organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Chloro­phen­yl)-2-oxo­ethyl 3,4-dimeth­­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSeQuent Scientific Ltd, No. 120 A & B, Industrial Area, Baikampady, New Mangalore, Karnataka 575 011, India, and cMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 11 November 2011; accepted 14 November 2011; online 19 November 2011)

In the title compound, C17H15ClO5, the benzene rings forms a dihedral angle of 74.45 (10)°. In the crystal, mol­ecules are linked into C(13) chains along [011] via C—H⋯O hydrogen bonds. The crystal packing also features short Cl⋯Cl contacts of 3.1253 (10) Å.

Related literature

For a related structure and background to the properties and applications of phenacyl benzoate derivatives, see: Fun et al. (2011[Fun, H.-K., Quah, C. K., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o1724.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClO5

  • Mr = 334.74

  • Triclinic, [P \overline 1]

  • a = 8.2277 (6) Å

  • b = 9.3380 (6) Å

  • c = 10.5986 (7) Å

  • α = 89.062 (2)°

  • β = 76.752 (2)°

  • γ = 83.674 (2)°

  • V = 787.76 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.31 × 0.22 × 0.13 mm

Data collection
  • Bruker SMART APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.966

  • 12242 measured reflections

  • 4535 independent reflections

  • 3056 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.234

  • S = 1.05

  • 4535 reflections

  • 210 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O5i 0.93 2.58 3.397 (3) 147
Symmetry code: (i) x, y-1, z-1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of phenacyl benzoates (Fun et al., 2011) with possible applications in medicinal chemistry, we hereby report the crystal structure of the title compound, (I).

The molecular structure of the title compound is shown in Fig. 1. The chloro-bound phenyl (C1-C6) and benzene (C10-C15) rings form a dihedral angle of 74.45 (10) °. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011).

In the crystal (Fig. 2), the molecules are linked into one-dimensional chains along [011] via intermolecular C2–H2A···O1i hydrogen bonds (Table 1). There is a short Cl1···Cl1 contact (symmetry code: 1-x, -y, -z) with distance = 3.1253 (10) Å which is shorter than the sum of van der Waals radii of the clorine atoms.

Related literature top

For a related structure and background to the properties and applications of phenacyl benzoate derivatives, see: Fun et al. (2011). For reference bond-length data, see: Allen et al. (1987).

Experimental top

The mixture of 3,4-dimethoxybenzoic acid (1.0 g, 0.0055 mol) potassium carbonate (0.95 g, 0.0069 mol) and 2-bromo-1-(4-chlorophenyl)ethanone (1.28 g, 0.0055 mol) in dimethyl formamide (10 ml) was stirred at room temperature for 2 h. On cooling, colorless needles of (I) begins to separate. They were collected by filtration and recrystallized from ethanol. Yield: 1.59 g, 86.9 %, m.p.: 415-416 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93-0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Structure description top

As part of our ongoing studies of phenacyl benzoates (Fun et al., 2011) with possible applications in medicinal chemistry, we hereby report the crystal structure of the title compound, (I).

The molecular structure of the title compound is shown in Fig. 1. The chloro-bound phenyl (C1-C6) and benzene (C10-C15) rings form a dihedral angle of 74.45 (10) °. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to a related structure (Fun et al., 2011).

In the crystal (Fig. 2), the molecules are linked into one-dimensional chains along [011] via intermolecular C2–H2A···O1i hydrogen bonds (Table 1). There is a short Cl1···Cl1 contact (symmetry code: 1-x, -y, -z) with distance = 3.1253 (10) Å which is shorter than the sum of van der Waals radii of the clorine atoms.

For a related structure and background to the properties and applications of phenacyl benzoate derivatives, see: Fun et al. (2011). For reference bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
2-(4-Chlorophenyl)-2-oxoethyl 3,4-dimethoxybenzoate top
Crystal data top
C17H15ClO5Z = 2
Mr = 334.74F(000) = 348
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2277 (6) ÅCell parameters from 3650 reflections
b = 9.3380 (6) Åθ = 2.6–29.9°
c = 10.5986 (7) ŵ = 0.27 mm1
α = 89.062 (2)°T = 296 K
β = 76.752 (2)°Needle, colourless
γ = 83.674 (2)°0.31 × 0.22 × 0.13 mm
V = 787.76 (9) Å3
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4535 independent reflections
Radiation source: fine-focus sealed tube3056 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.922, Tmax = 0.966k = 1311
12242 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.234H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1525P)2 + 0.0576P]
where P = (Fo2 + 2Fc2)/3
4535 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C17H15ClO5γ = 83.674 (2)°
Mr = 334.74V = 787.76 (9) Å3
Triclinic, P1Z = 2
a = 8.2277 (6) ÅMo Kα radiation
b = 9.3380 (6) ŵ = 0.27 mm1
c = 10.5986 (7) ÅT = 296 K
α = 89.062 (2)°0.31 × 0.22 × 0.13 mm
β = 76.752 (2)°
Data collection top
Bruker SMART APEXII DUO CCD
diffractometer
4535 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3056 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.966Rint = 0.022
12242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.234H-atom parameters constrained
S = 1.05Δρmax = 0.34 e Å3
4535 reflectionsΔρmin = 0.44 e Å3
210 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.43412 (9)0.12795 (7)0.09809 (7)0.0826 (3)
O10.2269 (3)0.5869 (2)0.59869 (14)0.0726 (5)
O20.05337 (18)0.83733 (16)0.56180 (15)0.0570 (4)
O30.31494 (19)0.90247 (18)0.50295 (14)0.0618 (4)
O40.2833 (2)1.30026 (19)0.84644 (15)0.0648 (5)
O50.0100 (2)1.30829 (18)0.99126 (14)0.0638 (4)
C10.1905 (3)0.4855 (2)0.27869 (18)0.0484 (4)
H1A0.11480.56150.26320.058*
C20.2470 (3)0.3768 (2)0.1871 (2)0.0543 (5)
H2A0.21080.37910.11010.065*
C30.3586 (3)0.2648 (2)0.2128 (2)0.0530 (5)
C40.4143 (3)0.2581 (3)0.3249 (3)0.0674 (6)
H4A0.48960.18140.33970.081*
C50.3572 (3)0.3669 (2)0.4157 (2)0.0593 (5)
H5A0.39380.36310.49260.071*
C60.2449 (2)0.48282 (19)0.39351 (16)0.0418 (4)
C70.1915 (2)0.5993 (2)0.49354 (17)0.0467 (4)
C80.0964 (3)0.7348 (2)0.4583 (2)0.0510 (5)
H8A0.16440.77700.38280.061*
H8B0.00540.71130.43580.061*
C90.1789 (2)0.9134 (2)0.57600 (18)0.0467 (4)
C100.1251 (2)1.01115 (19)0.69027 (17)0.0443 (4)
C110.0310 (3)1.0126 (2)0.7725 (2)0.0510 (5)
H11A0.10370.94790.75900.061*
C120.0813 (3)1.1103 (2)0.87599 (19)0.0508 (5)
H12A0.18721.11060.93100.061*
C130.0261 (2)1.2065 (2)0.89671 (17)0.0457 (4)
C140.1885 (2)1.2027 (2)0.81470 (17)0.0449 (4)
C150.2367 (2)1.1067 (2)0.71224 (17)0.0433 (4)
H15A0.34301.10500.65760.052*
C160.4543 (3)1.2941 (4)0.7765 (2)0.0756 (8)
H16A0.51121.35970.81510.113*
H16B0.45841.32040.68800.113*
H16C0.50821.19790.77940.113*
C170.1706 (3)1.3195 (3)1.0768 (2)0.0704 (7)
H17A0.17831.39461.13940.106*
H17B0.18711.22961.12070.106*
H17C0.25541.34181.02840.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0809 (5)0.0657 (4)0.0905 (5)0.0085 (3)0.0055 (3)0.0403 (3)
O10.0967 (13)0.0770 (11)0.0437 (8)0.0070 (9)0.0223 (8)0.0125 (7)
O20.0492 (8)0.0534 (8)0.0659 (9)0.0067 (6)0.0058 (6)0.0238 (7)
O30.0507 (8)0.0716 (10)0.0580 (8)0.0082 (7)0.0002 (6)0.0221 (7)
O40.0603 (9)0.0731 (10)0.0626 (9)0.0264 (8)0.0069 (7)0.0200 (8)
O50.0633 (9)0.0717 (10)0.0532 (8)0.0114 (7)0.0028 (7)0.0268 (7)
C10.0541 (11)0.0444 (9)0.0500 (10)0.0020 (7)0.0197 (8)0.0070 (7)
C20.0626 (12)0.0537 (11)0.0502 (10)0.0094 (9)0.0176 (9)0.0120 (8)
C30.0481 (10)0.0473 (10)0.0599 (11)0.0090 (8)0.0021 (8)0.0159 (8)
C40.0667 (14)0.0561 (12)0.0789 (15)0.0152 (10)0.0252 (12)0.0127 (11)
C50.0662 (13)0.0572 (12)0.0579 (11)0.0074 (10)0.0273 (10)0.0083 (9)
C60.0432 (9)0.0416 (9)0.0418 (8)0.0070 (7)0.0106 (7)0.0033 (7)
C70.0491 (10)0.0497 (10)0.0411 (8)0.0078 (8)0.0081 (7)0.0074 (7)
C80.0501 (10)0.0487 (10)0.0545 (10)0.0020 (8)0.0133 (8)0.0156 (8)
C90.0438 (9)0.0447 (9)0.0496 (9)0.0032 (7)0.0069 (7)0.0080 (7)
C100.0456 (9)0.0411 (9)0.0446 (9)0.0032 (7)0.0069 (7)0.0079 (7)
C110.0482 (10)0.0498 (10)0.0532 (10)0.0107 (8)0.0048 (8)0.0099 (8)
C120.0463 (10)0.0543 (11)0.0474 (9)0.0078 (8)0.0002 (8)0.0091 (8)
C130.0518 (10)0.0455 (9)0.0388 (8)0.0035 (7)0.0088 (7)0.0062 (7)
C140.0476 (9)0.0455 (9)0.0437 (9)0.0094 (7)0.0123 (7)0.0031 (7)
C150.0408 (9)0.0452 (9)0.0424 (8)0.0048 (7)0.0061 (7)0.0021 (7)
C160.0647 (14)0.107 (2)0.0586 (12)0.0436 (14)0.0054 (10)0.0113 (13)
C170.0721 (15)0.0784 (16)0.0519 (12)0.0014 (12)0.0013 (10)0.0237 (11)
Geometric parameters (Å, º) top
Cl1—C31.739 (2)C7—C81.502 (3)
O1—C71.215 (2)C8—H8A0.9700
O2—C91.353 (2)C8—H8B0.9700
O2—C81.423 (2)C9—C101.482 (2)
O3—C91.201 (2)C10—C111.376 (3)
O4—C141.356 (2)C10—C151.407 (2)
O4—C161.427 (3)C11—C121.396 (3)
O5—C131.352 (2)C11—H11A0.9300
O5—C171.415 (3)C12—C131.381 (3)
C1—C21.382 (3)C12—H12A0.9300
C1—C61.389 (3)C13—C141.414 (3)
C1—H1A0.9300C14—C151.377 (2)
C2—C31.380 (3)C15—H15A0.9300
C2—H2A0.9300C16—H16A0.9600
C3—C41.367 (3)C16—H16B0.9600
C4—C51.378 (3)C16—H16C0.9600
C4—H4A0.9300C17—H17A0.9600
C5—C61.397 (3)C17—H17B0.9600
C5—H5A0.9300C17—H17C0.9600
C6—C71.489 (2)
C9—O2—C8115.33 (15)O2—C9—C10111.37 (16)
C14—O4—C16117.59 (17)C11—C10—C15119.80 (16)
C13—O5—C17118.36 (17)C11—C10—C9121.82 (16)
C2—C1—C6121.01 (18)C15—C10—C9118.36 (16)
C2—C1—H1A119.5C10—C11—C12120.61 (17)
C6—C1—H1A119.5C10—C11—H11A119.7
C3—C2—C1118.36 (18)C12—C11—H11A119.7
C3—C2—H2A120.8C13—C12—C11119.99 (17)
C1—C2—H2A120.8C13—C12—H12A120.0
C4—C3—C2122.28 (19)C11—C12—H12A120.0
C4—C3—Cl1118.43 (18)O5—C13—C12125.37 (18)
C2—C3—Cl1119.28 (17)O5—C13—C14115.02 (16)
C3—C4—C5119.0 (2)C12—C13—C14119.61 (16)
C3—C4—H4A120.5O4—C14—C15125.87 (17)
C5—C4—H4A120.5O4—C14—C13114.09 (16)
C4—C5—C6120.66 (19)C15—C14—C13120.04 (16)
C4—C5—H5A119.7C14—C15—C10119.91 (16)
C6—C5—H5A119.7C14—C15—H15A120.0
C1—C6—C5118.69 (18)C10—C15—H15A120.0
C1—C6—C7123.08 (17)O4—C16—H16A109.5
C5—C6—C7118.22 (16)O4—C16—H16B109.5
O1—C7—C6121.47 (18)H16A—C16—H16B109.5
O1—C7—C8121.02 (18)O4—C16—H16C109.5
C6—C7—C8117.49 (15)H16A—C16—H16C109.5
O2—C8—C7111.92 (16)H16B—C16—H16C109.5
O2—C8—H8A109.2O5—C17—H17A109.5
C7—C8—H8A109.2O5—C17—H17B109.5
O2—C8—H8B109.2H17A—C17—H17B109.5
C7—C8—H8B109.2O5—C17—H17C109.5
H8A—C8—H8B107.9H17A—C17—H17C109.5
O3—C9—O2123.14 (17)H17B—C17—H17C109.5
O3—C9—C10125.48 (17)
C6—C1—C2—C30.3 (3)O2—C9—C10—C113.8 (3)
C1—C2—C3—C40.0 (3)O3—C9—C10—C154.4 (3)
C1—C2—C3—Cl1179.06 (15)O2—C9—C10—C15174.77 (16)
C2—C3—C4—C50.0 (4)C15—C10—C11—C121.5 (3)
Cl1—C3—C4—C5179.11 (19)C9—C10—C11—C12177.06 (18)
C3—C4—C5—C60.4 (4)C10—C11—C12—C130.1 (3)
C2—C1—C6—C50.7 (3)C17—O5—C13—C120.3 (3)
C2—C1—C6—C7178.23 (17)C17—O5—C13—C14179.6 (2)
C4—C5—C6—C10.7 (3)C11—C12—C13—O5178.19 (19)
C4—C5—C6—C7178.2 (2)C11—C12—C13—C141.7 (3)
C1—C6—C7—O1172.1 (2)C16—O4—C14—C156.9 (3)
C5—C6—C7—O18.9 (3)C16—O4—C14—C13174.0 (2)
C1—C6—C7—C89.6 (3)O5—C13—C14—O41.4 (3)
C5—C6—C7—C8169.30 (19)C12—C13—C14—O4178.68 (19)
C9—O2—C8—C779.1 (2)O5—C13—C14—C15177.72 (17)
O1—C7—C8—O21.5 (3)C12—C13—C14—C152.2 (3)
C6—C7—C8—O2179.80 (15)O4—C14—C15—C10179.87 (18)
C8—O2—C9—O34.0 (3)C13—C14—C15—C100.8 (3)
C8—O2—C9—C10176.80 (16)C11—C10—C15—C141.0 (3)
O3—C9—C10—C11177.1 (2)C9—C10—C15—C14177.60 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O5i0.932.583.397 (3)147
Symmetry code: (i) x, y1, z1.

Experimental details

Crystal data
Chemical formulaC17H15ClO5
Mr334.74
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.2277 (6), 9.3380 (6), 10.5986 (7)
α, β, γ (°)89.062 (2), 76.752 (2), 83.674 (2)
V3)787.76 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.31 × 0.22 × 0.13
Data collection
DiffractometerBruker SMART APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.922, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
12242, 4535, 3056
Rint0.022
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.234, 1.05
No. of reflections4535
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.44

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O5i0.932.583.397 (3)147
Symmetry code: (i) x, y1, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). AMV is thankful to the management of SeQuent Scientific Ltd, New Mangalore, India, for their invaluable support and allocation of resources for this work. AMI is thankful to the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Quah, C. K., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o1724.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds