metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[(acetato-κ2O,O′)cadmium]-μ-acetato-κ3O,O′:O′-μ-{1,2-bis­­[4-(pyridin-3-yl)pyrimidin-2-ylsulfan­yl]ethane}-κ2N4,N4′] trihydrate]

aDeparment of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, People's Republic of China
*Correspondence e-mail: dapdong@163.com

(Received 25 October 2011; accepted 6 November 2011; online 12 November 2011)

The title compound, {[Cd(CH3COO)2(C20H16N6S2)]·3H2O}n, exists as a one-dimensional zigzag polymer in which the CdII ion shows a seven-coordinate [CdO5N2] distorted penta­gonal–bipyramidal geometry with the N atoms in axial positions and an N—Cd—N angle of 176.94 (13)°. The metal atoms are bridged by 1,2-bis­[4-(pyridin-3-yl)pyrimidin-2-ylsulfan­yl]ethane ligands, giving a polymeric chain extending along the b axis. Adjacent chains related by an inversion center are further bridged by Cd—O bonds formed between the O atom of one of the acetate ligands and the metal atom. The five Cd—O bond lengths are in the range 2.329 (3)–2.485 (3) Å. There are ππ stacking inter­actions between the aromatic rings of adjacent polymeric chains, the centroid–centroid distances being 3.556 (3) and 3.698 (3) Å, organizing the chains into a three-dimensional framework. This framework is additionally stabilized by extensive O—H⋯O and O—H⋯N hydrogen bonding between water mol­ecules and the ligands.

Related literature

For backgroud to coordination polymers with thio­ether ligands, see: Dong, Yang et al. (2008[Dong, H. Z., Yang, J., Liu, X. & Gou, S. H. (2008). Inorg. Chem. 47, 2913-2915.]); Dong, Zhu et al. (2008[Dong, H. Z., Zhu, H. B., Tong, T. F. & Gou, S. H. (2008). J. Mol. Struct. 891, 266-271.]); Dong et al. (2009[Dong, H. Z., Zhao, J., Zhu, H. B. & Gou, S. H. (2009). Polyhedron, 28,1040-1048.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2H3O2)2(C20H16N6S2)]·3H2O

  • Mr = 689.07

  • Monoclinic, P 21 /n

  • a = 10.8000 (12) Å

  • b = 14.0816 (16) Å

  • c = 18.594 (2) Å

  • β = 95.997 (2)°

  • V = 2812.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.98 mm−1

  • T = 291 K

  • 0.20 × 0.10 × 0.03 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.822, Tmax = 0.971

  • 14681 measured reflections

  • 5492 independent reflections

  • 3846 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.112

  • S = 1.01

  • 5492 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6OB⋯O1i 0.87 2.24 3.102 (6) 167
O7—H7OB⋯N2ii 0.85 2.15 3.000 (5) 173
O7—H7OA⋯O4iii 0.85 2.00 2.819 (6) 162
O5—H5A⋯O6 0.85 2.01 2.782 (5) 150
O5—H5B⋯O2iv 0.85 2.02 2.864 (5) 177
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) -x+1, -y+2, -z; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years flexible thioethers have been extensively studied as they are capable of displaying different reactions in various circumstances, giving rise to metal-organic frameworks with fascinating structures (Dong et al., 2009; Dong,Yang et al., 2008; Dong, Zhu et al., 2008). Here we report the structure of the title one-dimensional cadmium(II) complex, [LCd(CH3COO)2(H2O)3]n.

The title compound exists as a one-dimensional zigzag polymer, with seven-coordinate CdO5N2 core, in which CdII centers are bridged by the organic ligand to give polymeric chain, and two oxygen atoms from two anions bridge two adjacent polymeric chains as shown in Figure 1. The axial N3—Cd—N6 bond angle is 176.91 (14)°. There are ππ stacking interactions between the aromatic rings from adjacent polymeric chains with the centroid-centroid distances of 3.556 and 3.698 Å, organizing the chains into a three-dimensional framework. This framework is additionally stabilized by numerous hydrogen bonds between water molecules and the ligands (Fig. 2) .

Related literature top

For backgroud to coordination polymers with thioether ligands, see: Dong, Yang et al. (2008); Dong, Zhu et al. (2008); Dong et al. (2009).

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. The title compound was prepared by similar procedure to that reported in the literature (Dong et al., 2009). The complex was synthesized by adding methanol (25 ml) solution of ligand (40.4 mg, 1.0 mmol) to a stirred methanol (20 ml) solution of Cd(OAc)22H2O (26.6 mg, 1.0 mmol). The resulting solution was refluxed for one hour, cooled to room temperature, filtered, and evaporated slowly to give the colorless single crystals. IR (KBr, cm-1): 3417 (m), 1561 (s), 1480 (w), 1413 (m), 1339 (m), 1325 (m), 1225 (w), 1190 (m), 1028 (w), 807 (w).

Refinement top

Hydrogen atoms from the L ligand were geomemetrically positioned (C—H 0.93–0.97 Å) and refined as riding, with Uiso(H)=1.2–1.5 Ueq of the parent atom. Positions of the water molecules H atoms were calculated geometrically assuming their involvement in hydrogen bonding and refined as riding with Uiso(H)=1.5 Ueq(O) .

Structure description top

In recent years flexible thioethers have been extensively studied as they are capable of displaying different reactions in various circumstances, giving rise to metal-organic frameworks with fascinating structures (Dong et al., 2009; Dong,Yang et al., 2008; Dong, Zhu et al., 2008). Here we report the structure of the title one-dimensional cadmium(II) complex, [LCd(CH3COO)2(H2O)3]n.

The title compound exists as a one-dimensional zigzag polymer, with seven-coordinate CdO5N2 core, in which CdII centers are bridged by the organic ligand to give polymeric chain, and two oxygen atoms from two anions bridge two adjacent polymeric chains as shown in Figure 1. The axial N3—Cd—N6 bond angle is 176.91 (14)°. There are ππ stacking interactions between the aromatic rings from adjacent polymeric chains with the centroid-centroid distances of 3.556 and 3.698 Å, organizing the chains into a three-dimensional framework. This framework is additionally stabilized by numerous hydrogen bonds between water molecules and the ligands (Fig. 2) .

For backgroud to coordination polymers with thioether ligands, see: Dong, Yang et al. (2008); Dong, Zhu et al. (2008); Dong et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids. Atoms with the label A are related to the labelled atoms by the symmetry operation -x,1 - y, 1 - z.
[Figure 2] Fig. 2. Perspective view of intermolecular hydrogen bonding and ππ stacking interactions in the title complex
catena-Poly[[[(acetato-κ2O,O')cadmium]-µ-acetato- κ3O,O':O'-µ-{1,2-bis[4-(pyridin-3-yl)pyrimidin-2- ylsulfanyl]ethane}-κ2N4,N4'] trihydrate] top
Crystal data top
[Cd(C2H3O2)2(C20H16N6S2)]·3H2OF(000) = 1400
Mr = 689Dx = 1.628 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3846 reflections
a = 10.8000 (12) Åθ = 1.8–25.2°
b = 14.0816 (16) ŵ = 0.98 mm1
c = 18.594 (2) ÅT = 291 K
β = 95.997 (2)°Plate, colorless
V = 2812.4 (5) Å30.20 × 0.10 × 0.03 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5492 independent reflections
Radiation source: fine-focus sealed tube3846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
φ and ω scanθmax = 26.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 713
Tmin = 0.822, Tmax = 0.971k = 1617
14681 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0473P)2]
where P = (Fo2 + 2Fc2)/3
5492 reflections(Δ/σ)max = 0.005
363 parametersΔρmax = 0.84 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Cd(C2H3O2)2(C20H16N6S2)]·3H2OV = 2812.4 (5) Å3
Mr = 689Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8000 (12) ŵ = 0.98 mm1
b = 14.0816 (16) ÅT = 291 K
c = 18.594 (2) Å0.20 × 0.10 × 0.03 mm
β = 95.997 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5492 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3846 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.971Rint = 0.048
14681 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.01Δρmax = 0.84 e Å3
5492 reflectionsΔρmin = 0.77 e Å3
363 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6658 (4)0.8014 (4)0.1567 (3)0.0429 (13)
C20.7246 (5)0.7596 (4)0.2185 (3)0.0683 (18)
H2A0.81330.75800.20710.103*
H2B0.70410.79760.26090.103*
H2C0.69410.69610.22730.103*
C30.5891 (4)1.1395 (4)0.0653 (2)0.0363 (12)
C40.6550 (6)1.1502 (5)0.1300 (3)0.075 (2)
H4A0.66461.21650.14020.112*
H4B0.60781.12020.17040.112*
H4C0.73551.12100.12180.112*
C50.6748 (5)0.8859 (3)0.3150 (2)0.0389 (12)
C60.8781 (6)0.8792 (4)0.3511 (3)0.0592 (16)
H60.94370.87670.38760.071*
C70.9059 (5)0.8780 (4)0.2821 (3)0.0532 (15)
H70.98790.87520.27130.064*
C80.8070 (5)0.8813 (3)0.2277 (2)0.0363 (11)
C90.8240 (4)0.8842 (3)0.1498 (2)0.0343 (11)
C100.9383 (5)0.8957 (3)0.1249 (3)0.0426 (12)
H101.01030.89850.15700.051*
C110.9446 (5)0.9032 (4)0.0512 (3)0.0472 (14)
H111.02120.90990.03310.057*
C120.8387 (5)0.9007 (3)0.0058 (3)0.0417 (13)
H120.84410.90790.04350.050*
C130.7214 (4)0.8809 (3)0.0997 (2)0.0342 (11)
H130.64380.87310.11630.041*
C140.5271 (5)0.9099 (4)0.4283 (2)0.0456 (14)
H14A0.59580.95200.44390.055*
H14B0.45110.93990.44040.055*
H24A0.47480.77580.45560.055*
H24B0.61950.78610.45660.055*
C150.4022 (5)0.8463 (3)0.5830 (2)0.0393 (12)
C160.1985 (5)0.8570 (4)0.5474 (3)0.0536 (15)
H160.13240.85660.51110.064*
C170.1719 (5)0.8667 (3)0.6172 (3)0.0470 (14)
H170.09070.87460.62860.056*
C180.2728 (5)0.8643 (3)0.6708 (2)0.0349 (12)
C190.2573 (5)0.8719 (3)0.7486 (2)0.0357 (12)
C200.1445 (5)0.8667 (3)0.7764 (3)0.0393 (13)
H200.07130.85980.74570.047*
C210.1409 (5)0.8719 (3)0.8492 (3)0.0447 (13)
H210.06500.86880.86850.054*
C220.2486 (5)0.8814 (3)0.8939 (3)0.0397 (12)
H220.24410.88340.94360.048*
C230.3635 (5)0.8826 (3)0.7981 (2)0.0367 (11)
H230.44070.88620.78020.044*
C240.5447 (5)0.8173 (4)0.4694 (3)0.0509 (15)
Cd10.54604 (3)0.88993 (3)0.053496 (16)0.03387 (13)
N10.6904 (4)0.8839 (3)0.24501 (19)0.0355 (9)
N20.7636 (4)0.8836 (3)0.3705 (2)0.0456 (11)
N30.7268 (4)0.8883 (3)0.0283 (2)0.0384 (9)
N40.3887 (4)0.8531 (3)0.6531 (2)0.0395 (10)
N50.3119 (4)0.8480 (3)0.5283 (2)0.0511 (12)
N60.3595 (4)0.8880 (3)0.86954 (19)0.0362 (9)
O10.6169 (3)0.7495 (2)0.11385 (17)0.0490 (9)
O20.6649 (3)0.8906 (3)0.15103 (17)0.0493 (9)
O30.5654 (3)1.0578 (2)0.04314 (15)0.0430 (8)
O40.5594 (3)1.2110 (3)0.03123 (17)0.0508 (9)
O50.3481 (4)0.5134 (3)0.2749 (2)0.0912 (15)
H5A0.32040.51680.23050.137*
H5B0.29280.53970.29740.137*
O60.3059 (5)0.4610 (4)0.1302 (2)0.1181 (18)
H6OA0.33200.50000.10020.177*
H6OB0.32130.40250.11840.177*
O70.3543 (4)0.6001 (3)0.0280 (2)0.0916 (15)
H7OB0.33120.59970.01730.137*
H7OA0.37420.65750.03800.137*
S10.51853 (13)0.89534 (11)0.33124 (7)0.0523 (4)
S20.55806 (13)0.83446 (11)0.56618 (7)0.0501 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.032 (3)0.067 (4)0.030 (3)0.008 (3)0.001 (2)0.010 (3)
C20.075 (5)0.072 (5)0.064 (4)0.003 (3)0.034 (3)0.019 (3)
C30.035 (3)0.049 (4)0.024 (2)0.008 (2)0.003 (2)0.004 (2)
C40.095 (5)0.095 (5)0.039 (3)0.021 (4)0.029 (3)0.002 (3)
C50.048 (3)0.033 (3)0.035 (3)0.004 (2)0.001 (2)0.004 (2)
C60.054 (4)0.083 (5)0.037 (3)0.013 (3)0.011 (3)0.001 (3)
C70.041 (3)0.079 (4)0.039 (3)0.009 (3)0.000 (2)0.004 (3)
C80.044 (3)0.029 (3)0.036 (3)0.001 (2)0.005 (2)0.003 (2)
C90.036 (3)0.029 (3)0.038 (3)0.001 (2)0.003 (2)0.003 (2)
C100.036 (3)0.046 (3)0.044 (3)0.001 (3)0.003 (2)0.000 (3)
C110.033 (3)0.062 (4)0.048 (3)0.005 (3)0.012 (2)0.002 (3)
C120.049 (3)0.046 (3)0.032 (3)0.003 (3)0.010 (2)0.000 (2)
C130.031 (3)0.039 (3)0.033 (3)0.001 (2)0.005 (2)0.007 (2)
C140.056 (4)0.051 (4)0.031 (3)0.000 (3)0.012 (2)0.004 (2)
C150.054 (4)0.035 (3)0.030 (3)0.010 (2)0.005 (2)0.000 (2)
C160.049 (4)0.070 (4)0.038 (3)0.016 (3)0.011 (3)0.001 (3)
C170.044 (3)0.061 (4)0.034 (3)0.007 (3)0.006 (2)0.006 (2)
C180.045 (3)0.027 (3)0.032 (3)0.004 (2)0.001 (2)0.0037 (19)
C190.045 (3)0.029 (3)0.032 (2)0.001 (2)0.002 (2)0.003 (2)
C200.035 (3)0.037 (3)0.044 (3)0.005 (2)0.002 (2)0.000 (2)
C210.040 (3)0.049 (4)0.047 (3)0.007 (2)0.011 (3)0.004 (2)
C220.048 (3)0.041 (3)0.031 (3)0.002 (3)0.006 (2)0.001 (2)
C230.042 (3)0.037 (3)0.032 (3)0.004 (2)0.012 (2)0.007 (2)
C240.076 (4)0.046 (4)0.034 (3)0.010 (3)0.022 (3)0.005 (2)
Cd10.0364 (2)0.0440 (2)0.02189 (17)0.00100 (18)0.00639 (13)0.00316 (16)
N10.035 (3)0.042 (2)0.029 (2)0.002 (2)0.0005 (17)0.0064 (18)
N20.049 (3)0.057 (3)0.030 (2)0.005 (2)0.002 (2)0.003 (2)
N30.038 (3)0.043 (2)0.035 (2)0.000 (2)0.0084 (18)0.0018 (19)
N40.050 (3)0.039 (3)0.030 (2)0.005 (2)0.003 (2)0.0017 (18)
N50.054 (3)0.065 (3)0.032 (2)0.015 (2)0.005 (2)0.002 (2)
N60.039 (3)0.040 (2)0.030 (2)0.001 (2)0.0054 (18)0.0010 (19)
O10.056 (3)0.058 (3)0.0340 (19)0.0056 (18)0.0105 (17)0.0006 (17)
O20.061 (3)0.050 (2)0.041 (2)0.000 (2)0.0203 (17)0.0083 (18)
O30.057 (2)0.039 (2)0.0349 (19)0.0042 (17)0.0126 (16)0.0034 (15)
O40.065 (3)0.042 (2)0.046 (2)0.0009 (18)0.0081 (18)0.0023 (17)
O50.076 (3)0.116 (4)0.081 (3)0.039 (3)0.008 (2)0.000 (3)
O60.151 (5)0.115 (5)0.090 (4)0.020 (4)0.022 (3)0.005 (3)
O70.112 (4)0.099 (4)0.062 (3)0.025 (3)0.006 (3)0.004 (2)
S10.0456 (9)0.0780 (11)0.0339 (7)0.0040 (8)0.0078 (6)0.0002 (7)
S20.0574 (10)0.0584 (9)0.0354 (7)0.0007 (7)0.0094 (6)0.0021 (6)
Geometric parameters (Å, º) top
C1—O11.239 (6)C15—S21.752 (5)
C1—O21.260 (6)C16—N51.317 (6)
C1—C21.492 (6)C16—C171.365 (7)
C2—H2A0.9600C16—H160.9300
C2—H2B0.9600C17—C181.398 (6)
C2—H2C0.9600C17—H170.9300
C3—O41.249 (6)C18—N41.336 (6)
C3—O31.259 (6)C18—C191.478 (6)
C3—C41.468 (7)C19—C201.373 (7)
C4—H4A0.9600C19—C231.401 (6)
C4—H4B0.9600C20—C211.361 (6)
C4—H4C0.9600C20—H200.9300
C5—N11.330 (5)C21—C221.363 (6)
C5—N21.333 (6)C21—H210.9300
C5—S11.750 (5)C22—N61.328 (6)
C6—N21.324 (7)C22—H220.9300
C6—C71.347 (7)C23—N61.336 (5)
C6—H60.9300C23—H230.9300
C7—C81.393 (6)C24—S21.806 (5)
C7—H70.9300C24—H24A0.9679
C8—N11.333 (6)C24—H24B0.9703
C8—C91.480 (6)Cd1—O22.329 (3)
C9—C131.372 (6)Cd1—N32.346 (4)
C9—C101.373 (6)Cd1—N6i2.346 (4)
C10—C111.382 (6)Cd1—O32.378 (3)
C10—H100.9300Cd1—O3ii2.382 (3)
C11—C121.350 (6)Cd1—O12.437 (3)
C11—H110.9300Cd1—O4ii2.485 (3)
C12—N31.331 (6)N6—Cd1iii2.346 (4)
C12—H120.9300O3—Cd1ii2.382 (3)
C13—N31.340 (5)O4—Cd1ii2.485 (3)
C13—H130.9300O5—H5A0.8500
C14—C241.514 (7)O5—H5B0.8500
C14—S11.810 (4)O6—H6OA0.8520
C14—H14A0.9700O6—H6OB0.8735
C14—H14B0.9700O7—H7OB0.8519
C15—N41.329 (5)O7—H7OA0.8528
C15—N51.334 (6)
O1—C1—O2121.8 (5)C20—C19—C23117.2 (4)
O1—C1—C2120.4 (5)C20—C19—C18124.0 (4)
O2—C1—C2117.8 (5)C23—C19—C18118.7 (5)
C1—C2—H2A109.5C21—C20—C19119.3 (5)
C1—C2—H2B109.5C21—C20—H20120.4
H2A—C2—H2B109.5C19—C20—H20120.4
C1—C2—H2C109.5C20—C21—C22120.1 (5)
H2A—C2—H2C109.5C20—C21—H21120.0
H2B—C2—H2C109.5C22—C21—H21120.0
O4—C3—O3119.9 (4)N6—C22—C21122.8 (4)
O4—C3—C4120.4 (5)N6—C22—H22118.6
O3—C3—C4119.7 (5)C21—C22—H22118.6
C3—C4—H4A109.5N6—C23—C19123.3 (4)
C3—C4—H4B109.5N6—C23—H23118.3
H4A—C4—H4B109.5C19—C23—H23118.3
C3—C4—H4C109.5C14—C24—S2112.3 (4)
H4A—C4—H4C109.5C14—C24—H24A109.4
H4B—C4—H4C109.5S2—C24—H24A108.9
N1—C5—N2127.0 (5)C14—C24—H24B109.2
N1—C5—S1113.2 (3)S2—C24—H24B108.9
N2—C5—S1119.9 (4)H24A—C24—H24B108.0
N2—C6—C7124.5 (5)O2—Cd1—N390.92 (13)
N2—C6—H6117.7O2—Cd1—N6i91.89 (12)
C7—C6—H6117.7N3—Cd1—N6i176.94 (13)
C6—C7—C8117.4 (5)O2—Cd1—O390.46 (12)
C6—C7—H7121.3N3—Cd1—O384.09 (12)
C8—C7—H7121.3N6i—Cd1—O397.09 (12)
N1—C8—C7119.8 (4)O2—Cd1—O3ii161.70 (12)
N1—C8—C9116.9 (4)N3—Cd1—O3ii88.04 (12)
C7—C8—C9123.2 (5)N6i—Cd1—O3ii89.68 (12)
C13—C9—C10117.8 (4)O3—Cd1—O3ii71.26 (12)
C13—C9—C8119.3 (4)O2—Cd1—O154.50 (11)
C10—C9—C8122.8 (4)N3—Cd1—O190.60 (12)
C9—C10—C11118.8 (4)N6i—Cd1—O190.04 (12)
C9—C10—H10120.6O3—Cd1—O1144.54 (11)
C11—C10—H10120.6O3ii—Cd1—O1143.75 (11)
C12—C11—C10119.5 (5)O2—Cd1—O4ii145.35 (12)
C12—C11—H11120.3N3—Cd1—O4ii89.36 (12)
C10—C11—H11120.3N6i—Cd1—O4ii87.65 (12)
N3—C12—C11123.0 (5)O3—Cd1—O4ii124.00 (11)
N3—C12—H12118.5O3ii—Cd1—O4ii52.93 (12)
C11—C12—H12118.5O1—Cd1—O4ii90.85 (12)
N3—C13—C9123.7 (4)C5—N1—C8117.2 (4)
N3—C13—H13118.1C6—N2—C5114.1 (4)
C9—C13—H13118.1C12—N3—C13117.1 (4)
C24—C14—S1113.4 (4)C12—N3—Cd1121.1 (3)
C24—C14—H14A108.9C13—N3—Cd1121.6 (3)
S1—C14—H14A108.9C15—N4—C18116.9 (4)
C24—C14—H14B108.9C16—N5—C15114.9 (4)
S1—C14—H14B108.9C22—N6—C23117.3 (4)
H14A—C14—H14B107.7C22—N6—Cd1iii122.7 (3)
N4—C15—N5126.9 (5)C23—N6—Cd1iii119.5 (3)
N4—C15—S2112.8 (4)C1—O1—Cd189.5 (3)
N5—C15—S2120.3 (4)C1—O2—Cd194.0 (3)
N5—C16—C17124.1 (5)C3—O3—Cd1154.4 (3)
N5—C16—H16118.0C3—O3—Cd1ii95.8 (3)
C17—C16—H16118.0Cd1—O3—Cd1ii108.74 (12)
C16—C17—C18116.7 (5)C3—O4—Cd1ii91.2 (3)
C16—C17—H17121.6H5A—O5—H5B105.1
C18—C17—H17121.6H6OA—O6—H6OB111.0
N4—C18—C17120.5 (5)H7OB—O7—H7OA105.3
N4—C18—C19117.1 (4)C5—S1—C14103.4 (2)
C17—C18—C19122.4 (5)C15—S2—C24102.3 (2)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+2, z; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6OB···O1iv0.872.243.102 (6)167
O7—H7OB···N2v0.852.153.000 (5)173
O7—H7OA···O4ii0.852.002.819 (6)162
O5—H5A···O60.852.012.782 (5)150
O5—H5B···O2vi0.852.022.864 (5)177
C6—H6···O1vii0.932.583.163 (7)121
C10—H10···O5viii0.932.483.263 (7)142
Symmetry codes: (ii) x+1, y+2, z; (iv) x+1, y+1, z; (v) x1/2, y+3/2, z1/2; (vi) x1/2, y+3/2, z+1/2; (vii) x+1/2, y+3/2, z+1/2; (viii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C2H3O2)2(C20H16N6S2)]·3H2O
Mr689
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)10.8000 (12), 14.0816 (16), 18.594 (2)
β (°) 95.997 (2)
V3)2812.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.98
Crystal size (mm)0.20 × 0.10 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.822, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
14681, 5492, 3846
Rint0.048
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.112, 1.01
No. of reflections5492
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.77

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6OB···O1i0.872.243.102 (6)167
O7—H7OB···N2ii0.852.153.000 (5)173
O7—H7OA···O4iii0.852.002.819 (6)162
O5—H5A···O60.852.012.782 (5)150
O5—H5B···O2iv0.852.022.864 (5)177
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1, y+2, z; (iv) x1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 20871039 and 21101053), the Program for Excellent Young Talents in Universities of Anhui Province (2011SQRL128) and the Key Disciplines Foundation of Hefei Normal University.

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, H. Z., Yang, J., Liu, X. & Gou, S. H. (2008). Inorg. Chem. 47, 2913–2915.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, H. Z., Zhao, J., Zhu, H. B. & Gou, S. H. (2009). Polyhedron, 28,1040–1048.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, H. Z., Zhu, H. B., Tong, T. F. & Gou, S. H. (2008). J. Mol. Struct. 891, 266–271.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds