organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4aS,4bR,7R,10aS)-3,7-Di­methyl-10a-(propan-2-yl)-1,4,4a,4b,5,6,7,8,10,10a-deca­hydro­phenanthrene-1,4-dione

aBioMat-Departamento de Física, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos, SP, Brazil, bLaboratório de Cristalografia, Estereodinâmica e Modelagem Molecular, Universidade Federal de São Carlos, Departamento de Química, CP 676, 13565-905 São Carlos, SP, Brazil, cUniversidade Federal de São Carlos, Departamento de Química, CP 676, 13565-905 São Carlos, SP, Brazil, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

(Received 24 October 2011; accepted 27 October 2011; online 5 November 2011)

In the title compound, C19H26O2, the A ring adopts a chair conformation, whereas the B and C rings both adopt distorted half-chair conformations with the quaternary C atom common to both rings lying 0.577 (3) and 0.648 (3) Å out of the approximate plane defined by the remaining five C atoms (r.m.s. deviations = 0.1386 and 0.1156 Å) for the B and C rings, respectively. Mol­ecules are assembled in the crystal through C—H⋯O inter­actions involving both carbonyl O atoms, which lead to supra­molecular chains aligned along the b axis.

Related literature

For background to the biological activity of some diterpene compounds, see: Guo et al. (2011[Guo, P., Li, Y., Xu, J., Guo, Y., Jin, D.-Q., Gao, J., Hou, W. & Zhang, T. (2011). Fitoterapia, 82, 1123-1127.]); Slusarczyk et al. (2011[Slusarczyk, S., Zimmermann, S., Kaiser, M., Matkowski, A., Hamburger, M. & Adams, M. (2011). Planta Med. 77, 1594-1596.]). For the synthesis, see: Ferreira (2002[Ferreira, M. L. (2002). PhD thesis, Universidade Federal de São Carlos, Brazil.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C19H26O2

  • Mr = 286.40

  • Monoclinic, P 21

  • a = 10.882 (1) Å

  • b = 6.6015 (9) Å

  • c = 11.656 (1) Å

  • β = 102.53 (2)°

  • V = 817.40 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 290 K

  • 0.15 × 0.10 × 0.08 mm

Data collection
  • Enraf–Nonius CAD-4 Mach 3 diffractometer

  • 2470 measured reflections

  • 2334 independent reflections

  • 1100 reflections with I > 2σ(I)

  • Rint = 0.045

  • 3 standard reflections every 30 min intensity decay: 1.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.122

  • S = 0.98

  • 2334 reflections

  • 191 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.98 2.50 3.443 (3) 161
C5—H5⋯O1ii 0.93 2.52 3.438 (4) 171
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and MarvinSketch (Chemaxon, 2009[Chemaxon (2009). MarvinSketch. www.chemaxon.com.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Natural diterpenes exhibit a wide range of biological activities such as neuroprotectives (Guo et al. 2011) and as antiplasmodials and antitrypanocidals (Slusarczyk et al. 2011). While aiming at the synthesis of some hydrophenanthrene diterpenes, a series of new intermediates were obtained and among them, was the title compound (Ferreira, 2002), (I), which has been characterized crystallographically.

In (I), Fig. 1, a chair conformation is found for ring A. Each of the B and C rings presents a distorted half-chair conformation, with the C7 atom, common to both rings, lying 0.5769 (26) and 0.6480 (28) Å, respectively, out of the approximate plane defined by the remaining five C atoms (r.m.s. deviation = 0.1386 and 0.1156 Å for B and C, respectively). The ring puckering parameters for the three rings are: q2 = 0.022 (3), 0.315 (3), 0.384 (3) Å, q3 = 0.563 (3), -0.273 (3), -0.282 (3) Å, QT = 0.563 (3), 0.417 (3), 0.477 (3) Å, and θ = 2.3 (3), 130.9 (4), 126.3 (4)°, for rings A, B and C, respectively (Cremer & Pople, 1975).

In the crystal packing, the molecules are linked through C–H···O interactions, Table 1, involving both carbonyl-O atoms. This results in the formation of a supramolecular chain along the b axis, Fig. 2. The chains pack in the crystal structure with no specific interactions between them, Fig. 3.

Related literature top

For background to the biological activity of some diterpene compounds, see: Guo et al. (2011); Slusarczyk et al. (2011). For the synthesis, see: Ferreira (2002). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

The detailed synthesis of the title compound is described in a Ph.D. thesis (Ferreira, 2002). Crystals were grown by slow evaporation from its methanol solution held at 293 K; M.pt: 429.6–432.2 K. 1H-NMR (CDCl3, 400 MHz): δ (p.p.m.) 6.52 (q, 1H, J = 1.5 Hz); 5.35 (d, 1H, J = 3.9 Hz); 3.36 (d, 1H, J = 7.7 Hz); 2.65 (m, 1H); 2.35–2.38 (m, 2H); 2.18–2.19 (m, 2H); 2.01–2.06 (m, 1H); 1.96 (d, 3H, J = 1.5 Hz); 1.90–1.20 (m, 1H); 1.42–1.51 (m, 2H); 1.17–1.27 (m, 2H); 0.94 (d, 3H, J = 6.8 Hz); 0.75 (d, 3H, J = 5.8 Hz); 0.69 (d, 3H, J = 6.8 Hz); 13C (CDCl3, 100 MHz) δ (p.p.m.) 203.2; 202.6; 149.4; 136.5; 134.3; 118.7; 54.5; 54.2; 42.4; 41.2; 35.9; 32.9; 29.5; 28.0; 21.5; 17.6; 17.4; 16.9; 15.5. Analysis found: C 79.42, H 9.17%. C19H26O2 requires: C 79.68, H 9.15%.

Refinement top

The H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(methyl-C). The absolute structure was based on that of a starting material used in the synthesis (Ferreira, 2002).

Structure description top

Natural diterpenes exhibit a wide range of biological activities such as neuroprotectives (Guo et al. 2011) and as antiplasmodials and antitrypanocidals (Slusarczyk et al. 2011). While aiming at the synthesis of some hydrophenanthrene diterpenes, a series of new intermediates were obtained and among them, was the title compound (Ferreira, 2002), (I), which has been characterized crystallographically.

In (I), Fig. 1, a chair conformation is found for ring A. Each of the B and C rings presents a distorted half-chair conformation, with the C7 atom, common to both rings, lying 0.5769 (26) and 0.6480 (28) Å, respectively, out of the approximate plane defined by the remaining five C atoms (r.m.s. deviation = 0.1386 and 0.1156 Å for B and C, respectively). The ring puckering parameters for the three rings are: q2 = 0.022 (3), 0.315 (3), 0.384 (3) Å, q3 = 0.563 (3), -0.273 (3), -0.282 (3) Å, QT = 0.563 (3), 0.417 (3), 0.477 (3) Å, and θ = 2.3 (3), 130.9 (4), 126.3 (4)°, for rings A, B and C, respectively (Cremer & Pople, 1975).

In the crystal packing, the molecules are linked through C–H···O interactions, Table 1, involving both carbonyl-O atoms. This results in the formation of a supramolecular chain along the b axis, Fig. 2. The chains pack in the crystal structure with no specific interactions between them, Fig. 3.

For background to the biological activity of some diterpene compounds, see: Guo et al. (2011); Slusarczyk et al. (2011). For the synthesis, see: Ferreira (2002). For conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (Chemaxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing atom labelling scheme and displacement ellipsoids at the 30% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of the supramolecular chain in (I) aligned along the b axis and sustained by C—H···O interactions shown as orange dashed lines.
[Figure 3] Fig. 3. A view in projection down the b axis of the unit-cell contents of (I).
(4aS,4bR,7R,10aS)-3,7-Dimethyl- 10a-(propan-2-yl)-1,4,4a,4b,5,6,7,8,10,10a-decahydrophenanthrene-1,4-dione top
Crystal data top
C19H26O2F(000) = 312
Mr = 286.40Dx = 1.164 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 10.882 (1) Åθ = 10.3–18.3°
b = 6.6015 (9) ŵ = 0.07 mm1
c = 11.656 (1) ÅT = 290 K
β = 102.53 (2)°Irregular, colourless
V = 817.40 (16) Å30.15 × 0.10 × 0.08 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4 Mach 3
diffractometer
Rint = 0.045
Radiation source: fine-focus sealed tubeθmax = 29.0°, θmin = 1.8°
Graphite monochromatorh = 1414
ω/–2θ scansk = 08
2470 measured reflectionsl = 015
2334 independent reflections3 standard reflections every 30 min
1100 reflections with I > 2σ(I) intensity decay: 1.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.058P)2]
where P = (Fo2 + 2Fc2)/3
2334 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.18 e Å3
Crystal data top
C19H26O2V = 817.40 (16) Å3
Mr = 286.40Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.882 (1) ŵ = 0.07 mm1
b = 6.6015 (9) ÅT = 290 K
c = 11.656 (1) Å0.15 × 0.10 × 0.08 mm
β = 102.53 (2)°
Data collection top
Enraf–Nonius CAD-4 Mach 3
diffractometer
Rint = 0.045
2470 measured reflections3 standard reflections every 30 min
2334 independent reflections intensity decay: 1.4%
1100 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.122H-atom parameters constrained
S = 0.98Δρmax = 0.18 e Å3
2334 reflectionsΔρmin = 0.18 e Å3
191 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0639 (2)0.5986 (4)0.7953 (2)0.0384 (6)
H10.04370.46100.81670.046*
C20.2045 (2)0.5917 (4)0.7858 (2)0.0343 (6)
H20.22030.45530.75910.041*
C30.2885 (2)0.6188 (4)0.9059 (2)0.0370 (6)
C40.3242 (2)0.8281 (5)0.9474 (3)0.0410 (7)
C50.2941 (3)0.9818 (5)0.8724 (2)0.0432 (7)
H50.31201.11280.90050.052*
C60.2337 (3)0.9551 (4)0.7467 (2)0.0415 (7)
C70.2397 (3)0.7433 (4)0.6959 (2)0.0372 (7)
C80.1491 (3)0.7223 (5)0.5767 (2)0.0471 (7)
H8A0.15650.84160.53000.057*
H8B0.17410.60620.53610.057*
C90.0148 (3)0.6975 (5)0.5837 (2)0.0467 (7)
H90.04610.72330.51590.056*
C100.0248 (2)0.6416 (4)0.6784 (2)0.0422 (7)
C110.1614 (3)0.6269 (6)0.6815 (3)0.0566 (8)
H11A0.18130.48780.69720.068*
H11B0.21190.66410.60520.068*
C120.1952 (3)0.7642 (6)0.7752 (3)0.0559 (9)
H120.28150.73230.78130.067*
C130.1084 (3)0.7170 (6)0.8930 (3)0.0537 (8)
H13A0.12430.57990.91590.064*
H13B0.12740.80830.95200.064*
C140.0305 (2)0.7376 (5)0.8899 (2)0.0437 (7)
H14A0.08190.70220.96610.052*
H14B0.04850.87710.87330.052*
C150.3875 (3)0.8537 (6)1.0739 (2)0.0571 (9)
H15A0.40980.99341.08900.086*
H15B0.46210.77181.09140.086*
H15C0.33110.81241.12250.086*
C160.3807 (3)0.7097 (5)0.6859 (2)0.0479 (7)
H160.43380.72770.76470.057*
C170.4060 (3)0.4981 (6)0.6445 (3)0.0711 (11)
H17A0.37980.39920.69470.107*
H17B0.49430.48270.64750.107*
H17C0.35970.47880.56530.107*
C180.4232 (4)0.8654 (8)0.6055 (4)0.0969 (16)
H18A0.40790.99950.63110.145*
H18B0.37690.84570.52630.145*
H18C0.51150.84880.60860.145*
C190.1910 (4)0.9882 (7)0.7419 (3)0.0748 (11)
H19A0.24681.01100.66710.112*
H19B0.10681.02400.73720.112*
H19C0.21691.07000.80050.112*
O10.32371 (19)0.4746 (3)0.96994 (17)0.0523 (6)
O20.1854 (2)1.0979 (3)0.6885 (2)0.0685 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0447 (15)0.0296 (14)0.0405 (14)0.0061 (13)0.0087 (11)0.0004 (13)
C20.0455 (15)0.0231 (14)0.0352 (13)0.0008 (13)0.0106 (12)0.0005 (12)
C30.0402 (15)0.0341 (16)0.0387 (14)0.0034 (13)0.0130 (12)0.0045 (14)
C40.0362 (13)0.0428 (18)0.0443 (16)0.0067 (13)0.0093 (12)0.0088 (15)
C50.0481 (16)0.0291 (15)0.0515 (16)0.0075 (15)0.0089 (13)0.0057 (16)
C60.0456 (15)0.0309 (16)0.0481 (17)0.0071 (14)0.0100 (13)0.0028 (15)
C70.0477 (15)0.0298 (16)0.0355 (14)0.0007 (13)0.0121 (12)0.0008 (12)
C80.0636 (19)0.0435 (18)0.0357 (14)0.0031 (16)0.0135 (13)0.0008 (14)
C90.0567 (18)0.0395 (17)0.0395 (15)0.0014 (14)0.0005 (14)0.0069 (14)
C100.0456 (16)0.0366 (17)0.0421 (15)0.0070 (13)0.0041 (12)0.0100 (13)
C110.0468 (17)0.061 (2)0.0570 (18)0.0093 (17)0.0007 (14)0.0006 (18)
C120.0418 (15)0.069 (2)0.0583 (19)0.0028 (16)0.0130 (14)0.0004 (18)
C130.0484 (17)0.064 (2)0.0515 (17)0.0008 (17)0.0178 (13)0.0047 (17)
C140.0427 (15)0.0497 (19)0.0393 (15)0.0011 (14)0.0103 (12)0.0004 (14)
C150.0494 (17)0.070 (2)0.0501 (18)0.0090 (18)0.0060 (14)0.0125 (18)
C160.0486 (17)0.0531 (19)0.0451 (15)0.0001 (16)0.0170 (13)0.0074 (16)
C170.076 (2)0.073 (3)0.070 (2)0.021 (2)0.0293 (18)0.007 (2)
C180.081 (3)0.098 (4)0.127 (4)0.004 (3)0.058 (3)0.046 (3)
C190.079 (2)0.073 (3)0.075 (2)0.020 (2)0.0200 (19)0.003 (2)
O10.0620 (13)0.0425 (13)0.0506 (12)0.0052 (11)0.0081 (10)0.0102 (11)
O20.0952 (18)0.0276 (12)0.0723 (15)0.0052 (13)0.0047 (13)0.0091 (12)
Geometric parameters (Å, º) top
C1—C101.515 (4)C11—H11B0.9700
C1—C141.538 (4)C12—C131.521 (4)
C1—C21.559 (3)C12—C191.532 (6)
C1—H10.9800C12—H120.9800
C2—C31.507 (4)C13—C141.526 (4)
C2—C71.556 (3)C13—H13A0.9700
C2—H20.9800C13—H13B0.9700
C3—O11.219 (3)C14—H14A0.9700
C3—C41.488 (4)C14—H14B0.9700
C4—C51.333 (4)C15—H15A0.9600
C4—C151.495 (4)C15—H15B0.9600
C5—C61.480 (4)C15—H15C0.9600
C5—H50.9300C16—C171.522 (5)
C6—O21.213 (4)C16—C181.528 (5)
C6—C71.526 (4)C16—H160.9800
C7—C81.525 (4)C17—H17A0.9600
C7—C161.580 (4)C17—H17B0.9600
C8—C91.491 (4)C17—H17C0.9600
C8—H8A0.9700C18—H18A0.9600
C8—H8B0.9700C18—H18B0.9600
C9—C101.322 (4)C18—H18C0.9600
C9—H90.9300C19—H19A0.9600
C10—C111.498 (4)C19—H19B0.9600
C11—C121.524 (5)C19—H19C0.9600
C11—H11A0.9700
C10—C1—C14109.2 (2)C13—C12—C11109.0 (3)
C10—C1—C2112.7 (2)C13—C12—C19112.3 (3)
C14—C1—C2117.2 (2)C11—C12—C19111.6 (3)
C10—C1—H1105.6C13—C12—H12107.9
C14—C1—H1105.6C11—C12—H12107.9
C2—C1—H1105.6C19—C12—H12107.9
C3—C2—C7111.2 (2)C12—C13—C14112.6 (2)
C3—C2—C1109.7 (2)C12—C13—H13A109.1
C7—C2—C1114.7 (2)C14—C13—H13A109.1
C3—C2—H2106.9C12—C13—H13B109.1
C7—C2—H2106.9C14—C13—H13B109.1
C1—C2—H2106.9H13A—C13—H13B107.8
O1—C3—C4120.0 (2)C13—C14—C1110.7 (2)
O1—C3—C2121.5 (3)C13—C14—H14A109.5
C4—C3—C2118.4 (2)C1—C14—H14A109.5
C5—C4—C3118.9 (2)C13—C14—H14B109.5
C5—C4—C15123.8 (3)C1—C14—H14B109.5
C3—C4—C15117.2 (3)H14A—C14—H14B108.1
C4—C5—C6123.5 (3)C4—C15—H15A109.5
C4—C5—H5118.3C4—C15—H15B109.5
C6—C5—H5118.3H15A—C15—H15B109.5
O2—C6—C5120.4 (3)C4—C15—H15C109.5
O2—C6—C7123.0 (2)H15A—C15—H15C109.5
C5—C6—C7116.5 (2)H15B—C15—H15C109.5
C8—C7—C6111.3 (2)C17—C16—C18108.9 (3)
C8—C7—C2110.5 (2)C17—C16—C7113.4 (3)
C6—C7—C2106.9 (2)C18—C16—C7112.3 (3)
C8—C7—C16111.5 (2)C17—C16—H16107.3
C6—C7—C16106.3 (2)C18—C16—H16107.3
C2—C7—C16110.1 (2)C7—C16—H16107.3
C9—C8—C7114.1 (2)C16—C17—H17A109.5
C9—C8—H8A108.7C16—C17—H17B109.5
C7—C8—H8A108.7H17A—C17—H17B109.5
C9—C8—H8B108.7C16—C17—H17C109.5
C7—C8—H8B108.7H17A—C17—H17C109.5
H8A—C8—H8B107.6H17B—C17—H17C109.5
C10—C9—C8125.3 (3)C16—C18—H18A109.5
C10—C9—H9117.4C16—C18—H18B109.5
C8—C9—H9117.4H18A—C18—H18B109.5
C9—C10—C11122.9 (3)C16—C18—H18C109.5
C9—C10—C1122.9 (2)H18A—C18—H18C109.5
C11—C10—C1114.1 (2)H18B—C18—H18C109.5
C10—C11—C12111.9 (3)C12—C19—H19A109.5
C10—C11—H11A109.2C12—C19—H19B109.5
C12—C11—H11A109.2H19A—C19—H19B109.5
C10—C11—H11B109.2C12—C19—H19C109.5
C12—C11—H11B109.2H19A—C19—H19C109.5
H11A—C11—H11B107.9H19B—C19—H19C109.5
C10—C1—C2—C3161.1 (2)C1—C2—C7—C16175.1 (2)
C14—C1—C2—C333.1 (3)C6—C7—C8—C976.9 (3)
C10—C1—C2—C735.2 (3)C2—C7—C8—C941.7 (3)
C14—C1—C2—C792.8 (3)C16—C7—C8—C9164.6 (2)
C7—C2—C3—O1143.0 (3)C7—C8—C9—C1018.3 (4)
C1—C2—C3—O189.0 (3)C8—C9—C10—C11177.6 (3)
C7—C2—C3—C439.3 (3)C8—C9—C10—C11.2 (5)
C1—C2—C3—C488.6 (3)C14—C1—C10—C9122.4 (3)
O1—C3—C4—C5174.1 (3)C2—C1—C10—C99.7 (4)
C2—C3—C4—C58.2 (4)C14—C1—C10—C1154.3 (3)
O1—C3—C4—C158.5 (4)C2—C1—C10—C11173.6 (2)
C2—C3—C4—C15169.2 (2)C9—C10—C11—C12121.1 (3)
C3—C4—C5—C64.0 (4)C1—C10—C11—C1255.6 (4)
C15—C4—C5—C6178.8 (3)C10—C11—C12—C1354.3 (4)
C4—C5—C6—O2164.9 (3)C10—C11—C12—C1970.3 (4)
C4—C5—C6—C716.9 (4)C11—C12—C13—C1456.3 (4)
O2—C6—C7—C815.4 (4)C19—C12—C13—C1467.8 (4)
C5—C6—C7—C8166.5 (2)C12—C13—C14—C157.5 (4)
O2—C6—C7—C2136.2 (3)C10—C1—C14—C1354.0 (3)
C5—C6—C7—C245.7 (3)C2—C1—C14—C13176.3 (2)
O2—C6—C7—C16106.2 (3)C8—C7—C16—C1762.7 (3)
C5—C6—C7—C1672.0 (3)C6—C7—C16—C17175.8 (2)
C3—C2—C7—C8176.7 (2)C2—C7—C16—C1760.4 (3)
C1—C2—C7—C851.5 (3)C8—C7—C16—C1861.2 (4)
C3—C2—C7—C655.4 (3)C6—C7—C16—C1860.3 (3)
C1—C2—C7—C669.8 (3)C2—C7—C16—C18175.7 (3)
C3—C2—C7—C1659.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.982.503.443 (3)161
C5—H5···O1ii0.932.523.438 (4)171
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H26O2
Mr286.40
Crystal system, space groupMonoclinic, P21
Temperature (K)290
a, b, c (Å)10.882 (1), 6.6015 (9), 11.656 (1)
β (°) 102.53 (2)
V3)817.40 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerEnraf–Nonius CAD-4 Mach 3
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2470, 2334, 1100
Rint0.045
(sin θ/λ)max1)0.681
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.122, 0.98
No. of reflections2334
No. of parameters191
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), MolEN (Fair, 1990), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (Chemaxon, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O2i0.982.503.443 (3)161
C5—H5···O1ii0.932.523.438 (4)171
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

We thank FAPESP, CNPq (306532/2009–3 to JZ-S; 308116/2010–0 to IC) and CAPES (808/2009 to JZ-S and IC) for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChemaxon (2009). MarvinSketch. www.chemaxon.com.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira, M. L. (2002). PhD thesis, Universidade Federal de São Carlos, Brazil.  Google Scholar
First citationGuo, P., Li, Y., Xu, J., Guo, Y., Jin, D.-Q., Gao, J., Hou, W. & Zhang, T. (2011). Fitoterapia, 82, 1123–1127.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSlusarczyk, S., Zimmermann, S., Kaiser, M., Matkowski, A., Hamburger, M. & Adams, M. (2011). Planta Med. 77, 1594–1596.  Web of Science CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds