organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 5-chloro-2-nitro­benzoate

aTianjin University of Commerce, Tianjin 300134, People's Republic of China, and bTianjin Institute of Pharmaceutical Research, Tianjin, 300193, People's Republic of China
*Correspondence e-mail: lyshu@tjcu.edu.cn

(Received 29 September 2011; accepted 24 October 2011; online 2 November 2011)

In the title compound, C8H6ClNO4, the nitro and acet­oxy groups attached to the benzene ring at neighbouring positions are twisted from its plane by 29.4 (1) and 49.7 (1)°, respectively. In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules into layers parallel to (101). The crystal packing exhibits short inter­molecular C⋯O distances of 2.925 (3) Å.

Related literature

The title compound is an inter­mediate of the oral vasopressin V2-receptor antagonist tolvaptan. For applications of tolvaptan, see: Nemerovski & Hutchinson (2010[Nemerovski, C. & Hutchinson, D. J. (2010). Clin. Ther. 32, 1015-1032.]). For the synthesis of the title compound, see: Kondo et al. (1999[Kondo, K., Ogawa, H., Yamashita, H. & Miyamoto, H. (1999). Bioorg. Med. Chem. 7, 1743-1754.]). For a related structure, see: Liu et al. (2008[Liu, B.-N., Tang, S.-G., Li, H.-Y., Xu, Y.-M. & Guo, C. (2008). Acta Cryst. E64, o456.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6ClNO4

  • Mr = 215.59

  • Monoclinic, P 21 /n

  • a = 4.2616 (9) Å

  • b = 22.470 (5) Å

  • c = 9.3894 (19) Å

  • β = 90.64 (3)°

  • V = 899.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 113 K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.937, Tmax = 0.952

  • 5007 measured reflections

  • 1564 independent reflections

  • 1400 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.116

  • S = 1.07

  • 1564 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.53 3.206 (3) 130
C8—H8B⋯O3ii 0.96 2.47 3.200 (3) 132
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tolvaptan is an oral nonpeptide selective vasopressin V2-receptor antagonist indicated for the treatment of clinically relevant hypervolemic or euvolemic hyponatremia associated with heart failure, cirrhosis, or syndrome of inappropriate antidiuretic hormone (Nemerovski et al., 2010). Now, we present the crystal structure of the title compound (I) (Kondo et al., 1999), an intermediate of Tolvaptan.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the analougs (Liu et al., 2008). The acetoxy and nitro groups attached to the benzene ring at neighbouring positions are twisted from its plane at 49.7 (1) and 29.4 (1)°, respectively. In the crystal structure, weak C—H···O interactions (Table 1) link molecules into layers parallel to (101) plane. Short intermolecular C···O distances of 2.925 (3) Å observed in the structure.

Related literature top

The title compound is an intermediate of the oral vasopressin V2-receptor antagonist tolvaptan. For applications of tolvaptan, see: Nemerovski & Hutchinson (2010). For the synthesis of the title compound, see: Kondo et al. (1999). For a related structure, see: Liu et al. (2008).

Experimental top

To a stirred solution of the 5-chloro-2-nitrobenzoic acid (10 g, 50 mmol) in acetone(60 ml) was added K2CO3 (10.3 g, 74 mmol) and Me2SO4 (6.2 ml, 64.7 mmol). The mixture was heated at reflux for 30 min. The reaction mixture was then poured into an ice-water bath and extracted with ethyl acetate. The organic layer was separated and dried over MgSO4. then the filtrate was concentrate under reduced pressure to afford the methyl ester as a white solid. Pure compound (I) was obstained by crystallizing from methanol. Crystals of (I) suitable for X-ray diffraction were obstained by slow evaporation of an methanol solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 - 0.99 Å, and Uiso(H) = 1.2 or 1.5 Ueq.

Structure description top

Tolvaptan is an oral nonpeptide selective vasopressin V2-receptor antagonist indicated for the treatment of clinically relevant hypervolemic or euvolemic hyponatremia associated with heart failure, cirrhosis, or syndrome of inappropriate antidiuretic hormone (Nemerovski et al., 2010). Now, we present the crystal structure of the title compound (I) (Kondo et al., 1999), an intermediate of Tolvaptan.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the analougs (Liu et al., 2008). The acetoxy and nitro groups attached to the benzene ring at neighbouring positions are twisted from its plane at 49.7 (1) and 29.4 (1)°, respectively. In the crystal structure, weak C—H···O interactions (Table 1) link molecules into layers parallel to (101) plane. Short intermolecular C···O distances of 2.925 (3) Å observed in the structure.

The title compound is an intermediate of the oral vasopressin V2-receptor antagonist tolvaptan. For applications of tolvaptan, see: Nemerovski & Hutchinson (2010). For the synthesis of the title compound, see: Kondo et al. (1999). For a related structure, see: Liu et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.
Methyl 5-chloro-2-nitrobenzoate top
Crystal data top
C8H6ClNO4F(000) = 440
Mr = 215.59Dx = 1.593 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2662 reflections
a = 4.2616 (9) Åθ = 1.8–27.5°
b = 22.470 (5) ŵ = 0.41 mm1
c = 9.3894 (19) ÅT = 113 K
β = 90.64 (3)°Prism, colorless
V = 899.1 (3) Å30.16 × 0.14 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
1564 independent reflections
Radiation source: rotating anode1400 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.031
ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 45
Tmin = 0.937, Tmax = 0.952k = 2620
5007 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.3934P]
where P = (Fo2 + 2Fc2)/3
1564 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C8H6ClNO4V = 899.1 (3) Å3
Mr = 215.59Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.2616 (9) ŵ = 0.41 mm1
b = 22.470 (5) ÅT = 113 K
c = 9.3894 (19) Å0.16 × 0.14 × 0.12 mm
β = 90.64 (3)°
Data collection top
Rigaku Saturn
diffractometer
1564 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1400 reflections with I > 2σ(I)
Tmin = 0.937, Tmax = 0.952Rint = 0.031
5007 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.07Δρmax = 0.27 e Å3
1564 reflectionsΔρmin = 0.27 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.83432 (12)0.09111 (2)1.09984 (5)0.0272 (2)
O10.1416 (4)0.05968 (8)0.42100 (17)0.0423 (5)
O20.1876 (4)0.12282 (9)0.48951 (17)0.0409 (5)
O30.1575 (4)0.22747 (7)0.57507 (16)0.0364 (4)
O40.0357 (3)0.22861 (6)0.78230 (15)0.0263 (4)
N10.0553 (5)0.09256 (8)0.51178 (19)0.0282 (5)
C10.2555 (5)0.09452 (9)0.6557 (2)0.0224 (5)
C20.4194 (5)0.04329 (9)0.7038 (2)0.0273 (5)
H20.41480.00920.64780.033*
C30.6002 (5)0.04214 (9)0.8420 (2)0.0263 (5)
H30.70410.00770.87070.032*
C40.6111 (5)0.09270 (8)0.9265 (2)0.0215 (5)
C50.4463 (5)0.14420 (9)0.8781 (2)0.0224 (5)
H50.45190.17830.93420.027*
C60.2642 (5)0.14566 (9)0.7406 (2)0.0218 (5)
C70.1199 (5)0.20438 (9)0.6857 (2)0.0228 (5)
C80.1662 (6)0.28749 (10)0.7466 (2)0.0323 (5)
H8A0.00170.31570.73730.049*
H8B0.30390.30010.82090.049*
H8C0.28140.28500.65840.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0369 (4)0.0243 (3)0.0204 (3)0.0011 (2)0.0024 (2)0.00056 (18)
O10.0641 (13)0.0388 (10)0.0241 (9)0.0017 (8)0.0011 (8)0.0105 (7)
O20.0322 (10)0.0596 (12)0.0308 (9)0.0044 (8)0.0003 (7)0.0013 (8)
O30.0481 (10)0.0359 (9)0.0256 (9)0.0124 (7)0.0201 (7)0.0125 (7)
O40.0334 (9)0.0244 (8)0.0215 (8)0.0032 (6)0.0139 (6)0.0031 (6)
N10.0335 (11)0.0305 (10)0.0206 (10)0.0064 (8)0.0023 (8)0.0002 (8)
C10.0231 (11)0.0270 (11)0.0174 (11)0.0047 (8)0.0048 (8)0.0011 (8)
C20.0352 (12)0.0223 (10)0.0246 (11)0.0058 (9)0.0087 (9)0.0063 (8)
C30.0331 (12)0.0209 (10)0.0252 (12)0.0008 (9)0.0071 (9)0.0024 (8)
C40.0255 (11)0.0217 (10)0.0176 (10)0.0033 (8)0.0055 (8)0.0018 (8)
C50.0280 (11)0.0215 (10)0.0178 (10)0.0035 (8)0.0100 (8)0.0003 (8)
C60.0229 (11)0.0252 (10)0.0175 (10)0.0030 (8)0.0099 (8)0.0020 (8)
C70.0242 (10)0.0258 (10)0.0186 (11)0.0017 (8)0.0049 (8)0.0004 (8)
C80.0416 (14)0.0250 (11)0.0307 (13)0.0076 (10)0.0123 (10)0.0038 (9)
Geometric parameters (Å, º) top
Cl1—C41.876 (2)C2—H20.9300
O1—N11.189 (2)C3—C41.386 (3)
O2—N11.254 (3)C3—H30.9300
O3—C71.174 (2)C4—C51.425 (3)
O4—C71.254 (2)C5—C61.500 (3)
O4—C81.472 (3)C5—H50.9300
N1—C11.590 (3)C6—C71.542 (3)
C1—C61.399 (3)C8—H8A0.9600
C1—C21.418 (3)C8—H8B0.9600
C2—C31.502 (3)C8—H8C0.9600
C7—O4—C8115.29 (16)C4—C5—C6122.73 (18)
O1—N1—O2118.6 (2)C4—C5—H5118.6
O1—N1—C1117.30 (18)C6—C5—H5118.6
O2—N1—C1124.10 (17)C1—C6—C5118.89 (18)
C6—C1—C2118.4 (2)C1—C6—C7120.30 (18)
C6—C1—N1121.16 (18)C5—C6—C7120.47 (17)
C2—C1—N1120.40 (17)O3—C7—O4121.8 (2)
C1—C2—C3122.38 (18)O3—C7—C6128.04 (18)
C1—C2—H2118.8O4—C7—C6110.01 (16)
C3—C2—H2118.8O4—C8—H8A109.5
C4—C3—C2119.62 (19)O4—C8—H8B109.5
C4—C3—H3120.2H8A—C8—H8B109.5
C2—C3—H3120.2O4—C8—H8C109.5
C3—C4—C5118.0 (2)H8A—C8—H8C109.5
C3—C4—Cl1119.63 (16)H8B—C8—H8C109.5
C5—C4—Cl1122.36 (15)
O1—N1—C1—C6152.58 (19)N1—C1—C6—C5177.54 (15)
O2—N1—C1—C628.3 (3)C2—C1—C6—C7173.45 (17)
O1—N1—C1—C230.1 (3)N1—C1—C6—C79.2 (3)
O2—N1—C1—C2149.0 (2)C4—C5—C6—C10.1 (3)
C6—C1—C2—C30.1 (3)C4—C5—C6—C7173.43 (18)
N1—C1—C2—C3177.31 (16)C8—O4—C7—O30.0 (3)
C1—C2—C3—C40.4 (3)C8—O4—C7—C6175.57 (17)
C2—C3—C4—C50.4 (3)C1—C6—C7—O348.6 (3)
C2—C3—C4—Cl1179.53 (14)C5—C6—C7—O3124.6 (2)
C3—C4—C5—C60.1 (3)C1—C6—C7—O4136.20 (19)
Cl1—C4—C5—C6179.27 (14)C5—C6—C7—O450.6 (2)
C2—C1—C6—C50.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.533.206 (3)130
C8—H8B···O3ii0.962.473.200 (3)132
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H6ClNO4
Mr215.59
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)4.2616 (9), 22.470 (5), 9.3894 (19)
β (°) 90.64 (3)
V3)899.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.937, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
5007, 1564, 1400
Rint0.031
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.07
No. of reflections1564
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.27

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.932.533.206 (3)129.6
C8—H8B···O3ii0.962.473.200 (3)132.4
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Mr Hai-Bin Song of Nankai University for his kind assistance with the X-ray structure determination and for helpful suggestions.

References

First citationKondo, K., Ogawa, H., Yamashita, H. & Miyamoto, H. (1999). Bioorg. Med. Chem. 7, 1743–1754.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, B.-N., Tang, S.-G., Li, H.-Y., Xu, Y.-M. & Guo, C. (2008). Acta Cryst. E64, o456.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNemerovski, C. & Hutchinson, D. J. (2010). Clin. Ther. 32, 1015–1032.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds