metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl­tri­ethyl­ammonium aqua­tri­chlorido­zincate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: jinlei8812@163.com

(Received 5 November 2011; accepted 16 November 2011; online 19 November 2011)

In the crystal structure of the title mol­ecular salt, (C13H22N)[ZnCl3(H2O)], the distorted tetrahedral anions are linked by O—H⋯Cl hydrogen bonds, generating [100] chains. Weak cation-to-anion C—H⋯Cl inter­actions generate a three-dimensional network.

Related literature

For background literature concerning mol­ecular salts, see: Tan et al. (2010[Tan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, m690.]); Jin et al. (2011[Jin, L., Liu, N., Li, Y.-J. & Wu, D.-H. (2011). Acta Cryst. E67, m1325.]).

[Scheme 1]

Experimental

Crystal data
  • (C13H22N)[ZnCl3(H2O)]

  • Mr = 382.05

  • Orthorhombic, P 21 21 21

  • a = 8.3236 (17) Å

  • b = 13.484 (3) Å

  • c = 15.808 (3) Å

  • V = 1774.2 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 291 K

  • 0.28 × 0.24 × 0.22 mm

Data collection
  • Rigaku Mercury2 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.629, Tmax = 0.689

  • 18427 measured reflections

  • 4054 independent reflections

  • 3522 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.077

  • S = 1.09

  • 4054 reflections

  • 177 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1735 Friedel pairs

  • Flack parameter: 0.022 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1D⋯Cl2i 0.98 2.17 3.121 (2) 163
O1—H1E⋯Cl1ii 0.93 2.24 3.155 (2) 168
C1—H1B⋯Cl1iii 0.96 2.82 3.599 (3) 139
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For background literature concerning molecular salts, see: Tan et al. (2010); Jin et al. (2011).

Experimental top

In room temperature benzyltriethylammoniumchlorine (10 mmol, 2.28 g) were dissolved in 30 ml water, then a solution with ZnCl2(5 mmol, 0.68 g) was dropped slowly into the previous solution with properly sirring. Single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after two weeks in air with some colorless solid blocks appeared after days with yield about 75%.

The dielectric constant of the compound as a function of temperature indicates that the permittivity is basically temperature-independent (ε = C/(T–T0)), suggesting that this compound is not ferroelectric or there may be no distinct phase transition occurring within the measured temperature (below the melting point).

Refinement top

H atoms were placed in calculated positions(C—H = 0.93Å for Csp2 atoms and C—H = 0.96Å and 0.97 Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2/N) and 1.5Ueq(Csp3)] and allowed to ride.

Structure description top

For background literature concerning molecular salts, see: Tan et al. (2010); Jin et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids.
Benzyltriethylammonium aquatrichloridozinc top
Crystal data top
(C13H22N)[ZnCl3(H2O)]F(000) = 792
Mr = 382.05Dx = 1.430 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abθ = 3.0–27.5°
a = 8.3236 (17) ŵ = 1.83 mm1
b = 13.484 (3) ÅT = 291 K
c = 15.808 (3) ÅBlock, colorless
V = 1774.2 (6) Å30.28 × 0.24 × 0.22 mm
Z = 4
Data collection top
Rigaku Mercury2 CCD
diffractometer
4054 independent reflections
Radiation source: fine-focus sealed tube3522 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.0°
CCD_Profile_fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.629, Tmax = 0.689l = 2020
18427 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
4054 reflectionsΔρmax = 0.27 e Å3
177 parametersΔρmin = 0.37 e Å3
0 restraintsAbsolute structure: Flack (1983), 1735 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.022 (13)
Crystal data top
(C13H22N)[ZnCl3(H2O)]V = 1774.2 (6) Å3
Mr = 382.05Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3236 (17) ŵ = 1.83 mm1
b = 13.484 (3) ÅT = 291 K
c = 15.808 (3) Å0.28 × 0.24 × 0.22 mm
Data collection top
Rigaku Mercury2 CCD
diffractometer
4054 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3522 reflections with I > 2σ(I)
Tmin = 0.629, Tmax = 0.689Rint = 0.045
18427 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.27 e Å3
S = 1.09Δρmin = 0.37 e Å3
4054 reflectionsAbsolute structure: Flack (1983), 1735 Friedel pairs
177 parametersAbsolute structure parameter: 0.022 (13)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0907 (4)0.6986 (3)0.6677 (2)0.0704 (9)
H1A1.13710.63350.66650.106*
H1B1.16460.74400.69370.106*
H1C1.06840.72000.61100.106*
C20.9359 (4)0.6962 (2)0.71813 (18)0.0526 (7)
H2A0.96070.67580.77550.063*
H2B0.89290.76300.72080.063*
C30.9403 (5)0.4758 (2)0.7474 (2)0.0691 (10)
H3A1.02620.51590.76910.104*
H3B0.98070.41120.73330.104*
H3C0.85780.46960.78960.104*
C40.8714 (3)0.52380 (19)0.66941 (17)0.0485 (7)
H4A0.78470.48270.64820.058*
H4B0.95410.52620.62620.058*
C50.5348 (4)0.5569 (2)0.7260 (2)0.0631 (8)
H5A0.50220.56620.66830.095*
H5B0.44530.56940.76280.095*
H5C0.57140.49000.73380.095*
C60.6706 (3)0.6286 (2)0.74693 (16)0.0482 (6)
H6A0.62670.69510.75030.058*
H6B0.71310.61190.80230.058*
C70.7509 (3)0.66402 (18)0.59743 (15)0.0425 (6)
H7A0.84160.66210.55890.051*
H7B0.67170.61730.57650.051*
C80.6785 (3)0.76674 (19)0.59399 (15)0.0412 (6)
C90.7711 (4)0.8488 (2)0.57179 (18)0.0594 (8)
H90.88120.84150.56390.071*
C100.7015 (5)0.9410 (2)0.5613 (2)0.0720 (10)
H100.76490.99500.54620.086*
C110.5380 (5)0.9536 (2)0.57303 (18)0.0646 (9)
H110.49111.01560.56570.078*
C120.4475 (4)0.8747 (2)0.59527 (18)0.0566 (8)
H120.33780.88310.60400.068*
C130.5148 (4)0.7814 (2)0.60535 (16)0.0481 (6)
H130.44960.72810.61990.058*
Cl10.82104 (9)0.72961 (7)0.14959 (5)0.0678 (2)
Cl21.23689 (9)0.63181 (6)0.11597 (5)0.0603 (2)
Cl30.89340 (10)0.55114 (6)0.02493 (5)0.0620 (2)
N10.8077 (2)0.62856 (15)0.68371 (12)0.0372 (5)
O11.0364 (2)0.78841 (15)0.01861 (15)0.0646 (6)
H1D0.94760.82640.04340.136 (18)*
H1E1.11890.79290.05790.120 (16)*
Zn11.00040 (4)0.66907 (2)0.056683 (18)0.04478 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0440 (17)0.089 (2)0.078 (2)0.0088 (17)0.0040 (16)0.007 (2)
C20.0519 (16)0.0584 (17)0.0473 (15)0.0004 (14)0.0111 (13)0.0131 (14)
C30.083 (2)0.061 (2)0.0629 (19)0.0251 (17)0.0060 (17)0.0056 (16)
C40.0562 (18)0.0413 (15)0.0479 (15)0.0091 (13)0.0042 (13)0.0071 (12)
C50.055 (2)0.0617 (17)0.0730 (19)0.0036 (15)0.0157 (15)0.0108 (16)
C60.0527 (16)0.0529 (15)0.0389 (14)0.0097 (14)0.0095 (12)0.0028 (12)
C70.0488 (14)0.0457 (13)0.0331 (12)0.0015 (13)0.0011 (11)0.0044 (11)
C80.0447 (14)0.0463 (14)0.0326 (12)0.0064 (12)0.0026 (11)0.0016 (11)
C90.0538 (18)0.0612 (18)0.0630 (19)0.0098 (15)0.0029 (15)0.0122 (15)
C100.082 (3)0.0537 (18)0.080 (2)0.0145 (18)0.002 (2)0.0219 (18)
C110.091 (3)0.0474 (16)0.0556 (17)0.0096 (17)0.0104 (17)0.0049 (14)
C120.0546 (18)0.0683 (19)0.0469 (16)0.0142 (15)0.0009 (13)0.0061 (15)
C130.0450 (16)0.0538 (15)0.0456 (14)0.0046 (15)0.0037 (14)0.0050 (11)
Cl10.0499 (4)0.0890 (6)0.0646 (5)0.0015 (4)0.0090 (4)0.0227 (4)
Cl20.0412 (4)0.0740 (5)0.0658 (5)0.0034 (4)0.0119 (3)0.0041 (4)
Cl30.0608 (5)0.0689 (5)0.0565 (4)0.0192 (4)0.0050 (4)0.0113 (4)
N10.0378 (11)0.0402 (10)0.0337 (10)0.0039 (10)0.0030 (9)0.0056 (9)
O10.0423 (12)0.0623 (12)0.0893 (15)0.0024 (10)0.0078 (11)0.0192 (12)
Zn10.03494 (16)0.05128 (17)0.04811 (17)0.00472 (16)0.00111 (15)0.00287 (12)
Geometric parameters (Å, º) top
C1—C21.515 (4)C7—C81.511 (4)
C1—H1A0.9600C7—N11.521 (3)
C1—H1B0.9600C7—H7A0.9700
C1—H1C0.9600C7—H7B0.9700
C2—N11.506 (3)C8—C131.389 (4)
C2—H2A0.9700C8—C91.394 (4)
C2—H2B0.9700C9—C101.382 (4)
C3—C41.506 (4)C9—H90.9300
C3—H3A0.9600C10—C111.384 (5)
C3—H3B0.9600C10—H100.9300
C3—H3C0.9600C11—C121.350 (5)
C4—N11.526 (3)C11—H110.9300
C4—H4A0.9700C12—C131.386 (4)
C4—H4B0.9700C12—H120.9300
C5—C61.523 (4)C13—H130.9300
C5—H5A0.9600Cl1—Zn12.2478 (8)
C5—H5B0.9600Cl2—Zn12.2373 (9)
C5—H5C0.9600Cl3—Zn12.2330 (8)
C6—N11.517 (3)O1—Zn12.024 (2)
C6—H6A0.9700O1—H1D0.9808
C6—H6B0.9700O1—H1E0.9280
C2—C1—H1A109.5N1—C7—H7A108.2
C2—C1—H1B109.5C8—C7—H7B108.2
H1A—C1—H1B109.5N1—C7—H7B108.2
C2—C1—H1C109.5H7A—C7—H7B107.3
H1A—C1—H1C109.5C13—C8—C9117.5 (3)
H1B—C1—H1C109.5C13—C8—C7121.1 (2)
N1—C2—C1115.2 (2)C9—C8—C7121.1 (2)
N1—C2—H2A108.5C10—C9—C8120.9 (3)
C1—C2—H2A108.5C10—C9—H9119.6
N1—C2—H2B108.5C8—C9—H9119.6
C1—C2—H2B108.5C9—C10—C11120.4 (3)
H2A—C2—H2B107.5C9—C10—H10119.8
C4—C3—H3A109.5C11—C10—H10119.8
C4—C3—H3B109.5C12—C11—C10119.2 (3)
H3A—C3—H3B109.5C12—C11—H11120.4
C4—C3—H3C109.5C10—C11—H11120.4
H3A—C3—H3C109.5C11—C12—C13121.3 (3)
H3B—C3—H3C109.5C11—C12—H12119.4
C3—C4—N1114.1 (2)C13—C12—H12119.4
C3—C4—H4A108.7C12—C13—C8120.7 (3)
N1—C4—H4A108.7C12—C13—H13119.6
C3—C4—H4B108.7C8—C13—H13119.6
N1—C4—H4B108.7C2—N1—C6107.17 (19)
H4A—C4—H4B107.6C2—N1—C7110.7 (2)
C6—C5—H5A109.5C6—N1—C7110.93 (19)
C6—C5—H5B109.5C2—N1—C4111.6 (2)
H5A—C5—H5B109.5C6—N1—C4111.1 (2)
C6—C5—H5C109.5C7—N1—C4105.44 (18)
H5A—C5—H5C109.5Zn1—O1—H1D122.6
H5B—C5—H5C109.5Zn1—O1—H1E123.8
N1—C6—C5114.5 (2)H1D—O1—H1E104.8
N1—C6—H6A108.6O1—Zn1—Cl3106.59 (7)
C5—C6—H6A108.6O1—Zn1—Cl2107.13 (6)
N1—C6—H6B108.6Cl3—Zn1—Cl2115.66 (4)
C5—C6—H6B108.6O1—Zn1—Cl1101.18 (7)
H6A—C6—H6B107.6Cl3—Zn1—Cl1111.79 (3)
C8—C7—N1116.38 (19)Cl2—Zn1—Cl1113.09 (3)
C8—C7—H7A108.2
N1—C7—C8—C1390.3 (3)C1—C2—N1—C764.5 (3)
N1—C7—C8—C995.6 (3)C1—C2—N1—C452.7 (3)
C13—C8—C9—C100.3 (4)C5—C6—N1—C2175.1 (2)
C7—C8—C9—C10174.1 (3)C5—C6—N1—C763.9 (3)
C8—C9—C10—C110.3 (5)C5—C6—N1—C453.0 (3)
C9—C10—C11—C120.3 (5)C8—C7—N1—C260.2 (3)
C10—C11—C12—C130.9 (5)C8—C7—N1—C658.7 (3)
C11—C12—C13—C80.9 (4)C8—C7—N1—C4179.0 (2)
C9—C8—C13—C120.3 (4)C3—C4—N1—C257.5 (3)
C7—C8—C13—C12174.7 (2)C3—C4—N1—C662.0 (3)
C1—C2—N1—C6174.4 (2)C3—C4—N1—C7177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···Cl2i0.982.173.121 (2)163
O1—H1E···Cl1ii0.932.243.155 (2)168
C1—H1B···Cl1iii0.962.823.599 (3)139
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula(C13H22N)[ZnCl3(H2O)]
Mr382.05
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)8.3236 (17), 13.484 (3), 15.808 (3)
V3)1774.2 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.28 × 0.24 × 0.22
Data collection
DiffractometerRigaku Mercury2 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.629, 0.689
No. of measured, independent and
observed [I > 2σ(I)] reflections
18427, 4054, 3522
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.077, 1.09
No. of reflections4054
No. of parameters177
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.37
Absolute structureFlack (1983), 1735 Friedel pairs
Absolute structure parameter0.022 (13)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1D···Cl2i0.982.173.121 (2)163
O1—H1E···Cl1ii0.932.243.155 (2)168
C1—H1B···Cl1iii0.962.823.599 (3)139
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+3/2, z+1.
 

Acknowledgements

The author thanks the Ordered Matter Science Research Centre, Southeast University, for support.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJin, L., Liu, N., Li, Y.-J. & Wu, D.-H. (2011). Acta Cryst. E67, m1325.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, K. W., Maah, M. J. & Ng, S. W. (2010). Acta Cryst. E66, m690.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds