organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-phenyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 26 October 2011; accepted 27 October 2011; online 5 November 2011)

In the title compound, C13H10ClNO, the dihedral angle between the two benzene rings is 59.6 (1)°. The crystal structure features N—H⋯O hydrogen bonds, which link the mol­ecules into C(4) chains running along the a axis.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bhat & Gowda (2000[Bhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279-284.]); Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o769.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]), on N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.]), on N-(ar­yl)-aryl­sulfonamides, see: Shetty & Gowda (2005[Shetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113-120.]) and on N-chloro-amides, Gowda & Weiss (1994[Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695-702.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10ClNO

  • Mr = 231.67

  • Triclinic, [P \overline 1]

  • a = 5.3934 (3) Å

  • b = 7.7679 (5) Å

  • c = 13.7831 (8) Å

  • α = 105.887 (5)°

  • β = 100.849 (4)°

  • γ = 90.023 (4)°

  • V = 544.64 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 K

  • 0.99 × 0.51 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.821, Tmax = 0.953

  • 8972 measured reflections

  • 3010 independent reflections

  • 2330 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.115

  • S = 1.07

  • 3010 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.39 3.1987 (16) 157
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

The amide moiety is the constituent of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2008; Saeed et al., 2010, N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylamides (Gowda & Weiss, 1994), in the present work, the crystal structure of N-(phenyl)-4-chlorobenzamide (I) has been determined (Fig.1).

In (I), the N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other, similar to that observed in N-(4-chlorophenyl)-benzamide (II)(Gowda et al., 2008).

The dihedral angle between the two benzene rings is 59.6 (1)°, compared to the value of 60.8 (1)° in (II).

The packing of molecules linked by N—H···O hydrogen bonds into infinite chains is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2008); Saeed et al. (2010), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloro-amides, Gowda & Weiss (1994).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Rod-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms were visible in difference maps and then treated as riding atoms with C–H distances of 0.93Å (C-aromatic) and N—H = 0.86 Å. The Uiso(H) values were set at 1.2 Ueq(C-aromatic, N).

Structure description top

The amide moiety is the constituent of many biologically significant compounds. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bhat & Gowda, 2000; Bowes et al., 2003; Gowda et al., 2008; Saeed et al., 2010, N-(aryl)-methanesulfonamides (Gowda et al., 2007), N-(aryl)-arylsulfonamides (Shetty & Gowda, 2005) and N-chloro-arylamides (Gowda & Weiss, 1994), in the present work, the crystal structure of N-(phenyl)-4-chlorobenzamide (I) has been determined (Fig.1).

In (I), the N—H and C=O bonds in the C—NH—C(O)—C segment are anti to each other, similar to that observed in N-(4-chlorophenyl)-benzamide (II)(Gowda et al., 2008).

The dihedral angle between the two benzene rings is 59.6 (1)°, compared to the value of 60.8 (1)° in (II).

The packing of molecules linked by N—H···O hydrogen bonds into infinite chains is shown in Fig. 2.

For the preparation of the title compound, see: Gowda et al. (2003). For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bhat & Gowda (2000); Bowes et al. (2003); Gowda et al. (2008); Saeed et al. (2010), on N-(aryl)-methanesulfonamides, see: Gowda et al. (2007), on N-(aryl)-arylsulfonamides, see: Shetty & Gowda (2005) and on N-chloro-amides, Gowda & Weiss (1994).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2002); software used to prepare material for publication: enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound. Molecular chains are generated by N—H···O hydrogen bonds which are shown by dashed lines.
4-Chloro-N-phenylbenzamide top
Crystal data top
C13H10ClNOZ = 2
Mr = 231.67F(000) = 240
Triclinic, P1Dx = 1.413 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.3934 (3) ÅCell parameters from 3954 reflections
b = 7.7679 (5) Åθ = 3.5–29.4°
c = 13.7831 (8) ŵ = 0.33 mm1
α = 105.887 (5)°T = 298 K
β = 100.849 (4)°Plate, colourless
γ = 90.023 (4)°0.99 × 0.51 × 0.15 mm
V = 544.64 (5) Å3
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3010 independent reflections
Radiation source: fine-focus sealed tube2330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 10.4340 pixels mm-1θmax = 29.4°, θmin = 3.5°
ω scansh = 77
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
k = 1010
Tmin = 0.821, Tmax = 0.953l = 1818
8972 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0498P)2 + 0.2195P]
where P = (Fo2 + 2Fc2)/3
3010 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C13H10ClNOγ = 90.023 (4)°
Mr = 231.67V = 544.64 (5) Å3
Triclinic, P1Z = 2
a = 5.3934 (3) ÅMo Kα radiation
b = 7.7679 (5) ŵ = 0.33 mm1
c = 13.7831 (8) ÅT = 298 K
α = 105.887 (5)°0.99 × 0.51 × 0.15 mm
β = 100.849 (4)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
3010 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
2330 reflections with I > 2σ(I)
Tmin = 0.821, Tmax = 0.953Rint = 0.013
8972 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
3010 reflectionsΔρmin = 0.38 e Å3
145 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived (Clark & Reid, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0813 (3)0.2427 (2)0.47100 (11)0.0338 (3)
C20.0923 (3)0.24248 (19)0.36321 (11)0.0309 (3)
C30.2913 (3)0.3259 (2)0.33873 (12)0.0354 (3)
H3A0.42790.38060.39020.042*
C40.2871 (3)0.3280 (2)0.23842 (12)0.0381 (3)
H4A0.41910.38490.22230.046*
C50.0845 (3)0.2446 (2)0.16262 (11)0.0368 (3)
C60.1146 (3)0.1601 (2)0.18473 (12)0.0394 (3)
H6A0.24940.10370.13280.047*
C70.1100 (3)0.1608 (2)0.28539 (12)0.0358 (3)
H7A0.24420.10580.30130.043*
C80.3529 (3)0.25180 (19)0.63918 (11)0.0302 (3)
C90.1937 (3)0.3348 (2)0.70443 (11)0.0352 (3)
H9A0.04660.38330.67870.042*
C100.2563 (3)0.3443 (2)0.80795 (12)0.0397 (3)
H10A0.15060.40010.85180.048*
C110.4737 (3)0.2720 (2)0.84716 (12)0.0421 (4)
H11A0.51440.27940.91690.050*
C120.6304 (3)0.1886 (2)0.78171 (13)0.0410 (4)
H12A0.77660.13920.80760.049*
C130.5711 (3)0.1780 (2)0.67819 (12)0.0352 (3)
H13A0.67710.12160.63460.042*
N10.3086 (2)0.24555 (17)0.53357 (9)0.0340 (3)
H1A0.43980.24330.50630.041*
O10.1215 (2)0.2392 (2)0.49853 (9)0.0507 (3)
Cl10.07987 (11)0.24911 (8)0.03678 (3)0.06247 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0306 (7)0.0405 (8)0.0314 (7)0.0001 (6)0.0075 (5)0.0109 (6)
C20.0292 (6)0.0351 (7)0.0299 (7)0.0041 (5)0.0073 (5)0.0105 (5)
C30.0301 (7)0.0422 (8)0.0342 (7)0.0018 (6)0.0043 (6)0.0126 (6)
C40.0367 (7)0.0430 (8)0.0397 (8)0.0003 (6)0.0129 (6)0.0161 (7)
C50.0436 (8)0.0413 (8)0.0284 (7)0.0086 (6)0.0109 (6)0.0121 (6)
C60.0364 (8)0.0465 (8)0.0317 (7)0.0011 (6)0.0025 (6)0.0080 (6)
C70.0294 (7)0.0439 (8)0.0347 (7)0.0020 (6)0.0066 (6)0.0116 (6)
C80.0285 (6)0.0340 (7)0.0292 (7)0.0019 (5)0.0058 (5)0.0106 (5)
C90.0306 (7)0.0427 (8)0.0339 (7)0.0052 (6)0.0082 (6)0.0121 (6)
C100.0376 (8)0.0496 (9)0.0334 (8)0.0020 (6)0.0131 (6)0.0101 (7)
C110.0410 (8)0.0565 (10)0.0313 (7)0.0044 (7)0.0053 (6)0.0177 (7)
C120.0319 (7)0.0517 (9)0.0427 (9)0.0034 (6)0.0031 (6)0.0217 (7)
C130.0301 (7)0.0414 (8)0.0368 (8)0.0041 (6)0.0095 (6)0.0132 (6)
N10.0285 (6)0.0470 (7)0.0293 (6)0.0034 (5)0.0081 (5)0.0135 (5)
O10.0287 (5)0.0897 (10)0.0361 (6)0.0018 (6)0.0085 (4)0.0204 (6)
Cl10.0798 (4)0.0789 (4)0.0331 (2)0.0003 (3)0.0155 (2)0.0199 (2)
Geometric parameters (Å, º) top
C1—O11.2257 (17)C8—C131.390 (2)
C1—N11.3558 (19)C8—C91.391 (2)
C1—C21.4976 (19)C8—N11.4173 (17)
C2—C71.389 (2)C9—C101.384 (2)
C2—C31.3933 (19)C9—H9A0.9300
C3—C41.383 (2)C10—C111.382 (2)
C3—H3A0.9300C10—H10A0.9300
C4—C51.380 (2)C11—C121.384 (2)
C4—H4A0.9300C11—H11A0.9300
C5—C61.382 (2)C12—C131.382 (2)
C5—Cl11.7398 (15)C12—H12A0.9300
C6—C71.382 (2)C13—H13A0.9300
C6—H6A0.9300N1—H1A0.8600
C7—H7A0.9300
O1—C1—N1123.61 (14)C13—C8—C9119.85 (13)
O1—C1—C2121.13 (13)C13—C8—N1117.54 (12)
N1—C1—C2115.26 (12)C9—C8—N1122.54 (13)
C7—C2—C3119.09 (13)C10—C9—C8119.35 (14)
C7—C2—C1118.05 (12)C10—C9—H9A120.3
C3—C2—C1122.82 (13)C8—C9—H9A120.3
C4—C3—C2120.48 (14)C11—C10—C9120.98 (14)
C4—C3—H3A119.8C11—C10—H10A119.5
C2—C3—H3A119.8C9—C10—H10A119.5
C5—C4—C3119.13 (14)C10—C11—C12119.37 (15)
C5—C4—H4A120.4C10—C11—H11A120.3
C3—C4—H4A120.4C12—C11—H11A120.3
C4—C5—C6121.55 (14)C13—C12—C11120.46 (14)
C4—C5—Cl1118.82 (12)C13—C12—H12A119.8
C6—C5—Cl1119.62 (12)C11—C12—H12A119.8
C7—C6—C5118.82 (14)C12—C13—C8119.98 (14)
C7—C6—H6A120.6C12—C13—H13A120.0
C5—C6—H6A120.6C8—C13—H13A120.0
C6—C7—C2120.92 (13)C1—N1—C8126.94 (12)
C6—C7—H7A119.5C1—N1—H1A116.5
C2—C7—H7A119.5C8—N1—H1A116.5
O1—C1—C2—C728.3 (2)C1—C2—C7—C6178.28 (14)
N1—C1—C2—C7151.19 (14)C13—C8—C9—C100.7 (2)
O1—C1—C2—C3149.28 (16)N1—C8—C9—C10176.47 (14)
N1—C1—C2—C331.2 (2)C8—C9—C10—C110.3 (2)
C7—C2—C3—C40.3 (2)C9—C10—C11—C120.2 (2)
C1—C2—C3—C4177.34 (14)C10—C11—C12—C130.3 (2)
C2—C3—C4—C50.7 (2)C11—C12—C13—C80.1 (2)
C3—C4—C5—C60.4 (2)C9—C8—C13—C120.6 (2)
C3—C4—C5—Cl1179.60 (12)N1—C8—C13—C12176.70 (13)
C4—C5—C6—C70.4 (2)O1—C1—N1—C82.5 (3)
Cl1—C5—C6—C7178.78 (12)C2—C1—N1—C8177.96 (13)
C5—C6—C7—C20.9 (2)C13—C8—N1—C1152.65 (15)
C3—C2—C7—C60.6 (2)C9—C8—N1—C130.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.393.1987 (16)157
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H10ClNO
Mr231.67
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)5.3934 (3), 7.7679 (5), 13.7831 (8)
α, β, γ (°)105.887 (5), 100.849 (4), 90.023 (4)
V3)544.64 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.99 × 0.51 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.821, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
8972, 3010, 2330
Rint0.013
(sin θ/λ)max1)0.690
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.07
No. of reflections3010
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2002), enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.393.1987 (16)157.2
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

LK and JK thank the Grant Agencies for their financial support (VEGA Grant Agency of Slovak Ministry of Education 1/0679/11; Research and Development Agency of Slovakia (APVV-0202–10) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer. VZR thanks the University Grants Commission, Government of India, New Delhi, for the award of an RFSMS research fellowship.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBhat, D. K. & Gowda, B. T. (2000). J. Indian Chem. Soc. 77, 279–284.  CAS Google Scholar
First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o769.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2005). Z. Naturforsch. Teil A, 60, 113–120.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds