organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-Butyl 2-{[2,8-bis­­(tri­fluoro­meth­yl)quinolin-4-yl](hy­dr­oxy)meth­yl}piperidine-1-carboxyl­ate

aFundaçaõ Oswaldo Cruz, Instituto de Tecnologia, em Fármacos–Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil, bCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, cCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 9 November 2011; accepted 10 November 2011; online 16 November 2011)

The title mol­ecule, C22H24F6N2O3, adopts a folded conformation whereby the carboxyl­ate residue lies over the quinolinyl residue, with the dihedral angle between the carbamate and quinoline planes being 41.64 (7)°. Helical supra­molecular C(7) chains sustained by O—H⋯O hydrogen bonds propagating along the a-axis direction feature in the crystal packing. The F atoms of one of the CF3 groups are disordered over two orientations; the major component has a site occupancy of 0.824 (7).

Related literature

For background to the anti-mycobacterial activity of mefloquine, see: Gonçalves et al. (2010[Gonçalves, R. S. B., Kaiser, C. R., Lourenço, M. C. S., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & da Silva, A. D. (2010). Eur. J. Med. Chem. 45, 6095-6100.]); Mao et al. (2007[Mao, J., Wang, Y., Wan, B., Kozikowski, A. P. S. G. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624-1630.]); Maguire et al. (2006[Maguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067-1072.]). For the synthesis, see: Grellepois et al. (2005[Grellepois, F., Grellier, P., Bonnet-Delpon, D. & Bégué, J. P. (2005). ChemBioChem, 6, 648-652.]). For related structural studies, see: Gonçalves et al. (2011[Gonçalves, R. S. B., Kaiser, C. R., Souza, M. V. N. de, Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1656-o1657.]); de Souza et al. (2011[Souza, M. V. N. de, Gonçalves, R. S. B., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3313-o3314.]); Wardell et al. (2010[Wardell, J. L., Wardell, S. M. S. V., Tiekink, E. R. T. & Lima, G. M. de (2010). Acta Cryst. E66, m336-m337.], 2011a[Wardell, J. L., de Souza, M. V. N., Wardell, S. M. S. V. & Lourenço, M. C. S. (2011a). J. Mol. Struct. 990, 67-74.],b[Wardell, S. M. S. V., Wardell, J. L., Skakle, J. M. S. & Tiekink, E. R. T. (2011b). Z. Kristallogr. 226, 68-77.]); Pitaluga et al. (2010[Pitaluga, A. Jr, Prado, L. D., Seiceira, R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Int. J. Pharm. 398, 50-60.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24F6N2O3

  • Mr = 478.43

  • Orthorhombic, P 21 21 21

  • a = 9.888 (3) Å

  • b = 10.696 (3) Å

  • c = 21.158 (5) Å

  • V = 2237.7 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.12 mm−1

  • T = 100 K

  • 0.12 × 0.11 × 0.10 mm

Data collection
  • Rigaku Saturn944+ diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.863, Tmax = 1.000

  • 10899 measured reflections

  • 3722 independent reflections

  • 3640 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.130

  • S = 1.13

  • 3722 reflections

  • 314 parameters

  • 31 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.44 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1532 Friedel pairs

  • Flack parameter: −0.08 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1o⋯O2i 0.85 (3) 1.96 (3) 2.794 (3) 171 (3)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Mefloquine has been used in the prevention and treatment for malaria in combination with other drugs for some decades (Maguire et al., 2006). More recently, the activity of mefloquine has been investigated against other diseases, for example, as anti-viral and anti-tubercular agents (Mao et al., 2007). In continuation of our structural and biological studies on mefloquine derivatives (Gonçalves et al., 2010, 2011; de Souza et al. 2011; Wardell, et al., 2010; 2011a; 2011b; Pitaluga et al., 2010), we now report the crystal and molecular structure of the title compound, tert-butyl 2-[[2,8-bis(trifluoromethyl)-4-quinolinyl](hydroxy)methyl]tetrahydro-1(2H)-pyridine carboxylate, (I).

In the molecule of (I), Fig. 1, the hydroxyl group lies to one side of the plane through the quinolinyl residue and the substituted piperidine ring to other with the carboxylate ester folded over to lie over the quinolinyl plane. However, the two residues are non-parallel with the dihedral angle between the quinolinyl and carbamate planes being 41.64 (7) °. The piperidine ring has a conformation close to a chair form. Mefloquine used as a reagent was a racemate. However, the reported crystal structure is of one form of a racemic mixture as the molecules spontaneously resolved during crystallization. The sum of the angles at the site of substitution, the trisubstituted N2 atom, is 360° indicating a planar geometry, and hence an achiral centre. In (I), the configurations at the C12 and C13 positions are R and S, respectively. The most prominent intermolecular interactions in the crystal structure are O—H···O hydrogen bonds that lead to helical supramolecular chains along the a axis, Fig. 1 and Table 1.

Related literature top

For background to the anti-mycobacterial activity of mefloquine, see: Gonçalves et al. (2010); Mao et al. (2007); Maguire et al. (2006). For the synthesis, see: Grellepois et al. (2005). For related structural studies, see: Gonçalves et al. (2011); de Souza et al. (2011); Wardell et al. (2010, 2011a,b); Pitaluga et al. (2010).

Experimental top

The compound was prepared by a published procedure (Grellepois et al., 2005) from Boc2O and mefloquine in the presence of Et3N. Colourless chips of (I) were grown from an EtOH solution, M.pt. 419–420 K.

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The O—H H atom was located in a difference and refined with O—H = 0.84±0.01 Å, and with Uiso(H) = 1.5Ueq(O). One of the CF3 groups was found to be disordered. This was resolved over two positions for each F atom. The pairs of F atom had common anisotropic displacement parameters. The major component of the disordered F atoms had a site occupancy = 0.824 (7).

Structure description top

Mefloquine has been used in the prevention and treatment for malaria in combination with other drugs for some decades (Maguire et al., 2006). More recently, the activity of mefloquine has been investigated against other diseases, for example, as anti-viral and anti-tubercular agents (Mao et al., 2007). In continuation of our structural and biological studies on mefloquine derivatives (Gonçalves et al., 2010, 2011; de Souza et al. 2011; Wardell, et al., 2010; 2011a; 2011b; Pitaluga et al., 2010), we now report the crystal and molecular structure of the title compound, tert-butyl 2-[[2,8-bis(trifluoromethyl)-4-quinolinyl](hydroxy)methyl]tetrahydro-1(2H)-pyridine carboxylate, (I).

In the molecule of (I), Fig. 1, the hydroxyl group lies to one side of the plane through the quinolinyl residue and the substituted piperidine ring to other with the carboxylate ester folded over to lie over the quinolinyl plane. However, the two residues are non-parallel with the dihedral angle between the quinolinyl and carbamate planes being 41.64 (7) °. The piperidine ring has a conformation close to a chair form. Mefloquine used as a reagent was a racemate. However, the reported crystal structure is of one form of a racemic mixture as the molecules spontaneously resolved during crystallization. The sum of the angles at the site of substitution, the trisubstituted N2 atom, is 360° indicating a planar geometry, and hence an achiral centre. In (I), the configurations at the C12 and C13 positions are R and S, respectively. The most prominent intermolecular interactions in the crystal structure are O—H···O hydrogen bonds that lead to helical supramolecular chains along the a axis, Fig. 1 and Table 1.

For background to the anti-mycobacterial activity of mefloquine, see: Gonçalves et al. (2010); Mao et al. (2007); Maguire et al. (2006). For the synthesis, see: Grellepois et al. (2005). For related structural studies, see: Gonçalves et al. (2011); de Souza et al. (2011); Wardell et al. (2010, 2011a,b); Pitaluga et al. (2010).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the helical supramolecular chain propagated long the a axis via O—H···O hydrogen bonds (orange dashed lines) in the crystal structure of (I).
tert-Butyl 2-{[2,8-bis(trifluoromethyl)quinolin-4- yl](hydroxy)methyl}piperidine-1-carboxylate top
Crystal data top
C22H24F6N2O3F(000) = 992
Mr = 478.43Dx = 1.420 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54187 Å
Hall symbol: P 2ac 2abCell parameters from 2676 reflections
a = 9.888 (3) Åθ = 21.7–66.3°
b = 10.696 (3) ŵ = 1.12 mm1
c = 21.158 (5) ÅT = 100 K
V = 2237.7 (10) Å3Chip, colourless
Z = 40.12 × 0.11 × 0.10 mm
Data collection top
Rigaku Saturn944+
diffractometer
3722 independent reflections
Radiation source: fine-focus sealed tube3640 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.037
Detector resolution: 22.2222 pixels mm-1θmax = 66.5°, θmin = 4.9°
profile data from ω–scansh = 1111
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 1112
Tmin = 0.863, Tmax = 1.000l = 2524
10899 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0998P)2 + 0.2114P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
3722 reflectionsΔρmax = 0.37 e Å3
314 parametersΔρmin = 0.44 e Å3
31 restraintsAbsolute structure: Flack (1983), 1532 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (13)
Crystal data top
C22H24F6N2O3V = 2237.7 (10) Å3
Mr = 478.43Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.888 (3) ŵ = 1.12 mm1
b = 10.696 (3) ÅT = 100 K
c = 21.158 (5) Å0.12 × 0.11 × 0.10 mm
Data collection top
Rigaku Saturn944+
diffractometer
3722 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
3640 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 1.000Rint = 0.037
10899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130Δρmax = 0.37 e Å3
S = 1.13Δρmin = 0.44 e Å3
3722 reflectionsAbsolute structure: Flack (1983), 1532 Friedel pairs
314 parametersAbsolute structure parameter: 0.08 (13)
31 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C100.2018 (3)0.0161 (2)0.10080 (11)0.0390 (6)0.824 (7)
F10.1438 (3)0.0585 (4)0.04787 (14)0.0360 (7)0.824 (7)
F20.0959 (3)0.0005 (3)0.14211 (13)0.0639 (10)0.824 (7)
F30.2775 (3)0.1073 (2)0.1234 (2)0.0713 (10)0.824 (7)
C10'0.2018 (3)0.0161 (2)0.10080 (11)0.0390 (6)0.176 (7)
F1'0.1146 (16)0.050 (2)0.0558 (8)0.0360 (7)0.176 (7)
F2'0.1618 (18)0.0399 (15)0.1586 (3)0.0639 (10)0.176 (7)
F3'0.3022 (11)0.1023 (11)0.0948 (8)0.0713 (10)0.176 (7)
F40.36443 (14)0.19344 (13)0.26991 (6)0.0295 (3)
F50.55029 (14)0.10401 (13)0.24085 (6)0.0304 (3)
F60.55644 (16)0.27288 (15)0.29575 (6)0.0368 (4)
O10.31994 (19)0.27116 (16)0.08675 (7)0.0322 (4)
H1o0.387 (3)0.222 (3)0.0866 (17)0.058*
O20.05287 (17)0.37519 (15)0.07601 (7)0.0294 (4)
O30.11139 (19)0.56561 (16)0.11565 (8)0.0303 (4)
N10.3449 (2)0.14152 (17)0.14112 (8)0.0235 (4)
N20.1754 (2)0.51397 (18)0.01744 (8)0.0257 (4)
C10.2766 (2)0.1044 (2)0.09080 (11)0.0265 (5)
C20.2698 (2)0.1688 (2)0.03333 (11)0.0270 (5)
H20.21940.13570.00110.032*
C30.3375 (2)0.2811 (2)0.02730 (9)0.0219 (5)
C40.4146 (2)0.3242 (2)0.07962 (10)0.0199 (4)
C50.4941 (2)0.4353 (2)0.07868 (10)0.0226 (4)
H50.49520.48580.04170.027*
C60.5686 (2)0.4702 (2)0.13000 (11)0.0273 (5)
H60.62160.54420.12820.033*
C70.5678 (2)0.3978 (2)0.18567 (10)0.0250 (5)
H70.62010.42320.22110.030*
C80.4923 (2)0.2916 (2)0.18890 (9)0.0228 (5)
C90.4150 (2)0.2504 (2)0.13550 (9)0.0202 (4)
C110.4905 (2)0.2163 (2)0.24812 (10)0.0249 (5)
C120.3230 (2)0.3538 (2)0.03392 (10)0.0239 (5)
H120.39990.41390.03850.029*
C130.1870 (2)0.4255 (2)0.03579 (10)0.0251 (5)
H130.11300.36250.03110.030*
C140.2429 (3)0.6364 (2)0.01233 (11)0.0313 (5)
H14A0.34190.62470.01650.038*
H14B0.21250.69080.04740.038*
C150.2123 (3)0.7003 (2)0.05050 (12)0.0374 (6)
H15A0.11540.72330.05220.045*
H15B0.26630.77790.05410.045*
C160.2459 (3)0.6138 (2)0.10499 (12)0.0363 (6)
H16A0.34380.59460.10470.044*
H16B0.22390.65530.14550.044*
C170.1649 (3)0.4927 (2)0.09901 (11)0.0314 (5)
H17A0.19080.43580.13390.038*
H17B0.06750.51210.10370.038*
C180.1084 (2)0.4769 (2)0.07035 (10)0.0257 (5)
C190.0610 (2)0.5418 (2)0.18031 (10)0.0281 (5)
C200.1404 (3)0.4359 (3)0.20999 (12)0.0363 (6)
H20A0.23740.45230.20550.054*
H20B0.11770.35720.18870.054*
H20C0.11730.42960.25490.054*
C210.0903 (3)0.5172 (3)0.17923 (13)0.0397 (6)
H21A0.12560.51930.22250.060*
H21B0.10750.43480.16060.060*
H21C0.13530.58160.15390.060*
C220.0909 (3)0.6644 (3)0.21311 (13)0.0385 (6)
H22A0.18790.68240.21030.058*
H22B0.06430.65860.25760.058*
H22C0.03980.73170.19260.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C100.0500 (15)0.0332 (13)0.0339 (12)0.0136 (12)0.0226 (12)0.0086 (11)
F10.0424 (15)0.0259 (10)0.0397 (11)0.0088 (13)0.0189 (12)0.0016 (9)
F20.073 (2)0.0671 (17)0.0510 (13)0.0439 (16)0.0102 (13)0.0066 (12)
F30.0817 (16)0.0321 (10)0.100 (2)0.0239 (10)0.0659 (17)0.0395 (14)
C10'0.0500 (15)0.0332 (13)0.0339 (12)0.0136 (12)0.0226 (12)0.0086 (11)
F1'0.0424 (15)0.0259 (10)0.0397 (11)0.0088 (13)0.0189 (12)0.0016 (9)
F2'0.073 (2)0.0671 (17)0.0510 (13)0.0439 (16)0.0102 (13)0.0066 (12)
F3'0.0817 (16)0.0321 (10)0.100 (2)0.0239 (10)0.0659 (17)0.0395 (14)
F40.0283 (7)0.0378 (8)0.0224 (6)0.0013 (6)0.0021 (5)0.0022 (5)
F50.0321 (7)0.0321 (7)0.0269 (6)0.0082 (6)0.0020 (6)0.0041 (5)
F60.0436 (8)0.0447 (8)0.0222 (6)0.0058 (7)0.0129 (6)0.0034 (6)
O10.0443 (10)0.0316 (9)0.0205 (7)0.0090 (7)0.0063 (7)0.0056 (7)
O20.0323 (8)0.0267 (8)0.0292 (8)0.0045 (7)0.0027 (7)0.0001 (7)
O30.0389 (9)0.0275 (8)0.0246 (8)0.0020 (7)0.0071 (7)0.0027 (6)
N10.0260 (9)0.0208 (9)0.0237 (8)0.0023 (7)0.0064 (8)0.0003 (7)
N20.0317 (10)0.0225 (9)0.0229 (9)0.0001 (8)0.0029 (8)0.0004 (8)
C10.0306 (11)0.0230 (11)0.0259 (10)0.0030 (9)0.0095 (9)0.0006 (8)
C20.0312 (11)0.0248 (11)0.0250 (10)0.0013 (9)0.0091 (9)0.0005 (9)
C30.0246 (10)0.0211 (10)0.0199 (10)0.0013 (9)0.0028 (8)0.0022 (8)
C40.0192 (9)0.0193 (10)0.0211 (9)0.0024 (8)0.0019 (8)0.0026 (8)
C50.0229 (10)0.0228 (10)0.0221 (9)0.0001 (9)0.0017 (8)0.0006 (8)
C60.0255 (11)0.0260 (11)0.0304 (11)0.0058 (9)0.0017 (9)0.0031 (9)
C70.0239 (10)0.0284 (12)0.0226 (9)0.0024 (9)0.0037 (8)0.0070 (9)
C80.0214 (10)0.0257 (11)0.0213 (10)0.0012 (9)0.0008 (8)0.0035 (8)
C90.0184 (9)0.0215 (10)0.0207 (9)0.0014 (8)0.0009 (8)0.0023 (8)
C110.0247 (10)0.0300 (11)0.0201 (10)0.0012 (9)0.0025 (8)0.0018 (8)
C120.0306 (11)0.0220 (11)0.0190 (9)0.0014 (9)0.0022 (9)0.0012 (8)
C130.0298 (11)0.0232 (12)0.0223 (10)0.0005 (9)0.0036 (9)0.0004 (8)
C140.0389 (13)0.0224 (11)0.0326 (11)0.0000 (10)0.0024 (10)0.0025 (9)
C150.0451 (14)0.0284 (13)0.0388 (13)0.0025 (11)0.0041 (11)0.0102 (11)
C160.0454 (14)0.0337 (14)0.0298 (12)0.0023 (12)0.0025 (11)0.0120 (10)
C170.0362 (12)0.0341 (13)0.0241 (10)0.0065 (11)0.0047 (10)0.0024 (9)
C180.0270 (10)0.0238 (11)0.0262 (10)0.0025 (9)0.0001 (9)0.0009 (9)
C190.0257 (11)0.0353 (13)0.0233 (10)0.0002 (10)0.0035 (9)0.0002 (9)
C200.0407 (14)0.0378 (14)0.0305 (11)0.0052 (11)0.0030 (11)0.0020 (10)
C210.0269 (12)0.0556 (17)0.0365 (13)0.0004 (12)0.0037 (10)0.0108 (12)
C220.0416 (14)0.0395 (14)0.0344 (12)0.0026 (12)0.0052 (11)0.0119 (11)
Geometric parameters (Å, º) top
C10—F31.319 (3)C7—C81.361 (3)
C10—F11.338 (3)C7—H70.9500
C10—F21.374 (3)C8—C91.433 (3)
C10—C11.501 (3)C8—C111.490 (3)
C10'—F1'1.335 (5)C12—C131.548 (3)
C10'—F2'1.310 (5)C12—H121.0000
C10'—C11.501 (3)C13—C171.534 (3)
C10'—F3'1.360 (5)C13—H131.0000
F4—C111.352 (3)C14—C151.526 (3)
F5—C111.347 (3)C14—H14A0.9900
F6—C111.344 (3)C14—H14B0.9900
O1—C121.425 (3)C15—C161.515 (4)
O1—H1O0.843 (11)C15—H15A0.9900
O2—C181.225 (3)C15—H15B0.9900
O3—C181.349 (3)C16—C171.527 (4)
O3—C191.478 (3)C16—H16A0.9900
N1—C11.322 (3)C16—H16B0.9900
N1—C91.361 (3)C17—H17A0.9900
N2—C181.360 (3)C17—H17B0.9900
N2—C141.474 (3)C19—C221.513 (4)
N2—C131.476 (3)C19—C201.515 (4)
C1—C21.399 (3)C19—C211.519 (4)
C2—C31.381 (3)C20—H20A0.9800
C2—H20.9500C20—H20B0.9800
C3—C41.421 (3)C20—H20C0.9800
C3—C121.517 (3)C21—H21A0.9800
C4—C91.422 (3)C21—H21B0.9800
C4—C51.425 (3)C21—H21C0.9800
C5—C61.364 (3)C22—H22A0.9800
C5—H50.9500C22—H22B0.9800
C6—C71.410 (3)C22—H22C0.9800
C6—H60.9500
F3—C10—F1107.2 (3)C13—C12—H12109.8
F3—C10—F2106.9 (3)N2—C13—C17110.70 (18)
F1—C10—F2104.3 (2)N2—C13—C12111.47 (18)
F3—C10—C1114.1 (2)C17—C13—C12112.22 (19)
F1—C10—C1112.6 (3)N2—C13—H13107.4
F2—C10—C1111.2 (2)C17—C13—H13107.4
F1'—C10'—F2'114.7 (11)C12—C13—H13107.4
F1'—C10'—C1116.8 (12)N2—C14—C15111.9 (2)
F2'—C10'—C1116.6 (6)N2—C14—H14A109.2
F1'—C10'—F3'102.8 (10)C15—C14—H14A109.2
F2'—C10'—F3'100.1 (8)N2—C14—H14B109.2
C1—C10'—F3'102.1 (7)C15—C14—H14B109.2
C12—O1—H1O111 (3)H14A—C14—H14B107.9
C18—O3—C19121.93 (18)C16—C15—C14110.2 (2)
C1—N1—C9116.55 (18)C16—C15—H15A109.6
C18—N2—C14122.69 (18)C14—C15—H15A109.6
C18—N2—C13118.66 (19)C16—C15—H15B109.6
C14—N2—C13118.57 (17)C14—C15—H15B109.6
N1—C1—C2125.2 (2)H15A—C15—H15B108.1
N1—C1—C10'113.32 (18)C15—C16—C17109.9 (2)
C2—C1—C10'121.47 (19)C15—C16—H16A109.7
N1—C1—C10113.32 (18)C17—C16—H16A109.7
C2—C1—C10121.47 (19)C15—C16—H16B109.7
C3—C2—C1119.1 (2)C17—C16—H16B109.7
C3—C2—H2120.5H16A—C16—H16B108.2
C1—C2—H2120.5C16—C17—C13113.3 (2)
C2—C3—C4118.04 (19)C16—C17—H17A108.9
C2—C3—C12118.62 (19)C13—C17—H17A108.9
C4—C3—C12123.32 (19)C16—C17—H17B108.9
C3—C4—C9117.99 (19)C13—C17—H17B108.9
C3—C4—C5123.76 (19)H17A—C17—H17B107.7
C9—C4—C5118.23 (18)O2—C18—O3124.4 (2)
C6—C5—C4121.0 (2)O2—C18—N2123.9 (2)
C6—C5—H5119.5O3—C18—N2111.7 (2)
C4—C5—H5119.5O3—C19—C22102.08 (19)
C5—C6—C7120.8 (2)O3—C19—C20109.75 (19)
C5—C6—H6119.6C22—C19—C20110.9 (2)
C7—C6—H6119.6O3—C19—C21110.4 (2)
C8—C7—C6120.2 (2)C22—C19—C21110.4 (2)
C8—C7—H7119.9C20—C19—C21112.8 (2)
C6—C7—H7119.9C19—C20—H20A109.5
C7—C8—C9120.6 (2)C19—C20—H20B109.5
C7—C8—C11119.99 (19)H20A—C20—H20B109.5
C9—C8—C11119.39 (19)C19—C20—H20C109.5
N1—C9—C4123.13 (18)H20A—C20—H20C109.5
N1—C9—C8117.76 (18)H20B—C20—H20C109.5
C4—C9—C8119.12 (19)C19—C21—H21A109.5
F6—C11—F5105.93 (18)C19—C21—H21B109.5
F6—C11—F4105.84 (18)H21A—C21—H21B109.5
F5—C11—F4106.39 (18)C19—C21—H21C109.5
F6—C11—C8112.43 (19)H21A—C21—H21C109.5
F5—C11—C8112.38 (18)H21B—C21—H21C109.5
F4—C11—C8113.30 (18)C19—C22—H22A109.5
O1—C12—C3110.71 (18)C19—C22—H22B109.5
O1—C12—C13105.59 (17)H22A—C22—H22B109.5
C3—C12—C13110.95 (18)C19—C22—H22C109.5
O1—C12—H12109.8H22A—C22—H22C109.5
C3—C12—H12109.8H22B—C22—H22C109.5
C9—N1—C1—C20.8 (3)C3—C4—C9—C8179.82 (19)
C9—N1—C1—C10'179.89 (19)C5—C4—C9—C81.4 (3)
C9—N1—C1—C10179.89 (19)C7—C8—C9—N1178.1 (2)
F1'—C10'—C1—N1170.2 (10)C11—C8—C9—N11.4 (3)
F2'—C10'—C1—N129.4 (10)C7—C8—C9—C42.1 (3)
F3'—C10'—C1—N178.6 (7)C11—C8—C9—C4178.51 (19)
F1'—C10'—C1—C28.9 (10)C7—C8—C11—F66.8 (3)
F2'—C10'—C1—C2149.7 (10)C9—C8—C11—F6173.75 (19)
F3'—C10'—C1—C2102.3 (7)C7—C8—C11—F5112.6 (2)
F1'—C10'—C1—C100 (100)C9—C8—C11—F566.8 (3)
F2'—C10'—C1—C100 (98)C7—C8—C11—F4126.8 (2)
F3'—C10'—C1—C100 (54)C9—C8—C11—F453.8 (3)
F3—C10—C1—N151.6 (4)C2—C3—C12—O138.0 (3)
F1—C10—C1—N1174.0 (3)C4—C3—C12—O1143.6 (2)
F2—C10—C1—N169.4 (3)C2—C3—C12—C1378.9 (2)
F3—C10—C1—C2129.3 (3)C4—C3—C12—C1399.5 (2)
F1—C10—C1—C26.9 (4)C18—N2—C13—C17138.6 (2)
F2—C10—C1—C2109.7 (3)C14—N2—C13—C1744.6 (3)
F3—C10—C1—C10'0 (16)C18—N2—C13—C1295.8 (2)
F1—C10—C1—C10'0 (100)C14—N2—C13—C1281.1 (2)
F2—C10—C1—C10'0 (100)O1—C12—C13—N2179.09 (17)
N1—C1—C2—C30.8 (4)C3—C12—C13—N259.1 (2)
C10'—C1—C2—C3178.2 (2)O1—C12—C13—C1756.1 (2)
C10—C1—C2—C3178.2 (2)C3—C12—C13—C17176.08 (19)
C1—C2—C3—C41.9 (3)C18—N2—C14—C15134.8 (2)
C1—C2—C3—C12176.6 (2)C13—N2—C14—C1548.5 (3)
C2—C3—C4—C91.3 (3)N2—C14—C15—C1653.7 (3)
C12—C3—C4—C9177.02 (19)C14—C15—C16—C1758.2 (3)
C2—C3—C4—C5177.0 (2)C15—C16—C17—C1356.3 (3)
C12—C3—C4—C54.7 (3)N2—C13—C17—C1647.6 (3)
C3—C4—C5—C6178.4 (2)C12—C13—C17—C1677.6 (2)
C9—C4—C5—C60.1 (3)C19—O3—C18—O27.6 (3)
C4—C5—C6—C70.6 (3)C19—O3—C18—N2172.07 (19)
C5—C6—C7—C80.0 (3)C14—N2—C18—O2179.1 (2)
C6—C7—C8—C91.3 (3)C13—N2—C18—O22.4 (3)
C6—C7—C8—C11179.2 (2)C14—N2—C18—O30.6 (3)
C1—N1—C9—C41.4 (3)C13—N2—C18—O3177.28 (18)
C1—N1—C9—C8178.7 (2)C18—O3—C19—C22177.8 (2)
C3—C4—C9—N10.3 (3)C18—O3—C19—C2060.1 (3)
C5—C4—C9—N1178.73 (19)C18—O3—C19—C2164.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.85 (3)1.96 (3)2.794 (3)171 (3)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC22H24F6N2O3
Mr478.43
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.888 (3), 10.696 (3), 21.158 (5)
V3)2237.7 (10)
Z4
Radiation typeCu Kα
µ (mm1)1.12
Crystal size (mm)0.12 × 0.11 × 0.10
Data collection
DiffractometerRigaku Saturn944+
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Tmin, Tmax0.863, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10899, 3722, 3640
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.130, 1.13
No. of reflections3722
No. of parameters314
No. of restraints31
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.44
Absolute structureFlack (1983), 1532 Friedel pairs
Absolute structure parameter0.08 (13)

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1o···O2i0.85 (3)1.96 (3)2.794 (3)171 (3)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES and FAPEMIG (Brazil).

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGonçalves, R. S. B., Kaiser, C. R., Souza, M. V. N. de, Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o1656–o1657.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGonçalves, R. S. B., Kaiser, C. R., Lourenço, M. C. S., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & da Silva, A. D. (2010). Eur. J. Med. Chem. 45, 6095–6100.  Web of Science PubMed Google Scholar
First citationGrellepois, F., Grellier, P., Bonnet-Delpon, D. & Bégué, J. P. (2005). ChemBioChem, 6, 648–652.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMaguire, J. D., Krisin, Marwoto, H., Richie, T. L., Fryauff, D. J. & Baird, J. K. (2006). Clin. Infect. Dis. 42, 1067–1072.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMao, J., Wang, Y., Wan, B., Kozikowski, A. P. S. G. & Franzblau, S. G. (2007). ChemMedChem, 2, 1624–1630.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPitaluga, A. Jr, Prado, L. D., Seiceira, R., Wardell, J. L. & Wardell, S. M. S. V. (2010). Int. J. Pharm. 398, 50–60.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Gonçalves, R. S. B., Wardell, J. L., Wardell, S. M. S. V. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3313–o3314.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWardell, J. L., de Souza, M. V. N., Wardell, S. M. S. V. & Lourenço, M. C. S. (2011a). J. Mol. Struct. 990, 67–74.  Web of Science CSD CrossRef CAS Google Scholar
First citationWardell, S. M. S. V., Wardell, J. L., Skakle, J. M. S. & Tiekink, E. R. T. (2011b). Z. Kristallogr. 226, 68–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationWardell, J. L., Wardell, S. M. S. V., Tiekink, E. R. T. & Lima, G. M. de (2010). Acta Cryst. E66, m336–m337.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds