organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Bi­phenyl-4-yl)[2-(4-methyl­benzo­yl)phen­yl]methanone

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 5 November 2011; accepted 8 November 2011; online 12 November 2011)

In the title compound, C27H20O2, the central benzene ring makes dihedral angles of 64.86 (7) and 70.35 (7)° with the methyl-substituted ring and the biphenyl ring system, respectively. The crystal packing is stabilized by inter­molecular C—H⋯O inter­actions, which link the mol­ecules into chains parallel to the b axis.

Related literature

For the uses and biological importance of diketones, see: Bennett et al. (1999[Bennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847-1852.]); Sato et al. (2008[Sato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. & Ando, A. (2008). Org. Lett. 10, 2405-2408.]). For applications of biphenyl derivatives, see: Kucybala & Wrzyszczynski (2002[Kucybala, K. & Wrzyszczynski, A. (2002). J. Photochem. Photobiol. A, 153, 109-112.]). For related structures, see: Narayanan et al. (2011[Narayanan, P., Sethusankar, K., Nandakumar, M. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2120.]); Saeed et al. (2010[Saeed, A., Samra, S. A., Irfan, M. & Bolte, M. (2010). Acta Cryst. E66, o926.]).

[Scheme 1]

Experimental

Crystal data
  • C27H20O2

  • Mr = 376.43

  • Monoclinic, P 21 /c

  • a = 22.2591 (5) Å

  • b = 7.7624 (2) Å

  • c = 11.4312 (2) Å

  • β = 97.454 (1)°

  • V = 1958.44 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 18479 measured reflections

  • 4860 independent reflections

  • 3695 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.147

  • S = 1.01

  • 4860 reflections

  • 264 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯01i 0.93 2.57 3.4196 (18) 152
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Various biphenyl derivatives are used in the synthesis of pharmaceuticals, antifungal agents like bifonazole, optical brightening agents, dyes and polychlorinated biphenyls (PCBs). PCBs are used as heat-transfer agents, as electric insulators and are environmental pollutants causing carcinogenesis (Kucybala & Wrzyszczynski, 2002). Diketones are popular in organic synthesis for their applications in biology and medicine. They are known to exhibit antioxidants, antitumour and antibacterial activities (Bennett et al.,1999). They are also key intermediates in the preparation of various heterocyclic compounds (Sato et al., 2008).

X-ray analysis confirms the molecular structure and atom connectivity of the title compound as illustrated in the Fig. 1. The central phenyl (C14–C19) ring makes dihedral angles of 64.86 (7)° and 70.35 (7)° with the methyl substituted phenyl ring (C21–C26) and the biphenyl ring system (C1–C12), respectively. The keto atoms O1 and O2 significantly deviate from the central phenyl ring (C14–C19) by –0.9393 (11)Å and 0.8857 (11)Å, respectively. The central phenyl ring makes dihedral angles of 57.16 (5)° and 47.51 (6)° with the ketone groups (C10/C13/C14/O1) and (C19/C20/C21/O2), respectively. The title compound exhibits structural similarities with the already reported related structure (Narayanan et al., 2011).

The crystal packing is stabilized by C—H···O intermolecular interaction (Table 1). The C16—H16···O1i interaction generates a C6 chain parallel to b axis (symmetry code: x, y-1, z). The packing of the title compound is shown in Fig. 2.

Related literature top

For the uses and biological importance of diketones, see: Bennett et al. (1999); Sato et al. (2008). For applications of biphenyl derivatives, see: Kucybala & Wrzyszczynski (2002). For related structures, see: Narayanan et al. (2011); Saeed et al. (2010).

Experimental top

The furan (1 g) was dissolved in THF. The weighed lead tetracetone (1.52 g, 1520 mmol) was added to the furan. Then it was refluxed at 343 K for 0.5 h. The reaction mixture was analyzed by TLC. Then the usual workup was done with brine solution and CHCl3 followed by column chromatography (10% 10% AcOEt/hexane) which lead to the solution of the pure compound. Single crystals suitable for X–ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.93Å to 0.96Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for the methyl group and Uiso(H) = 1.2Ueq(C) for other H atoms.

Structure description top

Various biphenyl derivatives are used in the synthesis of pharmaceuticals, antifungal agents like bifonazole, optical brightening agents, dyes and polychlorinated biphenyls (PCBs). PCBs are used as heat-transfer agents, as electric insulators and are environmental pollutants causing carcinogenesis (Kucybala & Wrzyszczynski, 2002). Diketones are popular in organic synthesis for their applications in biology and medicine. They are known to exhibit antioxidants, antitumour and antibacterial activities (Bennett et al.,1999). They are also key intermediates in the preparation of various heterocyclic compounds (Sato et al., 2008).

X-ray analysis confirms the molecular structure and atom connectivity of the title compound as illustrated in the Fig. 1. The central phenyl (C14–C19) ring makes dihedral angles of 64.86 (7)° and 70.35 (7)° with the methyl substituted phenyl ring (C21–C26) and the biphenyl ring system (C1–C12), respectively. The keto atoms O1 and O2 significantly deviate from the central phenyl ring (C14–C19) by –0.9393 (11)Å and 0.8857 (11)Å, respectively. The central phenyl ring makes dihedral angles of 57.16 (5)° and 47.51 (6)° with the ketone groups (C10/C13/C14/O1) and (C19/C20/C21/O2), respectively. The title compound exhibits structural similarities with the already reported related structure (Narayanan et al., 2011).

The crystal packing is stabilized by C—H···O intermolecular interaction (Table 1). The C16—H16···O1i interaction generates a C6 chain parallel to b axis (symmetry code: x, y-1, z). The packing of the title compound is shown in Fig. 2.

For the uses and biological importance of diketones, see: Bennett et al. (1999); Sato et al. (2008). For applications of biphenyl derivatives, see: Kucybala & Wrzyszczynski (2002). For related structures, see: Narayanan et al. (2011); Saeed et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down b axis, showing the hydrogen bonds.
(Biphenyl-4-yl)[2-(4-methylbenzoyl)phenyl]methanone top
Crystal data top
C27H20O2F(000) = 792
Mr = 376.43Dx = 1.277 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4860 reflections
a = 22.2591 (5) Åθ = 1.9–28.3°
b = 7.7624 (2) ŵ = 0.08 mm1
c = 11.4312 (2) ÅT = 293 K
β = 97.454 (1)°Block, colourless
V = 1958.44 (8) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3695 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 28.3°, θmin = 1.9°
ω and φ scansh = 2929
18479 measured reflectionsk = 1010
4860 independent reflectionsl = 1415
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.147 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.5102P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.030
4860 reflectionsΔρmax = 0.26 e Å3
264 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0107 (16)
Crystal data top
C27H20O2V = 1958.44 (8) Å3
Mr = 376.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 22.2591 (5) ŵ = 0.08 mm1
b = 7.7624 (2) ÅT = 293 K
c = 11.4312 (2) Å0.20 × 0.20 × 0.20 mm
β = 97.454 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3695 reflections with I > 2σ(I)
18479 measured reflectionsRint = 0.032
4860 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.01Δρmax = 0.26 e Å3
4860 reflectionsΔρmin = 0.20 e Å3
264 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.28534 (5)0.38124 (13)0.65595 (10)0.0506 (3)
C130.24874 (6)0.27565 (17)0.61339 (11)0.0377 (3)
O20.28106 (5)0.38387 (14)0.38609 (10)0.0544 (3)
C140.26900 (5)0.11095 (16)0.56107 (12)0.0375 (3)
C70.05660 (6)0.33333 (17)0.61684 (12)0.0392 (3)
C200.32077 (6)0.27867 (17)0.41439 (12)0.0409 (3)
C210.38428 (6)0.30892 (17)0.39267 (12)0.0405 (3)
C100.18236 (6)0.29702 (17)0.61430 (11)0.0386 (3)
C190.30593 (6)0.11233 (17)0.47073 (13)0.0410 (3)
C40.01000 (6)0.34472 (17)0.62034 (12)0.0404 (3)
C180.32434 (7)0.0436 (2)0.42671 (16)0.0544 (4)
H180.34810.04380.36550.065*
C110.14137 (7)0.2168 (2)0.53081 (13)0.0527 (4)
H110.15540.14890.47310.063*
C90.16008 (7)0.4010 (2)0.69754 (14)0.0507 (4)
H90.18680.46020.75260.061*
C150.25338 (6)0.04573 (18)0.60771 (14)0.0472 (3)
H150.22930.04720.66840.057*
C250.45437 (7)0.4572 (2)0.28431 (14)0.0530 (4)
H250.46100.53220.22380.064*
C220.43345 (7)0.2315 (2)0.46015 (13)0.0482 (3)
H220.42680.15410.51920.058*
C230.49216 (7)0.2685 (2)0.44031 (15)0.0531 (4)
H230.52450.21700.48730.064*
C170.30771 (8)0.1976 (2)0.47294 (18)0.0609 (5)
H170.31980.30090.44210.073*
C80.09836 (7)0.4172 (2)0.69900 (14)0.0536 (4)
H80.08430.48600.75630.064*
C260.39563 (7)0.4241 (2)0.30508 (13)0.0485 (3)
H260.36350.47930.26010.058*
C240.50361 (7)0.3812 (2)0.35152 (14)0.0497 (4)
C120.07980 (7)0.2361 (2)0.53183 (14)0.0544 (4)
H120.05320.18220.47370.065*
C160.27311 (7)0.19908 (19)0.56502 (17)0.0573 (4)
H160.26320.30310.59800.069*
C50.05078 (8)0.2644 (3)0.53690 (18)0.0706 (5)
H50.03630.20270.47660.085*
C30.03413 (8)0.4333 (3)0.70758 (17)0.0674 (5)
H30.00820.48830.76630.081*
C10.13564 (7)0.3628 (2)0.62571 (17)0.0599 (4)
H10.17730.37000.62690.072*
C20.09621 (8)0.4423 (3)0.7099 (2)0.0786 (6)
H20.11120.50360.76980.094*
C270.56713 (8)0.4206 (3)0.3272 (2)0.0718 (5)
H27A0.57890.33940.27110.108*
H27B0.59440.41260.39930.108*
H27C0.56850.53510.29580.108*
C60.11250 (8)0.2728 (3)0.54021 (19)0.0753 (6)
H60.13860.21590.48280.090*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0451 (6)0.0452 (6)0.0626 (7)0.0084 (4)0.0114 (5)0.0064 (5)
C130.0380 (6)0.0378 (7)0.0384 (6)0.0015 (5)0.0089 (5)0.0035 (5)
O20.0517 (6)0.0479 (6)0.0665 (7)0.0115 (5)0.0188 (5)0.0113 (5)
C140.0300 (6)0.0359 (6)0.0466 (7)0.0011 (5)0.0052 (5)0.0024 (5)
C70.0373 (6)0.0397 (7)0.0413 (7)0.0034 (5)0.0073 (5)0.0015 (5)
C200.0451 (7)0.0375 (7)0.0421 (7)0.0028 (6)0.0133 (5)0.0010 (5)
C210.0432 (7)0.0384 (7)0.0417 (7)0.0007 (6)0.0122 (5)0.0009 (5)
C100.0369 (6)0.0393 (7)0.0405 (6)0.0019 (5)0.0087 (5)0.0024 (5)
C190.0366 (6)0.0360 (7)0.0517 (8)0.0013 (5)0.0108 (6)0.0005 (5)
C40.0383 (7)0.0379 (7)0.0456 (7)0.0037 (5)0.0074 (5)0.0027 (5)
C180.0524 (9)0.0432 (8)0.0707 (10)0.0056 (7)0.0201 (7)0.0062 (7)
C110.0422 (7)0.0691 (10)0.0469 (8)0.0090 (7)0.0060 (6)0.0192 (7)
C90.0409 (7)0.0565 (9)0.0555 (8)0.0048 (6)0.0091 (6)0.0179 (7)
C150.0370 (7)0.0426 (8)0.0625 (9)0.0052 (6)0.0077 (6)0.0080 (6)
C250.0565 (9)0.0518 (9)0.0531 (8)0.0110 (7)0.0160 (7)0.0069 (7)
C220.0509 (8)0.0487 (8)0.0464 (7)0.0034 (6)0.0116 (6)0.0068 (6)
C230.0450 (8)0.0567 (9)0.0574 (9)0.0049 (7)0.0057 (6)0.0004 (7)
C170.0544 (9)0.0353 (8)0.0933 (13)0.0058 (7)0.0102 (9)0.0072 (8)
C80.0440 (8)0.0611 (9)0.0576 (9)0.0001 (7)0.0135 (7)0.0221 (7)
C260.0485 (8)0.0493 (8)0.0478 (8)0.0024 (6)0.0067 (6)0.0075 (6)
C240.0465 (8)0.0480 (8)0.0568 (9)0.0062 (6)0.0151 (6)0.0105 (7)
C120.0401 (7)0.0729 (11)0.0483 (8)0.0061 (7)0.0011 (6)0.0209 (7)
C160.0465 (8)0.0344 (7)0.0893 (12)0.0049 (6)0.0021 (8)0.0105 (7)
C50.0442 (9)0.0904 (14)0.0785 (12)0.0044 (9)0.0123 (8)0.0382 (11)
C30.0443 (8)0.0872 (13)0.0711 (11)0.0035 (8)0.0091 (8)0.0318 (10)
C10.0381 (7)0.0653 (10)0.0778 (11)0.0021 (7)0.0130 (7)0.0006 (9)
C20.0476 (9)0.0999 (16)0.0911 (14)0.0064 (10)0.0200 (9)0.0371 (12)
C270.0503 (9)0.0731 (12)0.0956 (14)0.0116 (9)0.0233 (9)0.0098 (11)
C60.0417 (9)0.0968 (15)0.0863 (13)0.0110 (9)0.0047 (8)0.0311 (12)
Geometric parameters (Å, º) top
O1—C131.2122 (16)C25—C261.383 (2)
C13—C101.4881 (18)C25—C241.386 (2)
C13—C141.5052 (18)C25—H250.9300
O2—C201.2159 (17)C22—C231.385 (2)
C14—C151.3901 (18)C22—H220.9300
C14—C191.4009 (19)C23—C241.388 (2)
C7—C121.3825 (19)C23—H230.9300
C7—C81.394 (2)C17—C161.383 (3)
C7—C41.4908 (18)C17—H170.9300
C20—C211.4854 (19)C8—H80.9300
C20—C191.4987 (19)C26—H260.9300
C21—C261.3897 (19)C24—C271.507 (2)
C21—C221.391 (2)C12—H120.9300
C10—C111.380 (2)C16—H160.9300
C10—C91.3878 (19)C5—C61.381 (2)
C19—C181.3929 (19)C5—H50.9300
C4—C31.376 (2)C3—C21.387 (2)
C4—C51.378 (2)C3—H30.9300
C18—C171.377 (2)C1—C61.356 (3)
C18—H180.9300C1—C21.363 (3)
C11—C121.380 (2)C1—H10.9300
C11—H110.9300C2—H20.9300
C9—C81.382 (2)C27—H27A0.9600
C9—H90.9300C27—H27B0.9600
C15—C161.380 (2)C27—H27C0.9600
C15—H150.9300C6—H60.9300
O1—C13—C10122.55 (12)C22—C23—C24121.14 (15)
O1—C13—C14120.89 (12)C22—C23—H23119.4
C10—C13—C14116.52 (11)C24—C23—H23119.4
C15—C14—C19119.29 (12)C18—C17—C16120.25 (14)
C15—C14—C13119.20 (12)C18—C17—H17119.9
C19—C14—C13121.41 (11)C16—C17—H17119.9
C12—C7—C8116.82 (12)C9—C8—C7121.77 (13)
C12—C7—C4120.98 (12)C9—C8—H8119.1
C8—C7—C4122.19 (12)C7—C8—H8119.1
O2—C20—C21121.61 (13)C25—C26—C21120.51 (14)
O2—C20—C19119.99 (12)C25—C26—H26119.7
C21—C20—C19118.39 (12)C21—C26—H26119.7
C26—C21—C22118.29 (13)C25—C24—C23117.80 (14)
C26—C21—C20119.21 (13)C25—C24—C27120.31 (16)
C22—C21—C20122.44 (12)C23—C24—C27121.89 (16)
C11—C10—C9118.26 (12)C11—C12—C7121.81 (13)
C11—C10—C13120.85 (12)C11—C12—H12119.1
C9—C10—C13120.87 (12)C7—C12—H12119.1
C18—C19—C14119.20 (13)C15—C16—C17119.75 (14)
C18—C19—C20120.14 (12)C15—C16—H16120.1
C14—C19—C20120.42 (11)C17—C16—H16120.1
C3—C4—C5116.35 (14)C4—C5—C6121.87 (16)
C3—C4—C7122.13 (13)C4—C5—H5119.1
C5—C4—C7121.51 (13)C6—C5—H5119.1
C17—C18—C19120.63 (15)C4—C3—C2121.48 (16)
C17—C18—H18119.7C4—C3—H3119.3
C19—C18—H18119.7C2—C3—H3119.3
C12—C11—C10120.89 (13)C6—C1—C2118.16 (15)
C12—C11—H11119.6C6—C1—H1120.9
C10—C11—H11119.6C2—C1—H1120.9
C8—C9—C10120.36 (13)C1—C2—C3121.03 (17)
C8—C9—H9119.8C1—C2—H2119.5
C10—C9—H9119.8C3—C2—H2119.5
C16—C15—C14120.81 (14)C24—C27—H27A109.5
C16—C15—H15119.6C24—C27—H27B109.5
C14—C15—H15119.6H27A—C27—H27B109.5
C26—C25—C24121.53 (14)C24—C27—H27C109.5
C26—C25—H25119.2H27A—C27—H27C109.5
C24—C25—H25119.2H27B—C27—H27C109.5
C23—C22—C21120.71 (14)C1—C6—C5121.10 (17)
C23—C22—H22119.6C1—C6—H6119.4
C21—C22—H22119.6C5—C6—H6119.4
O1—C13—C14—C15120.10 (15)C19—C14—C15—C160.9 (2)
C10—C13—C14—C1557.39 (16)C13—C14—C15—C16177.50 (13)
O1—C13—C14—C1956.44 (18)C26—C21—C22—C230.0 (2)
C10—C13—C14—C19126.07 (13)C20—C21—C22—C23177.29 (14)
O2—C20—C21—C2622.7 (2)C21—C22—C23—C241.1 (2)
C19—C20—C21—C26156.20 (13)C19—C18—C17—C160.9 (3)
O2—C20—C21—C22154.55 (15)C10—C9—C8—C71.1 (3)
C19—C20—C21—C2226.53 (19)C12—C7—C8—C91.5 (2)
O1—C13—C10—C11155.07 (15)C4—C7—C8—C9177.69 (15)
C14—C13—C10—C1127.48 (19)C24—C25—C26—C211.8 (2)
O1—C13—C10—C923.5 (2)C22—C21—C26—C251.4 (2)
C14—C13—C10—C9153.91 (13)C20—C21—C26—C25178.82 (13)
C15—C14—C19—C182.3 (2)C26—C25—C24—C230.7 (2)
C13—C14—C19—C18178.87 (13)C26—C25—C24—C27179.65 (16)
C15—C14—C19—C20176.73 (12)C22—C23—C24—C250.8 (2)
C13—C14—C19—C206.7 (2)C22—C23—C24—C27178.89 (15)
O2—C20—C19—C18129.29 (16)C10—C11—C12—C71.1 (3)
C21—C20—C19—C1849.65 (19)C8—C7—C12—C112.6 (3)
O2—C20—C19—C1445.1 (2)C4—C7—C12—C11176.60 (15)
C21—C20—C19—C14136.01 (13)C14—C15—C16—C171.5 (2)
C12—C7—C4—C3176.57 (17)C18—C17—C16—C152.4 (3)
C8—C7—C4—C32.6 (2)C3—C4—C5—C60.3 (3)
C12—C7—C4—C52.4 (2)C7—C4—C5—C6179.32 (18)
C8—C7—C4—C5178.45 (17)C5—C4—C3—C20.8 (3)
C14—C19—C18—C171.5 (2)C7—C4—C3—C2179.81 (18)
C20—C19—C18—C17175.88 (15)C6—C1—C2—C30.7 (3)
C9—C10—C11—C121.6 (2)C4—C3—C2—C10.3 (4)
C13—C10—C11—C12179.78 (15)C2—C1—C6—C51.2 (3)
C11—C10—C9—C82.6 (2)C4—C5—C6—C10.7 (4)
C13—C10—C9—C8178.71 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···01i0.932.573.4196 (18)152
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC27H20O2
Mr376.43
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)22.2591 (5), 7.7624 (2), 11.4312 (2)
β (°) 97.454 (1)
V3)1958.44 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18479, 4860, 3695
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.147, 1.01
No. of reflections4860
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···01i0.932.573.4196 (18)152
Symmetry code: (i) x, y1, z.
 

Acknowledgements

VS and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the UGC SAP for financial support.

References

First citationBennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKucybala, K. & Wrzyszczynski, A. (2002). J. Photochem. Photobiol. A, 153, 109–112.  Web of Science CrossRef CAS Google Scholar
First citationNarayanan, P., Sethusankar, K., Nandakumar, M. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaeed, A., Samra, S. A., Irfan, M. & Bolte, M. (2010). Acta Cryst. E66, o926.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. & Ando, A. (2008). Org. Lett. 10, 2405–2408.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds