organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo-2-[(E)-thio­phen-2-yl­methyl­­idene]-2,3,4,9-tetra­hydro-1H-carbazol-1-one

aPost Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore 641 020, India, bDepartment of Engineering Chemistry, Christ University, Bangalore 560 029, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 21 October 2011; accepted 4 November 2011; online 12 November 2011)

In the title compound, C17H12BrNOS, the cyclo­hexene ring deviates only slightly from planarity (r.m.s. deviation for non-H atoms = 0.047 Å). In the crystal, the mol­ecules are linked into centro­symmetric R22(10) dimers via pairs of N—H⋯O hydrogen bonds. The thio­phene ring is disordered over two positions rotated by 180° and with a site-occupation factor of 0.843 (4) for the major occupied site.

Related literature

For the biological activity of carbazole derivatives, see: Magnus et al. (1992[Magnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70-78.]); Abraham (1975[Abraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.]); Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.]); Phillipson & Zenk (1980[Phillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.]); Bergman & Pelcman (1990[Bergman, J. & Pelcman, B. (1990). Pure Appl. Chem. 62, 1967-1976.]); Bonesi et al. (2004[Bonesi, S. M., Crevatin, L. K. & Erra-Balsells, R. (2004). Photochem. Photobiol. Sci. 3, 381-388.]); Chakraborty et al. (1965[Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681-685.]); Kirtikar & Basu (1933[Kirtikar, K. R. & Basu, B. D. (1933). Indian Medicinal Plants, edited by L. M. Basu, 2nd ed., pp. 2131-2133. Allahabad: Central Council for Research in Ayurveda & Siddha (Deptt. of AYUSH, Min. of Health & Family Welfare), Govt. of India.]); Chakraborty et al. (1973[Chakraborty, D. P., Das, K. C., Das, B. P. & Chowdhury, B. K. (1973). Trans. Bose Res. Inst. 38, 1-10.]); Savini et al. (2004[Savini, L., Chiasserini, L., Travagli, V., Pellerano, C., Novellino, E., Cosentino, S. & Pisano, M. B. (2004). Eur. J. Med. Chem. 39, 113-122.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12BrNOS

  • Mr = 358.25

  • Monoclinic, P 21 /c

  • a = 13.8655 (5) Å

  • b = 6.3081 (3) Å

  • c = 17.4583 (7) Å

  • β = 103.666 (2)°

  • V = 1483.76 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 296 K

  • 0.21 × 0.17 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]) Tmin = 0.558, Tmax = 0.628

  • 12158 measured reflections

  • 4487 independent reflections

  • 1953 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.148

  • S = 0.85

  • 4487 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.88 2.00 2.804 (4) 151
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole alkaloids obtained from naturally occurring sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Bergman & Pelcman, 1990; Bonesi et al., 2004; Chakraborty et al., 1965; Kirtikar & Basu, 1933). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). These types of compounds possess significant antibiotic, anti-carcinogenic, antiviral and anti-inflammatory properties (Chakraborty et al., 1973). The thiophene derivatives possess the antimicrobial activity (Savini et al., 2004). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The cyclohexene ring in the carbazole ring system adopts envelope conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.126 (5) Å, q3 = 0.050 (4) Å, φ2 = 102.0 (2)° and Δs(C10 & C13)= 4.4 (5)°. Thiophene ring in the molecule is planar conformation. The sum of the bond angles around N1 [359.3°] is in accordance with sp2 hybridization.

The molecules at (x, y, z) and (-x + 2, -y + 1, -z) are linked by N1—H1···O1 hydrogen bonds into a cyclic centrosymmetric R22(14) dimer.

Related literature top

For the biological activity of carbazole derivatives, see: Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Bergman & Pelcman (1990); Bonesi et al. (2004); Chakraborty et al. (1965); Kirtikar & Basu (1933); Chakraborty et al. (1973); Savini et al. (2004). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The mixed aldol condensation reaction of 6-bromo-1-oxo-1,2,3, 4-tetrahydrocarbazole reacted with thiophene-2-carbaldehyde in the presence of alcoholic KOH, afforded a single product, substituted 6-bromo-2- thiofuran-2-ylmethylene-2,3,4,9-tetrahydro-carbazol-1-one. This was purified by using column chromatography over silica gel (mesh 60–80). During elution of the column with petroleum ether (60–80°C) and ethyl acetate [1:2] mixture, a yellowish solid was obtained. The crystals of the title compound suitable for single XRD analysis were obtained by the slow evaporation method using the solvent mixture ethyl acetate and acetone (8:2) at room temperature.

Refinement top

N-bound H atom was located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms. The thiophene ring is disordered over two positions rotated by 180 degrees and with a site occupation factor of 0.843 (4) for the major occupied site.

Structure description top

Carbazole alkaloids obtained from naturally occurring sources have been the subject of extensive research, mainly because of their widespread applications in traditional medicine (Bergman & Pelcman, 1990; Bonesi et al., 2004; Chakraborty et al., 1965; Kirtikar & Basu, 1933). Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Magnus et al., 1992; Abraham, 1975; Saxton, 1983; Phillipson et al., 1980). These types of compounds possess significant antibiotic, anti-carcinogenic, antiviral and anti-inflammatory properties (Chakraborty et al., 1973). The thiophene derivatives possess the antimicrobial activity (Savini et al., 2004). Against this background and to ascertain the molecular structure and conformation, the X-ray crystal structure determination of the title compound has been carried out.

The ORTEP plot of the molecule is shown in Fig. 1. The cyclohexene ring in the carbazole ring system adopts envelope conformation with the puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) are: q2=0.126 (5) Å, q3 = 0.050 (4) Å, φ2 = 102.0 (2)° and Δs(C10 & C13)= 4.4 (5)°. Thiophene ring in the molecule is planar conformation. The sum of the bond angles around N1 [359.3°] is in accordance with sp2 hybridization.

The molecules at (x, y, z) and (-x + 2, -y + 1, -z) are linked by N1—H1···O1 hydrogen bonds into a cyclic centrosymmetric R22(14) dimer.

For the biological activity of carbazole derivatives, see: Magnus et al. (1992); Abraham (1975); Saxton (1983); Phillipson & Zenk (1980); Bergman & Pelcman (1990); Bonesi et al. (2004); Chakraborty et al. (1965); Kirtikar & Basu (1933); Chakraborty et al. (1973); Savini et al. (2004). For puckering parameters, see: Cremer & Pople (1975). For asymmetry parameters, see: Nardelli (1983). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
6-Bromo-2-[(E)-thiophen-2-ylmethylidene]-2,3,4,9-tetrahydro-1H- carbazol-1-one top
Crystal data top
C17H12BrNOSF(000) = 720
Mr = 358.25Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1432 reflections
a = 13.8655 (5) Åθ = 2.4–30.5°
b = 6.3081 (3) ŵ = 2.91 mm1
c = 17.4583 (7) ÅT = 296 K
β = 103.666 (2)°Block, yellow
V = 1483.76 (11) Å30.21 × 0.17 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4487 independent reflections
Radiation source: fine-focus sealed tube1953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 30.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1919
Tmin = 0.558, Tmax = 0.628k = 48
12158 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0752P)2 + 0.4371P]
where P = (Fo2 + 2Fc2)/3
4487 reflections(Δ/σ)max = 0.002
191 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H12BrNOSV = 1483.76 (11) Å3
Mr = 358.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8655 (5) ŵ = 2.91 mm1
b = 6.3081 (3) ÅT = 296 K
c = 17.4583 (7) Å0.21 × 0.17 × 0.16 mm
β = 103.666 (2)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
4487 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1953 reflections with I > 2σ(I)
Tmin = 0.558, Tmax = 0.628Rint = 0.044
12158 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 0.85Δρmax = 0.49 e Å3
4487 reflectionsΔρmin = 0.31 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br11.44365 (3)0.32770 (7)0.06412 (3)0.0742 (2)
S10.76193 (8)0.1866 (2)0.24215 (7)0.0665 (5)0.843 (4)
C18'0.76193 (8)0.1866 (2)0.24215 (7)0.0665 (5)0.157 (4)
H18'0.81440.28220.25460.080*0.157 (4)
O10.91041 (18)0.3896 (4)0.06209 (14)0.0557 (6)
N11.1050 (2)0.2754 (5)0.04571 (15)0.0474 (7)
H11.09400.40360.02580.057*
C21.1893 (2)0.1612 (5)0.04737 (18)0.0419 (8)
C31.2698 (3)0.2105 (6)0.0147 (2)0.0546 (10)
H31.27220.33770.01170.066*
C41.3444 (3)0.0657 (7)0.0229 (2)0.0569 (10)
H41.39920.09490.00260.068*
C51.3393 (2)0.1272 (6)0.0619 (2)0.0523 (9)
C61.2619 (2)0.1797 (6)0.09508 (19)0.0458 (8)
H61.26040.30820.12090.055*
C71.1855 (2)0.0306 (5)0.08814 (16)0.0401 (7)
C81.0929 (2)0.0273 (5)0.11198 (16)0.0380 (7)
C91.0491 (3)0.1861 (6)0.1562 (2)0.0556 (10)
H9A1.09820.22420.20370.067*
H9B1.03340.31290.12430.067*
C100.9568 (3)0.1110 (6)0.1789 (2)0.0598 (10)
H10A0.91040.22860.17060.072*
H10B0.97460.08360.23520.072*
C110.9014 (2)0.0798 (5)0.14016 (17)0.0405 (7)
C120.9501 (2)0.2235 (6)0.09254 (18)0.0413 (8)
C131.0475 (2)0.1591 (5)0.08458 (17)0.0412 (8)
C140.8096 (2)0.1348 (6)0.14535 (19)0.0472 (8)
H140.78540.25680.11740.057*
C150.7412 (2)0.0388 (6)0.18652 (17)0.0480 (9)
C160.6513 (3)0.1697 (8)0.2658 (2)0.0711 (13)
H160.62970.26630.29840.085*
C170.5980 (3)0.0032 (9)0.2330 (3)0.0820 (14)
H170.53500.02330.24060.098*
S1'0.6432 (3)0.1340 (6)0.1851 (2)0.0920 (14)0.157 (4)
C180.6432 (3)0.1340 (6)0.1851 (2)0.0920 (14)0.843 (4)
H180.61640.25650.15890.110*0.843 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0607 (3)0.0682 (3)0.1064 (4)0.0012 (2)0.0451 (2)0.0058 (2)
S10.0530 (7)0.0737 (10)0.0782 (8)0.0023 (6)0.0263 (6)0.0248 (7)
C18'0.0530 (7)0.0737 (10)0.0782 (8)0.0023 (6)0.0263 (6)0.0248 (7)
O10.0592 (14)0.0422 (14)0.0678 (15)0.0038 (13)0.0193 (12)0.0176 (13)
N10.0558 (17)0.0388 (16)0.0505 (16)0.0049 (14)0.0180 (13)0.0134 (14)
C20.0544 (18)0.0353 (18)0.0381 (16)0.0101 (17)0.0152 (14)0.0008 (15)
C30.064 (2)0.053 (2)0.0515 (19)0.019 (2)0.0240 (17)0.0035 (18)
C40.058 (2)0.064 (3)0.057 (2)0.017 (2)0.0289 (17)0.003 (2)
C50.0466 (18)0.057 (2)0.057 (2)0.0071 (18)0.0210 (16)0.0063 (19)
C60.0471 (18)0.044 (2)0.0508 (18)0.0068 (17)0.0199 (15)0.0014 (17)
C70.0489 (17)0.0386 (19)0.0349 (15)0.0072 (16)0.0141 (14)0.0016 (15)
C80.0455 (16)0.0348 (18)0.0352 (15)0.0046 (15)0.0127 (13)0.0018 (15)
C90.054 (2)0.049 (2)0.071 (2)0.0043 (18)0.0288 (18)0.0206 (19)
C100.066 (2)0.054 (2)0.071 (2)0.009 (2)0.0374 (19)0.023 (2)
C110.0510 (18)0.0354 (18)0.0364 (15)0.0037 (16)0.0129 (14)0.0020 (15)
C120.0490 (18)0.0353 (19)0.0395 (16)0.0046 (16)0.0099 (14)0.0004 (16)
C130.0471 (17)0.0367 (19)0.0408 (16)0.0073 (16)0.0122 (14)0.0006 (16)
C140.0522 (19)0.044 (2)0.0455 (18)0.0011 (17)0.0112 (15)0.0072 (16)
C150.0454 (17)0.059 (2)0.0402 (16)0.0049 (18)0.0108 (14)0.0017 (17)
C160.052 (2)0.093 (4)0.073 (3)0.014 (2)0.022 (2)0.016 (3)
C170.056 (2)0.117 (4)0.079 (3)0.004 (3)0.027 (2)0.005 (3)
S1'0.084 (2)0.106 (3)0.093 (2)0.006 (2)0.0363 (18)0.011 (2)
C180.084 (2)0.106 (3)0.093 (2)0.006 (2)0.0363 (18)0.011 (2)
Geometric parameters (Å, º) top
Br1—C51.915 (4)C8—C91.480 (4)
S1—C161.683 (4)C9—C101.503 (4)
S1—C151.707 (4)C9—H9A0.9700
O1—C121.243 (4)C9—H9B0.9700
N1—C21.368 (4)C10—C111.500 (5)
N1—C131.375 (4)C10—H10A0.9700
N1—H10.8789C10—H10B0.9700
C2—C31.403 (4)C11—C141.343 (4)
C2—C71.411 (4)C11—C121.495 (4)
C3—C41.361 (5)C12—C131.448 (4)
C3—H30.9300C14—C151.451 (4)
C4—C51.403 (5)C14—H140.9300
C4—H40.9300C15—S1'1.480 (4)
C5—C61.376 (4)C16—C171.333 (6)
C6—C71.400 (4)C16—H160.9300
C6—H60.9300C17—S1'1.445 (6)
C7—C81.441 (4)C17—H170.9300
C8—C131.366 (4)
C16—S1—C1592.6 (2)H9A—C9—H9B107.7
C2—N1—C13107.5 (3)C11—C10—C9120.7 (3)
C2—N1—H1124.1C11—C10—H10A107.1
C13—N1—H1128.2C9—C10—H10A107.1
N1—C2—C3129.2 (3)C11—C10—H10B107.1
N1—C2—C7109.2 (3)C9—C10—H10B107.1
C3—C2—C7121.5 (3)H10A—C10—H10B106.8
C4—C3—C2117.7 (3)C14—C11—C12116.2 (3)
C4—C3—H3121.1C14—C11—C10124.7 (3)
C2—C3—H3121.1C12—C11—C10119.1 (3)
C3—C4—C5120.6 (3)O1—C12—C13121.6 (3)
C3—C4—H4119.7O1—C12—C11122.5 (3)
C5—C4—H4119.7C13—C12—C11115.9 (3)
C6—C5—C4123.1 (3)C8—C13—N1111.1 (3)
C6—C5—Br1119.5 (3)C8—C13—C12124.8 (3)
C4—C5—Br1117.3 (2)N1—C13—C12124.1 (3)
C5—C6—C7116.8 (3)C11—C14—C15131.8 (3)
C5—C6—H6121.6C11—C14—H14114.1
C7—C6—H6121.6C15—C14—H14114.1
C6—C7—C2120.1 (3)C14—C15—S1'121.8 (3)
C6—C7—C8133.8 (3)C14—C15—S1126.0 (3)
C2—C7—C8106.0 (3)S1'—C15—S1112.2 (2)
C13—C8—C7106.3 (3)C17—C16—S1112.9 (3)
C13—C8—C9123.6 (3)C17—C16—H16123.6
C7—C8—C9130.1 (3)S1—C16—H16123.6
C8—C9—C10113.8 (3)C16—C17—S1'116.6 (4)
C8—C9—H9A108.8C16—C17—H17121.7
C10—C9—H9A108.8S1'—C17—H17121.7
C8—C9—H9B108.8C17—S1'—C15105.6 (3)
C10—C9—H9B108.8
C13—N1—C2—C3178.8 (3)C10—C11—C12—O1176.4 (3)
C13—N1—C2—C70.2 (3)C14—C11—C12—C13177.7 (3)
N1—C2—C3—C4178.3 (3)C10—C11—C12—C132.9 (4)
C7—C2—C3—C40.6 (5)C7—C8—C13—N10.6 (3)
C2—C3—C4—C51.0 (5)C9—C8—C13—N1180.0 (3)
C3—C4—C5—C61.5 (6)C7—C8—C13—C12177.2 (3)
C3—C4—C5—Br1175.9 (3)C9—C8—C13—C122.2 (5)
C4—C5—C6—C70.4 (5)C2—N1—C13—C80.5 (4)
Br1—C5—C6—C7176.9 (2)C2—N1—C13—C12177.4 (3)
C5—C6—C7—C21.1 (5)O1—C12—C13—C8175.6 (3)
C5—C6—C7—C8177.9 (3)C11—C12—C13—C85.2 (4)
N1—C2—C7—C6177.4 (3)O1—C12—C13—N12.0 (5)
C3—C2—C7—C61.6 (5)C11—C12—C13—N1177.3 (3)
N1—C2—C7—C80.2 (3)C12—C11—C14—C15178.8 (3)
C3—C2—C7—C8179.3 (3)C10—C11—C14—C150.6 (6)
C6—C7—C8—C13176.7 (3)C11—C14—C15—S1'178.2 (4)
C2—C7—C8—C130.5 (3)C11—C14—C15—S10.6 (6)
C6—C7—C8—C92.7 (6)C16—S1—C15—C14178.6 (3)
C2—C7—C8—C9179.8 (3)C16—S1—C15—S1'0.4 (3)
C13—C8—C9—C108.5 (5)C15—S1—C16—C170.8 (4)
C7—C8—C9—C10172.2 (3)S1—C16—C17—S1'1.1 (6)
C8—C9—C10—C1116.1 (5)C16—C17—S1'—C150.8 (5)
C9—C10—C11—C14166.8 (4)C14—C15—S1'—C17179.2 (3)
C9—C10—C11—C1213.8 (5)S1—C15—S1'—C170.2 (4)
C14—C11—C12—O13.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O10.932.332.759 (4)108
N1—H1···O1i0.882.002.804 (4)151
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H12BrNOS
Mr358.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)13.8655 (5), 6.3081 (3), 17.4583 (7)
β (°) 103.666 (2)
V3)1483.76 (11)
Z4
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.21 × 0.17 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.558, 0.628
No. of measured, independent and
observed [I > 2σ(I)] reflections
12158, 4487, 1953
Rint0.044
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 0.85
No. of reflections4487
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.31

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O10.932.332.759 (4)107.7
N1—H1···O1i0.882.002.804 (4)150.7
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The authors thank the Solid State Unit, Indian Institute of Science, Bangalore, India, for the data collection and and Dr A. Chandramohan, Post Graduate and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, for his valuable suggestions.

References

First citationAbraham, D. J. (1975). The Catharanthus Alkaloids, edited by W. I. Taylor & N. R. Farnsworth, chs. 7 and 8. New York: Marcel Decker.  Google Scholar
First citationBergman, J. & Pelcman, B. (1990). Pure Appl. Chem. 62, 1967–1976.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBonesi, S. M., Crevatin, L. K. & Erra-Balsells, R. (2004). Photochem. Photobiol. Sci. 3, 381–388.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconcin, USA.  Google Scholar
First citationChakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.  CrossRef CAS Web of Science Google Scholar
First citationChakraborty, D. P., Das, K. C., Das, B. P. & Chowdhury, B. K. (1973). Trans. Bose Res. Inst. 38, 1–10.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKirtikar, K. R. & Basu, B. D. (1933). Indian Medicinal Plants, edited by L. M. Basu, 2nd ed., pp. 2131–2133. Allahabad: Central Council for Research in Ayurveda & Siddha (Deptt. of AYUSH, Min. of Health & Family Welfare), Govt. of India.  Google Scholar
First citationMagnus, P., Sear, N. L., Kim, C. S. & Vicker, N. (1992). J. Org. Chem. 57, 70–78.  CSD CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPhillipson, J. D. & Zenk, M. H. (1980). Indole and Biogenetically Related Alkaloids, ch 3. New York: Academic Press.  Google Scholar
First citationSavini, L., Chiasserini, L., Travagli, V., Pellerano, C., Novellino, E., Cosentino, S. & Pisano, M. B. (2004). Eur. J. Med. Chem. 39, 113–122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, chs. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds