organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-2-(phenyl­diazen­yl)pyridine

aInstitut für Organische Chemie, Universität Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany, and bInstitut für Anorganische Chemie, Universität Kiel, Otto-Hahn-Platz 6/7, 24118 Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de, rherges@oc.uni-kiel.de

(Received 1 November 2011; accepted 9 November 2011; online 12 November 2011)

In the title compound, C11H8ClN3, the azo group adopts a trans conformation and the dihedral angle between the six-membered rings is 15.47 (8)°.

Related literature

For background to this work, see: Thies et al. (2010[Thies, S., Bornholdt, C., Koehler, F., Sönnichsen, F. D., Naether, C., Tuczek, F. & Herges, R. (2010). Chem. Eur. J. 16, 10074-10083.], 2011[Thies, S., Sell, H., Schütt, C., Bornholdt, C., Näther, C., Tuczek, F. & Herges, R. (2011). J. Am. Chem. Soc. 133, 16243-16250.]); Venkataramani et al. (2011[Venkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, H. (2011). Science, 331, 445-448.]). For the structure of a bis­(5-chloro-2-(phenyl­azo)pyridine)­dichloro–ruthenium(II) complex, see: Hansongnern et al. (2008[Hansongnern, K., Sahavisit, L. & Pakawatchai, C. (2008). Anal. Sci. X-Ray Struct. Anal. Online. 24, x57-x58.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8ClN3

  • Mr = 217.65

  • Monoclinic, P 21 /c

  • a = 6.1136 (2) Å

  • b = 9.0940 (4) Å

  • c = 18.6839 (8) Å

  • β = 91.459 (3)°

  • V = 1038.43 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • 19329 measured reflections

  • 2818 independent reflections

  • 2456 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.117

  • S = 1.15

  • 2818 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

We recently reported about a change of the spin state by association/dissociation of photodissociable ligands (PDL's) at square planar Ni(II) porphyrine complexes (Thies et al. 2010, Thies et al. 2011, Venkataramani et al., 2011). Within this project the title compound, was obtained as an intermediate in the synthesis of 5-methoxy-2-phenylazopyridine which can be used as PDL. For the identification of this intermediate a structure determination was performed.

In the structure of the title compound, the 5-chloro-2-phenylazopyridine molecules, are not coplanar. Both 6-membered rings are twisted by 15.47 (8) °. The azo group is in a trans configuration and the torsion angle C1—N2—N3—C6 amounts to 178.5 (2) °). In the crystal structure the molecules exhibit a sandwich herringbone arrangement with neighbouring molecules stacked onto each other. The molecules are also linked by weak C—H···N interactions.

Related literature top

For background to this work, see: Thies et al. (2010, 2011); Venkataramani et al. (2011). For the structure of a bis(5-chloro-2-(phenylazo)pyridine)dichloro–ruthenium(II) complex, see: Hansongnern et al. (2008).

Experimental top

Synthesis of 5-Chloro-2-phenylazopyridine

A mixture of sodium hydroxide (12.0 ml of 25%), pyridine (8.00 ml) and 2-amino-5-chlorpyridine (15.6 mmol, 2.00 g) (Merck) was stirred at 80 °C. Nitrosobenzene (16.0 mmol, 1.71 g) dissolved in pyridine (60.0 ml) was added dropwise during a period of 45 min. The mixture was stirred for additional 30 min at 80 °C and stirred at RT for 72 h. The reaction mixture was extracted with toluene. The combined organic layer was dried over magnesium sulfate. After removal of the solvent, recrystallization with diethylether afforded red crystalls in 36% yield.

mp.: 84.5–87 °C

1H-NMR (600 MHz, 300 K, CDCl3, TMS): δ = 8.69 (d, 4J=2.4 Hz, 1H, 6-H), 8.04- 8.03 (m, 2H, 2`-H), 7.87 (dd, 4J=2.5 Hz, 3J=8.5 Hz, 1H, 4-H), 7.81 (d, 3J=8.5 Hz, 1H, 3-H), 7.53–7.56 (m, 3H, 3`-H, 4`-H) p.p.m.. 13C-NMR (150 MHz, 300 K, CDCl3, TMS): δ = 161.0 (C2), 152.3 (C10), 148.4 (C6), 138.1 (C4), 133.6 (C5), 132.5 (C40), 129.2 (C30), 123.7 (C20), 115.9 (C3) p.p.m.. MS (EI, 70 eV): m/z(%)= 217 (1) [M]+, 105 (89) [M—C5H3NCl]+. MS (CI, Isobutan): m/z(%)= 218 (100) [M+H]+. UV/Vis (Toluol): λ(max)(lg ε)= 315 nm (4.058), 448 nm (2.494).

Refinement top

The H atoms were located in difference map but were positioned with idealized geometry with C—H = 0.93Å and refined with isotropic displacement parameters (Uiso(H) = 1.2Ueq(C)) using a riding model.

Structure description top

We recently reported about a change of the spin state by association/dissociation of photodissociable ligands (PDL's) at square planar Ni(II) porphyrine complexes (Thies et al. 2010, Thies et al. 2011, Venkataramani et al., 2011). Within this project the title compound, was obtained as an intermediate in the synthesis of 5-methoxy-2-phenylazopyridine which can be used as PDL. For the identification of this intermediate a structure determination was performed.

In the structure of the title compound, the 5-chloro-2-phenylazopyridine molecules, are not coplanar. Both 6-membered rings are twisted by 15.47 (8) °. The azo group is in a trans configuration and the torsion angle C1—N2—N3—C6 amounts to 178.5 (2) °). In the crystal structure the molecules exhibit a sandwich herringbone arrangement with neighbouring molecules stacked onto each other. The molecules are also linked by weak C—H···N interactions.

For background to this work, see: Thies et al. (2010, 2011); Venkataramani et al. (2011). For the structure of a bis(5-chloro-2-(phenylazo)pyridine)dichloro–ruthenium(II) complex, see: Hansongnern et al. (2008).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : Crystal structure of the title compound with view in the direction of the crystallographic c axis.
5-Chloro-2-(phenyldiazenyl)pyridine top
Crystal data top
C11H8ClN3F(000) = 448
Mr = 217.65Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.1136 (2) ÅCell parameters from 23258 reflections
b = 9.0940 (4) Åθ = 2.2–29.2°
c = 18.6839 (8) ŵ = 0.33 mm1
β = 91.459 (3)°T = 293 K
V = 1038.43 (7) Å3Block, colourless
Z = 40.3 × 0.2 × 0.2 mm
Data collection top
Stoe IPDS-2
diffractometer
2456 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 29.2°, θmin = 2.2°
ω scansh = 78
19329 measured reflectionsk = 1212
2818 independent reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1607P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2818 reflectionsΔρmax = 0.22 e Å3
137 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C11H8ClN3V = 1038.43 (7) Å3
Mr = 217.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1136 (2) ŵ = 0.33 mm1
b = 9.0940 (4) ÅT = 293 K
c = 18.6839 (8) Å0.3 × 0.2 × 0.2 mm
β = 91.459 (3)°
Data collection top
Stoe IPDS-2
diffractometer
2456 reflections with I > 2σ(I)
19329 measured reflectionsRint = 0.028
2818 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.15Δρmax = 0.22 e Å3
2818 reflectionsΔρmin = 0.17 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.82419 (7)0.02057 (5)0.37109 (2)0.07091 (17)
C10.4709 (2)0.27818 (16)0.51393 (7)0.0521 (3)
C20.4706 (3)0.12003 (19)0.42028 (8)0.0610 (4)
H20.39500.06990.38400.073*
N10.3601 (2)0.20937 (16)0.46186 (7)0.0620 (3)
C30.6925 (2)0.09777 (16)0.42821 (7)0.0529 (3)
C40.8081 (2)0.17112 (19)0.48142 (9)0.0605 (4)
H40.95850.15910.48720.073*
C50.6949 (2)0.26232 (18)0.52564 (8)0.0586 (4)
H50.76660.31250.56270.070*
N20.3334 (2)0.37225 (14)0.55510 (7)0.0588 (3)
N30.4247 (2)0.41302 (15)0.61134 (7)0.0593 (3)
C60.2969 (3)0.51050 (16)0.65384 (8)0.0559 (3)
C70.3993 (3)0.5565 (2)0.71665 (9)0.0685 (4)
H70.53770.52110.72920.082*
C80.2973 (4)0.6544 (2)0.76071 (9)0.0773 (5)
H80.36720.68610.80270.093*
C90.0916 (4)0.7056 (2)0.74256 (10)0.0778 (5)
H90.02240.77210.77230.093*
C100.0123 (3)0.6581 (2)0.68026 (11)0.0750 (5)
H100.15230.69190.66860.090*
C110.0890 (3)0.56153 (19)0.63543 (9)0.0626 (4)
H110.01920.53070.59320.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0752 (3)0.0732 (3)0.0646 (3)0.0099 (2)0.00810 (19)0.00282 (19)
C10.0511 (7)0.0541 (7)0.0511 (7)0.0032 (6)0.0005 (6)0.0062 (6)
C20.0545 (8)0.0704 (9)0.0577 (8)0.0019 (7)0.0079 (6)0.0056 (7)
N10.0487 (6)0.0749 (8)0.0619 (7)0.0003 (6)0.0077 (5)0.0061 (6)
C30.0534 (7)0.0551 (7)0.0502 (7)0.0004 (6)0.0027 (6)0.0077 (6)
C40.0429 (7)0.0727 (9)0.0658 (9)0.0039 (6)0.0015 (6)0.0023 (7)
C50.0510 (7)0.0670 (9)0.0575 (8)0.0113 (6)0.0050 (6)0.0028 (7)
N20.0553 (7)0.0622 (7)0.0587 (7)0.0034 (6)0.0047 (5)0.0004 (6)
N30.0580 (7)0.0654 (7)0.0540 (7)0.0035 (6)0.0044 (5)0.0024 (6)
C60.0605 (8)0.0544 (8)0.0529 (7)0.0063 (6)0.0053 (6)0.0058 (6)
C70.0691 (10)0.0797 (11)0.0565 (8)0.0001 (8)0.0019 (7)0.0023 (8)
C80.0968 (14)0.0797 (12)0.0554 (9)0.0021 (10)0.0015 (9)0.0046 (8)
C90.1020 (14)0.0649 (10)0.0675 (10)0.0085 (10)0.0238 (10)0.0046 (8)
C100.0705 (10)0.0715 (11)0.0835 (12)0.0104 (8)0.0104 (9)0.0137 (9)
C110.0639 (9)0.0614 (9)0.0623 (9)0.0049 (7)0.0011 (7)0.0069 (7)
Geometric parameters (Å, º) top
Cl1—C31.7288 (15)N3—C61.435 (2)
C1—N11.3278 (19)C6—C71.381 (2)
C1—C51.389 (2)C6—C111.388 (2)
C1—N21.436 (2)C7—C81.373 (3)
C2—N11.322 (2)C7—H70.9300
C2—C31.376 (2)C8—C91.375 (3)
C2—H20.9300C8—H80.9300
C3—C41.377 (2)C9—C101.381 (3)
C4—C51.370 (2)C9—H90.9300
C4—H40.9300C10—C111.372 (3)
C5—H50.9300C10—H100.9300
N2—N31.2341 (17)C11—H110.9300
N1—C1—C5123.29 (15)C7—C6—C11120.09 (15)
N1—C1—N2112.26 (13)C7—C6—N3114.62 (14)
C5—C1—N2124.44 (13)C11—C6—N3125.27 (14)
N1—C2—C3123.00 (14)C8—C7—C6120.23 (17)
N1—C2—H2118.5C8—C7—H7119.9
C3—C2—H2118.5C6—C7—H7119.9
C2—N1—C1117.49 (13)C7—C8—C9119.86 (18)
C2—C3—C4119.51 (14)C7—C8—H8120.1
C2—C3—Cl1119.90 (12)C9—C8—H8120.1
C4—C3—Cl1120.59 (12)C8—C9—C10120.02 (18)
C5—C4—C3118.09 (14)C8—C9—H9120.0
C5—C4—H4121.0C10—C9—H9120.0
C3—C4—H4121.0C11—C10—C9120.62 (18)
C4—C5—C1118.60 (14)C11—C10—H10119.7
C4—C5—H5120.7C9—C10—H10119.7
C1—C5—H5120.7C10—C11—C6119.17 (16)
N3—N2—C1112.15 (13)C10—C11—H11120.4
N2—N3—C6114.60 (13)C6—C11—H11120.4

Experimental details

Crystal data
Chemical formulaC11H8ClN3
Mr217.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.1136 (2), 9.0940 (4), 18.6839 (8)
β (°) 91.459 (3)
V3)1038.43 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerStoe IPDS2
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19329, 2818, 2456
Rint0.028
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.15
No. of reflections2818
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.17

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft via SFB 677.

References

First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHansongnern, K., Sahavisit, L. & Pakawatchai, C. (2008). Anal. Sci. X-Ray Struct. Anal. Online. 24, x57–x58.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThies, S., Bornholdt, C., Koehler, F., Sönnichsen, F. D., Naether, C., Tuczek, F. & Herges, R. (2010). Chem. Eur. J. 16, 10074–10083.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationThies, S., Sell, H., Schütt, C., Bornholdt, C., Näther, C., Tuczek, F. & Herges, R. (2011). J. Am. Chem. Soc. 133, 16243–16250.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVenkataramani, S., Jana, U., Dommaschk, M., Sönnichsen, F. D., Tuczek, F. & Herges, H. (2011). Science, 331, 445–448.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds