C9121.6 (3)C19—C18—H18119.6
C7—C8—C9131.4 (2)C17—C18—H18119.6
C10A—C9—C8115.1 (6)C20—C19—C18120.1 (4)
C10A—C9—C10B25.8 (6)C20—C19—H19120.0
C8—C9—C10B113.2 (4)C18—C19—H19120.0
C10A—C9—H9A108.5C21—C20—C19119.8 (4)
C8—C9—H9A108.5C21—C20—H20120.1
C10B—C9—H9A85.8C19—C20—H20120.1
C10A—C9—H9B108.5C20—C21—C22120.7 (4)
C8—C9—H9B108.5C20—C21—H21119.6
C10B—C9—H9B129.1C22—C21—H21119.6
H9A—C9—H9B107.5C21—C22—C17120.7 (4)
C10A—C9—H9C84.7C21—C22—H22119.7
C8—C9—H9C108.9C17—C22—H22119.7
C10B—C9—H9C108.9C9—C10A—C11120.7 (9)
H9A—C9—H9C129.3C9—C10A—H10A107.2
H9B—C9—H9C27.1C11—C10A—H10A107.2
C10A—C9—H9D127.0C9—C10A—H10B107.2
C8—C9—H9D108.9C11—C10A—H10B107.2
C10B—C9—H9D108.9H10A—C10A—H10B106.8
H9A—C9—H9D26.4C9—C10B—C11116.5 (7)
H9B—C9—H9D82.8C9—C10B—H10C108.2
H9C—C9—H9D107.8C11—C10B—H10C108.2
C14—C11—C12117.9 (2)C9—C10B—H10D108.2
C14—C11—C10B123.6 (5)C11—C10B—H10D108.2
C12—C11—C10B117.6 (5)H10C—C10B—H10D107.3
C13—N1—C2—C3179.7 (3)C9—C8—C13—N1178.6 (3)
C13—N1—C2—C70.2 (3)C7—C8—C13—C12179.9 (3)
N1—C2—C3—C4178.2 (3)C9—C8—C13—C120.5 (4)
C7—C2—C3—C41.8 (4)O1—C12—C13—N12.5 (4)
C2—C3—C4—C50.0 (5)C11—C12—C13—N1177.5 (2)
C3—C4—C5—C61.8 (5)O1—C12—C13—C8178.6 (3)
C3—C4—C5—Br1176.5 (2)C11—C12—C13—C81.5 (4)
C4—C5—C6—C71.8 (5)C12—C11—C14—C15177.5 (3)
Br1—C5—C6—C7176.6 (2)C10B—C11—C14—C1513.7 (8)
C5—C6—C7—C8178.1 (3)C10A—C11—C14—C1515.7 (12)
C5—C6—C7—C20.0 (4)C11—C14—C15—C16176.1 (3)
N1—C2—C7—C6178.1 (3)C14—C15—C16—C17176.8 (3)
C3—C2—C7—C61.8 (4)C15—C16—C17—C1810.0 (6)
N1—C2—C7—C80.4 (3)C15—C16—C17—C22170.7 (4)
C3—C2—C7—C8179.6 (3)C22—C17—C18—C191.9 (5)
C6—C7—C8—C13177.4 (3)C16—C17—C18—C19178.8 (3)
C2—C7—C8—C130.9 (3)C17—C18—C19—C201.3 (6)
C6—C7—C8—C93.1 (5)C18—C19—C20—C210.3 (7)
C2—C7—C8—C9178.7 (3)C19—C20—C21—C220.1 (8)
C13—C8—C9—C10A10.2 (12)C20—C21—C22—C170.6 (7)
C7—C8—C9—C10A170.3 (12)C18—C17—C22—C211.5 (6)
C13—C8—C9—C10B18.1 (7)C16—C17—C22—C21179.2 (4)
C7—C8—C9—C10B161.4 (7)C8—C9—C10A—C1121 (2)
C14—C11—C12—O15.8 (4)C10B—C9—C10A—C1171 (2)
C10B—C11—C12—O1163.7 (6)C14—C11—C10A—C9175.7 (12)
C10A—C11—C12—O1168.3 (10)C12—C11—C10A—C922 (2)
C14—C11—C12—C13174.2 (3)C10B—C11—C10A—C973.4 (19)
C10B—C11—C12—C1316.3 (7)C10A—C9—C10B—C1165.1 (18)
C10A—C11—C12—C1311.7 (11)C8—C9—C10B—C1134.9 (12)
C2—N1—C13—C80.8 (3)C14—C11—C10B—C9155.8 (6)
C2—N1—C13—C12179.8 (3)C12—C11—C10B—C935.4 (12)
C7—C8—C13—N11.0 (3)C10A—C11—C10B—C962 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.82 (3)2.02 (3)2.813 (3)161 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H16BrNO
Mr378.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)17.3682 (7), 14.9974 (8), 6.6861 (3)
β (°) 92.226 (2)
V3)1740.27 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.20 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.629, 0.685
No. of measured, independent and
observed [I > 2σ(I)] reflections
16684, 4319, 2158
Rint0.044
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.137, 0.97
No. of reflections4319
No. of parameters231
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.55

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.82 (3)2.02 (3)2.813 (3)161 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the Solid State Unit, Indian Institute of Science, Bangalore, India, for the data collection and Dr A. Chandramohan, Post Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, for his valuable suggestions.

References

First citationAbraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.  Google Scholar
First citationBergman, J. & Pelcman, B. (1990). Pure Appl. Chem. 62, 1967–1976.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBonesi, S. M., Crevatin, L. K. & Erra-Balsells, R. (2004). Photochem. Photobiol. Sci. 3, 381–388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationChakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.  CrossRef CAS Web of Science Google Scholar
First citationChakraborty, D. P., Das, K. C., Das, B. P. & Chowdhury, B. K. (1973). Trans. Bose Res. Inst. 38, 1–10.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKirtikar, K. R. & Basu, B. D. (1933). Indian Medicinal Plants, edited by L. M. Basu, 2nd ed., pp. 2131–2133. Allahabad: Central Council for Research in Ayurveda & Siddha, (Deptt. of AYUSH, Min. of Health & Family Welfare), Govt. of India.  Google Scholar
First citationKnolker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 102, 4303–4427.  Web of Science PubMed Google Scholar
First citationMagnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPhillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.  Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShufen, Z., Danhong, Z. & Jinzong, Y. (1995). Dyes Pigments 27, 287-296.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds