organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,4-Di­chloro­phen­yl)-2-oxo­ethyl 4-meth­­oxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bMedicinal Chemstry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 15 November 2011; accepted 16 November 2011; online 19 November 2011)

In the title compound, C16H12Cl2O4, the dihedral angle between the benzene rings is 70.11 (6)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into a three-dimensional network. A C—H⋯π inter­action is also observed.

Related literature

For related structures and background to phenacyl benzoates, see: Fun et al. (2011a[Fun, H.-K., Asik, S. I. J., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011a). Acta Cryst. E67, o1687.],b[Fun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011b). Acta Cryst. E67, o1529.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12Cl2O4

  • Mr = 339.16

  • Monoclinic, P 21 /c

  • a = 9.0508 (1) Å

  • b = 7.0846 (1) Å

  • c = 23.3337 (3) Å

  • β = 102.509 (1)°

  • V = 1460.67 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 100 K

  • 0.36 × 0.30 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.942

  • 24788 measured reflections

  • 6502 independent reflections

  • 5027 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.097

  • S = 1.02

  • 6502 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4i 0.95 2.54 3.4809 (13) 173
C5—H5A⋯O2ii 0.95 2.35 3.2745 (15) 164
C8—H8B⋯O3iii 0.99 2.50 3.4124 (17) 153
C16—H16CCg1iv 0.98 2.84 3.5655 (15) 132
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+2; (iii) -x+1, -y+1, -z+2; (iv) -x+2, -y, -z+2.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing studies of phenacyl benzoates (Fun et al., 2011a,b), we hereby report the crystal structure of the title compound, (I).

The molecular structure of the title compound is shown in Fig. 1. The C1–C6 benzene ring [maximum deviation of 0.008 (1) Å at atom C4] and C10–C15 benzene ring [maximum deviation of 0.005 (1) Å at atoms C12 and C15] make a dihedral angle of 70.11 (6)° with each other. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a,b).

In the crystal structure (Fig. 2), the molecules are interconnected by C2—H2A···O4, C5—H5A···O2 and C8—H8B···O3 hydrogen bonds (Table 1) forming a three-dimensional network. The crystal structure is further stabilized by C—H···π interactions, involving the centroids of C1–C6 benzene rings.

Related literature top

For related structures and background to phenacyl benzoates, see: Fun et al. (2011a,b). For reference bond lengths, see: Allen et al. (1987). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The mixture of 4-methoxybenzoic acid (340.4 mg, 0.0022 mol), potassium carbonate (340.3 mg, 0.0025 mol) and 2-chloro-1-(2,4-dichlorophenyl) ethanone (500 mg, 0.0022 mol) in DMF (10 ml) was stirred at room temperature for 2 h. On cooling, colorless needle-shaped crystals of 2-(2,4-dichlorophenyl)-2-oxoethyl 4-methoxybenzoate begins to separate out. It was collected by filtration and then recrystallized from ethanol to yield colourless plates of (I). Yield: 691.6 mg, 92.7%, M.p.: 385–386 K.

Refinement top

All H atoms were positioned geometrically [C—H = 0.95, 0.98 or 0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group. In the final refinement, an outlier (-3 10 5) was omitted.

Structure description top

As part of our ongoing studies of phenacyl benzoates (Fun et al., 2011a,b), we hereby report the crystal structure of the title compound, (I).

The molecular structure of the title compound is shown in Fig. 1. The C1–C6 benzene ring [maximum deviation of 0.008 (1) Å at atom C4] and C10–C15 benzene ring [maximum deviation of 0.005 (1) Å at atoms C12 and C15] make a dihedral angle of 70.11 (6)° with each other. Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable to related structures (Fun et al., 2011a,b).

In the crystal structure (Fig. 2), the molecules are interconnected by C2—H2A···O4, C5—H5A···O2 and C8—H8B···O3 hydrogen bonds (Table 1) forming a three-dimensional network. The crystal structure is further stabilized by C—H···π interactions, involving the centroids of C1–C6 benzene rings.

For related structures and background to phenacyl benzoates, see: Fun et al. (2011a,b). For reference bond lengths, see: Allen et al. (1987). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds.
2-(2,4-Dichlorophenyl)-2-oxoethyl 4-methoxybenzoate top
Crystal data top
C16H12Cl2O4F(000) = 696
Mr = 339.16Dx = 1.542 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6774 reflections
a = 9.0508 (1) Åθ = 2.3–35.0°
b = 7.0846 (1) ŵ = 0.46 mm1
c = 23.3337 (3) ÅT = 100 K
β = 102.509 (1)°Plate, colourless
V = 1460.67 (3) Å30.36 × 0.30 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
6502 independent reflections
Radiation source: fine-focus sealed tube5027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 35.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1412
Tmin = 0.852, Tmax = 0.942k = 1110
24788 measured reflectionsl = 3637
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.040P)2 + 0.5816P]
where P = (Fo2 + 2Fc2)/3
6502 reflections(Δ/σ)max = 0.004
200 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C16H12Cl2O4V = 1460.67 (3) Å3
Mr = 339.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0508 (1) ŵ = 0.46 mm1
b = 7.0846 (1) ÅT = 100 K
c = 23.3337 (3) Å0.36 × 0.30 × 0.13 mm
β = 102.509 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6502 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5027 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.942Rint = 0.037
24788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.02Δρmax = 0.52 e Å3
6502 reflectionsΔρmin = 0.34 e Å3
200 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66881 (3)0.47740 (4)1.178052 (11)0.01926 (7)
Cl20.97532 (4)1.12299 (5)1.190485 (14)0.02429 (7)
O10.65268 (10)0.12541 (13)1.01931 (3)0.01802 (16)
O20.89431 (11)0.33741 (15)1.03290 (4)0.0262 (2)
O30.56227 (12)0.33618 (14)0.94784 (4)0.0265 (2)
O40.67141 (9)0.37683 (13)0.79718 (3)0.01786 (16)
C10.78521 (12)0.62113 (17)1.14699 (5)0.01504 (19)
C20.82728 (12)0.79099 (17)1.17576 (5)0.01596 (19)
H2A0.79140.82371.20980.019*
C30.92243 (12)0.91200 (17)1.15397 (5)0.0168 (2)
C40.97624 (13)0.86750 (18)1.10412 (5)0.0186 (2)
H4A1.03990.95251.08920.022*
C50.93461 (12)0.69604 (18)1.07679 (5)0.0166 (2)
H5A0.97260.66341.04320.020*
C60.83829 (12)0.56876 (17)1.09690 (4)0.01481 (19)
C70.80621 (12)0.38880 (18)1.06248 (5)0.0167 (2)
C80.66353 (13)0.27437 (18)1.06150 (5)0.0177 (2)
H8A0.66670.22051.10090.021*
H8B0.57360.35721.05110.021*
C90.60826 (13)0.17893 (18)0.96250 (5)0.0173 (2)
C100.62482 (12)0.02595 (17)0.92132 (4)0.01478 (18)
C110.56119 (12)0.05046 (17)0.86144 (5)0.01633 (19)
H11A0.50580.16200.84840.020*
C120.57849 (12)0.08669 (18)0.82128 (5)0.0163 (2)
H12A0.53420.06990.78080.020*
C130.66111 (12)0.24992 (17)0.84031 (5)0.01497 (19)
C140.72520 (13)0.27659 (18)0.89986 (5)0.0168 (2)
H14A0.78140.38760.91290.020*
C150.70546 (13)0.13853 (17)0.93974 (5)0.0166 (2)
H15A0.74770.15660.98030.020*
C160.75581 (14)0.54602 (19)0.81472 (5)0.0216 (2)
H16A0.74830.62930.78070.032*
H16B0.71470.61040.84500.032*
H16C0.86220.51400.83050.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02234 (12)0.01956 (14)0.01897 (11)0.00520 (10)0.01125 (9)0.00190 (10)
Cl20.02641 (14)0.01913 (15)0.02799 (14)0.00677 (11)0.00735 (11)0.00626 (11)
O10.0223 (4)0.0167 (4)0.0153 (3)0.0022 (3)0.0047 (3)0.0019 (3)
O20.0247 (4)0.0287 (5)0.0300 (4)0.0050 (4)0.0162 (4)0.0101 (4)
O30.0382 (5)0.0181 (5)0.0227 (4)0.0068 (4)0.0051 (4)0.0010 (3)
O40.0203 (4)0.0166 (4)0.0168 (3)0.0010 (3)0.0041 (3)0.0025 (3)
C10.0136 (4)0.0171 (5)0.0151 (4)0.0018 (4)0.0047 (3)0.0008 (4)
C20.0160 (4)0.0166 (5)0.0154 (4)0.0001 (4)0.0036 (3)0.0011 (4)
C30.0161 (4)0.0151 (5)0.0186 (4)0.0009 (4)0.0026 (3)0.0003 (4)
C40.0182 (5)0.0189 (6)0.0194 (5)0.0026 (4)0.0061 (4)0.0017 (4)
C50.0156 (4)0.0195 (6)0.0157 (4)0.0005 (4)0.0056 (3)0.0011 (4)
C60.0138 (4)0.0170 (5)0.0139 (4)0.0008 (4)0.0035 (3)0.0004 (4)
C70.0166 (4)0.0190 (6)0.0152 (4)0.0012 (4)0.0051 (3)0.0008 (4)
C80.0196 (5)0.0177 (6)0.0170 (4)0.0037 (4)0.0069 (4)0.0040 (4)
C90.0174 (5)0.0179 (5)0.0168 (4)0.0015 (4)0.0044 (4)0.0012 (4)
C100.0152 (4)0.0143 (5)0.0151 (4)0.0022 (4)0.0039 (3)0.0001 (4)
C110.0165 (4)0.0161 (5)0.0165 (4)0.0008 (4)0.0037 (3)0.0018 (4)
C120.0163 (4)0.0186 (6)0.0139 (4)0.0002 (4)0.0028 (3)0.0015 (4)
C130.0140 (4)0.0158 (5)0.0156 (4)0.0024 (4)0.0041 (3)0.0001 (4)
C140.0181 (5)0.0154 (5)0.0164 (4)0.0002 (4)0.0027 (3)0.0007 (4)
C150.0179 (5)0.0174 (5)0.0139 (4)0.0006 (4)0.0021 (3)0.0007 (4)
C160.0243 (5)0.0167 (6)0.0242 (5)0.0015 (4)0.0061 (4)0.0013 (4)
Geometric parameters (Å, º) top
Cl1—C11.7329 (11)C7—C81.5207 (16)
Cl2—C31.7357 (13)C8—H8A0.9900
O1—C91.3535 (14)C8—H8B0.9900
O1—C81.4320 (14)C9—C101.4774 (16)
O2—C71.2178 (13)C10—C151.3927 (16)
O3—C91.2123 (15)C10—C111.4019 (15)
O4—C131.3677 (14)C11—C121.3821 (16)
O4—C161.4326 (16)C11—H11A0.9500
C1—C21.3904 (16)C12—C131.3963 (17)
C1—C61.4063 (14)C12—H12A0.9500
C2—C31.3874 (16)C13—C141.3980 (15)
C2—H2A0.9500C14—C151.3878 (16)
C3—C41.3912 (16)C14—H14A0.9500
C4—C51.3857 (17)C15—H15A0.9500
C4—H4A0.9500C16—H16A0.9800
C5—C61.4037 (16)C16—H16B0.9800
C5—H5A0.9500C16—H16C0.9800
C6—C71.5013 (17)
C9—O1—C8115.37 (10)H8A—C8—H8B108.2
C13—O4—C16117.18 (9)O3—C9—O1123.00 (11)
C2—C1—C6121.51 (10)O3—C9—C10124.59 (10)
C2—C1—Cl1115.74 (8)O1—C9—C10112.40 (10)
C6—C1—Cl1122.73 (9)C15—C10—C11119.07 (10)
C3—C2—C1118.99 (10)C15—C10—C9122.23 (10)
C3—C2—H2A120.5C11—C10—C9118.67 (10)
C1—C2—H2A120.5C12—C11—C10120.42 (11)
C2—C3—C4121.60 (11)C12—C11—H11A119.8
C2—C3—Cl2118.64 (9)C10—C11—H11A119.8
C4—C3—Cl2119.76 (9)C11—C12—C13119.88 (10)
C5—C4—C3118.29 (11)C11—C12—H12A120.1
C5—C4—H4A120.9C13—C12—H12A120.1
C3—C4—H4A120.9O4—C13—C12115.32 (9)
C4—C5—C6122.41 (10)O4—C13—C14124.26 (11)
C4—C5—H5A118.8C12—C13—C14120.42 (10)
C6—C5—H5A118.8C15—C14—C13119.03 (11)
C5—C6—C1117.19 (11)C15—C14—H14A120.5
C5—C6—C7115.39 (9)C13—C14—H14A120.5
C1—C6—C7127.40 (10)C14—C15—C10121.18 (10)
O2—C7—C6118.85 (10)C14—C15—H15A119.4
O2—C7—C8119.36 (11)C10—C15—H15A119.4
C6—C7—C8121.73 (9)O4—C16—H16A109.5
O1—C8—C7109.56 (9)O4—C16—H16B109.5
O1—C8—H8A109.8H16A—C16—H16B109.5
C7—C8—H8A109.8O4—C16—H16C109.5
O1—C8—H8B109.8H16A—C16—H16C109.5
C7—C8—H8B109.8H16B—C16—H16C109.5
C6—C1—C2—C30.75 (17)C6—C7—C8—O1172.24 (10)
Cl1—C1—C2—C3178.95 (9)C8—O1—C9—O38.97 (16)
C1—C2—C3—C40.12 (17)C8—O1—C9—C10170.10 (9)
C1—C2—C3—Cl2179.57 (9)O3—C9—C10—C15166.89 (12)
C2—C3—C4—C51.14 (17)O1—C9—C10—C1512.17 (15)
Cl2—C3—C4—C5178.55 (9)O3—C9—C10—C1110.99 (17)
C3—C4—C5—C61.34 (17)O1—C9—C10—C11169.95 (10)
C4—C5—C6—C10.51 (17)C15—C10—C11—C120.08 (16)
C4—C5—C6—C7179.40 (11)C9—C10—C11—C12177.86 (10)
C2—C1—C6—C50.56 (16)C10—C11—C12—C130.65 (17)
Cl1—C1—C6—C5178.63 (8)C16—O4—C13—C12179.72 (10)
C2—C1—C6—C7178.18 (11)C16—O4—C13—C141.06 (16)
Cl1—C1—C6—C70.11 (17)C11—C12—C13—O4179.94 (10)
C5—C6—C7—O221.81 (16)C11—C12—C13—C140.69 (17)
C1—C6—C7—O2156.95 (12)O4—C13—C14—C15179.17 (10)
C5—C6—C7—C8155.42 (11)C12—C13—C14—C150.00 (16)
C1—C6—C7—C825.83 (17)C13—C14—C15—C100.75 (17)
C9—O1—C8—C775.93 (12)C11—C10—C15—C140.79 (17)
O2—C7—C8—O14.98 (16)C9—C10—C15—C14177.08 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.952.543.4809 (13)173
C5—H5A···O2ii0.952.353.2745 (15)164
C8—H8B···O3iii0.992.503.4124 (17)153
C16—H16C···Cg1iv0.982.843.5655 (15)132
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2; (iv) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC16H12Cl2O4
Mr339.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.0508 (1), 7.0846 (1), 23.3337 (3)
β (°) 102.509 (1)
V3)1460.67 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.36 × 0.30 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.852, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
24788, 6502, 5027
Rint0.037
(sin θ/λ)max1)0.810
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.02
No. of reflections6502
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.34

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 benzene ring.
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.952.543.4809 (13)173
C5—H5A···O2ii0.952.353.2745 (15)164
C8—H8B···O3iii0.992.503.4124 (17)153
C16—H16C···Cg1iv0.982.843.5655 (15)132
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+2, y+1, z+2; (iii) x+1, y+1, z+2; (iv) x+2, y, z+2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PSKBP/8630013). AMI thanks the Department of Atomic Energy, Board for Research in Nuclear Sciences, Government of India, for the Young Scientist award.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Asik, S. I. J., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011a). Acta Cryst. E67, o1687.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011b). Acta Cryst. E67, o1529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds