organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Bis(quinolin-8-yl)-2,2′-[(1,3,4-thia­diazole-2,5-di­yl)bis­­(sulfanedi­yl)]diacetamide monohydrate

aInstitute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai 201305, People's Republic of China, and bCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: wenyyhh@126.com

(Received 24 October 2011; accepted 8 November 2011; online 12 November 2011)

In the title compound, C24H18N6O2S3·H2O, the thia­diazole ring makes dihedral angles of 78.00 (13) and 77.27 (13)° with the quinoline ring systems. In the crystal, mol­ecules are linked into a two-dimensional network by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to the applications of 2,5-dimercapto-1,3,4-thia­diazole, see: Vullo et al. (2003[Vullo, D., Franchi, M., Gallori, E., Pastorek, J., Scozzafava, A., Pastorekova, S. & Supuran, C. T. (2003). Bioorg. Med. Chem. Lett. 13, 1005-1009.]); Gurn (2001[Gurn, N. (2001). J. Sci. Ind. Res. 60, 601-605.]). For related 2,5-dimercapto-1,3,4-thia­diazole structures, see: Wen et al. (2005[Wen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347-o348.]); Zhang et al. (2005[Zhang, S. S., Wen, Y.-H., Yu, B.-H., Liu, Q. & Li, X.-M. (2005). Indian J. Heterocycl. Chem. 15, 117-120.]).

[Scheme 1]

Experimental

Crystal data
  • C24H18N6O2S3·H2O

  • Mr = 536.64

  • Monoclinic, P 21 /n

  • a = 10.8215 (8) Å

  • b = 10.2355 (8) Å

  • c = 21.5510 (16) Å

  • β = 90.068 (1)°

  • V = 2387.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 293 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.949, Tmax = 0.966

  • 12711 measured reflections

  • 4542 independent reflections

  • 3469 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.109

  • S = 1.02

  • 4542 reflections

  • 333 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O1 0.95 (7) 2.07 (7) 2.990 (3) 162 (6)
O1W—H1WB⋯O2i 0.94 (4) 1.91 (4) 2.841 (3) 175 (4)
C11—H11B⋯O1Wii 0.97 2.49 3.332 (4) 145
C23—H23⋯O1iii 0.93 2.55 3.411 (4) 155
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) x, y+1, z.

Data collection: APEX2 (Bruker 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2001[Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiodiazole and its derivatives have attracted much attention in the development of the new kind pesticide. 2,5-Dimercapto-1,3,4-thiadiazole (DMTD) is an effective stabilizer for emulsions, and its derivatives can be absorbed by plant cells, so they can be prepared as bactericides, herbicides and insecticides, etc (Vullo et al., 2003; Gurn, 2001). In this paper, a new DMTD derivative of amide-based open-chain crown-ether, 2,5-di(quinolin-8-ylcarbamoylmethylthio)-1,3,4-thiodiazole, was synthesized and an X-ray crystal structure undertaken to elucidate its molecular conformation (Fig. 1).

The crystal structure of the title compound, consists of a C24H18N6O2S3 molecule and a crystal water molecule. All bond lengths and angles in the title compound are within normal ranges, and are comparable with the structural related compounds (Wen et al., 2005; Zhang et al., 2005). The bond lengths in thiadiazole ring show a character intermediate between single and double bond because of the π-conjugation. The thiadiazole ring and two quinoline rings are each coplanar with their attached atoms, excluding the H atoms attached to them, while the whole molecule is not planar, with dihedral angles of 78.00 (13) and 77.27 (13)° between the thiadiazole ring and the two quinoline rings, respectively. The N1 atom adopts a planar configuration with the sum of the bond angles around atom N1 being 360.00°.

In the crystal packing, the molecules are linked into network structure by O1W—H1WA···O1, O1W—H1WB···O2, C11—H11B···O1W and C23—H23A···O1 hydrogen bond interactions (Table 1, Fig. 2).

Related literature top

For background to the applications of 2,5-dimercapto-1,3,4-thiadiazole, see: Vullo et al. (2003); Gurn (2001). For related 2,5-dimercapto-1,3,4-thiadiazole structures, see: Wen et al. (2005); Zhang et al. (2005).

Experimental top

After stirring the 40 ml acetone solution of 2,5-dimercapto-1,3,4-thiodiazole (1.50 g, 10 mmole), K2CO3 (1.52 g, 11 mmole) and NaI (0.5 g) at room temperature for 30 minutes, a 20 ml solution of 2-chloro-N-quinolin-8-ylacetamide (4.41 g, 20 mmoles) in acetone was added drop by drop, and the mixture was refluxed at 329 K for 3 h. After cooling to room temperature, the mixture was washed three times with water (3 × 5 ml) and then filtered. The filter cake was washed three times with acetone (3 × 5 ml). 2,5-di(quinolin-8-ylcarbamoylmethylthio)-1,3,4-thiodiazole was obtained after dryness of the resulting coffee powders at room temperature for 48 h. Yield 3.91 g (80.1%), mp 166.5–167.5°C. Anal. Calcd. (%) for C24H18N6O2S3: C, 55.58; H, 3.50; N, 16.20; S, 18.55. Found (%): C, 55.62; H, 3.55; N, 16.26; S, 18.53.

Brown single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation at room temperature from CH3CH2OH for 15 days.

Refinement top

Water molecule bound H atoms were located in difference Fourier maps and their positional parameters refined with a distance restraint [O—H = 0.85 (10) Å] and a angle restraint. Other H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.95–0.99 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N).

Structure description top

Thiodiazole and its derivatives have attracted much attention in the development of the new kind pesticide. 2,5-Dimercapto-1,3,4-thiadiazole (DMTD) is an effective stabilizer for emulsions, and its derivatives can be absorbed by plant cells, so they can be prepared as bactericides, herbicides and insecticides, etc (Vullo et al., 2003; Gurn, 2001). In this paper, a new DMTD derivative of amide-based open-chain crown-ether, 2,5-di(quinolin-8-ylcarbamoylmethylthio)-1,3,4-thiodiazole, was synthesized and an X-ray crystal structure undertaken to elucidate its molecular conformation (Fig. 1).

The crystal structure of the title compound, consists of a C24H18N6O2S3 molecule and a crystal water molecule. All bond lengths and angles in the title compound are within normal ranges, and are comparable with the structural related compounds (Wen et al., 2005; Zhang et al., 2005). The bond lengths in thiadiazole ring show a character intermediate between single and double bond because of the π-conjugation. The thiadiazole ring and two quinoline rings are each coplanar with their attached atoms, excluding the H atoms attached to them, while the whole molecule is not planar, with dihedral angles of 78.00 (13) and 77.27 (13)° between the thiadiazole ring and the two quinoline rings, respectively. The N1 atom adopts a planar configuration with the sum of the bond angles around atom N1 being 360.00°.

In the crystal packing, the molecules are linked into network structure by O1W—H1WA···O1, O1W—H1WB···O2, C11—H11B···O1W and C23—H23A···O1 hydrogen bond interactions (Table 1, Fig. 2).

For background to the applications of 2,5-dimercapto-1,3,4-thiadiazole, see: Vullo et al. (2003); Gurn (2001). For related 2,5-dimercapto-1,3,4-thiadiazole structures, see: Wen et al. (2005); Zhang et al. (2005).

Computing details top

Data collection: APEX2 (Bruker 2001); cell refinement: SMART (Bruker 2001); data reduction: SAINT (Bruker 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed down the c axis.
N,N-Bis(quinolin-8-yl)-2,2'-[(1,3,4-thiadiazole- 2,5-diyl)bis(sulfanediyl)]diacetamide monohydrate top
Crystal data top
C24H18N6O2S3·H2OF(000) = 1112
Mr = 536.64Dx = 1.493 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2913 reflections
a = 10.8215 (8) Åθ = 2.2–24.6°
b = 10.2355 (8) ŵ = 0.35 mm1
c = 21.5510 (16) ÅT = 293 K
β = 90.068 (1)°Prism, brown
V = 2387.1 (3) Å30.15 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4542 independent reflections
Radiation source: fine-focus sealed tube3469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 25.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1113
Tmin = 0.949, Tmax = 0.966k = 1211
12711 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0551P)2 + 0.3494P]
where P = (Fo2 + 2Fc2)/3
4542 reflections(Δ/σ)max < 0.001
333 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = 0.19 e Å3
Crystal data top
C24H18N6O2S3·H2OV = 2387.1 (3) Å3
Mr = 536.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8215 (8) ŵ = 0.35 mm1
b = 10.2355 (8) ÅT = 293 K
c = 21.5510 (16) Å0.15 × 0.10 × 0.10 mm
β = 90.068 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4542 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3469 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.966Rint = 0.031
12711 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
4542 reflectionsΔρmin = 0.19 e Å3
333 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.48854 (6)0.33999 (6)0.03568 (3)0.04181 (18)
S20.65584 (6)0.67713 (6)0.23342 (3)0.04294 (18)
S30.52541 (6)0.56902 (7)0.12152 (3)0.0484 (2)
N20.93916 (17)0.68189 (19)0.23701 (8)0.0376 (5)
H20.88600.72720.21660.045*
N40.68075 (18)0.4337 (2)0.18382 (9)0.0409 (5)
N50.78366 (18)0.4925 (2)0.08496 (9)0.0445 (5)
N60.98890 (17)0.8914 (2)0.16646 (9)0.0422 (5)
O20.95579 (16)0.5195 (2)0.30789 (9)0.0598 (5)
C241.0876 (2)0.8188 (2)0.18599 (10)0.0342 (5)
C161.0642 (2)0.7078 (2)0.22398 (10)0.0344 (5)
O10.76858 (17)0.09593 (19)0.04223 (9)0.0592 (5)
C80.8872 (2)0.4250 (2)0.06819 (10)0.0375 (5)
C100.7060 (2)0.1861 (2)0.02251 (10)0.0395 (6)
C201.2107 (2)0.8493 (2)0.16943 (11)0.0374 (5)
C150.8927 (2)0.5951 (2)0.27744 (10)0.0383 (5)
C90.8725 (2)0.3130 (2)0.02972 (10)0.0382 (5)
N30.63967 (18)0.35305 (19)0.13605 (8)0.0413 (5)
N10.75026 (17)0.2858 (2)0.01150 (9)0.0416 (5)
H10.69580.34110.02400.050*
C130.62927 (19)0.5483 (2)0.18185 (10)0.0353 (5)
C41.0072 (2)0.4606 (3)0.08780 (11)0.0435 (6)
C120.5590 (2)0.4104 (2)0.10073 (10)0.0361 (5)
C140.7546 (2)0.5972 (2)0.28903 (10)0.0398 (6)
H14A0.74100.63840.32900.080*
H14B0.72710.50740.29270.080*
C110.5678 (2)0.1851 (2)0.03428 (11)0.0416 (6)
H11A0.55370.14230.07380.080*
H11B0.52950.13140.00250.080*
C10.9732 (2)0.2404 (3)0.01294 (12)0.0499 (7)
H1A0.96330.16630.01150.060*
C191.3081 (2)0.7714 (3)0.19269 (12)0.0467 (6)
H191.38950.79200.18310.056*
C211.2295 (2)0.9559 (3)0.12920 (12)0.0461 (6)
H211.30890.97830.11660.055*
C221.1310 (3)1.0255 (3)0.10913 (12)0.0513 (7)
H221.14181.09580.08240.062*
C60.9135 (3)0.6360 (3)0.14421 (12)0.0560 (7)
H60.91860.70770.17050.067*
C171.1607 (2)0.6324 (2)0.24427 (11)0.0432 (6)
H171.14560.55840.26820.052*
C181.2827 (2)0.6669 (3)0.22894 (12)0.0506 (7)
H181.34760.61660.24410.061*
C21.0919 (2)0.2781 (3)0.03267 (13)0.0585 (8)
H2A1.15990.22840.02080.070*
C231.0124 (3)0.9901 (3)0.12920 (12)0.0517 (7)
H230.94591.03970.11530.062*
C70.7990 (3)0.5934 (3)0.12173 (12)0.0542 (7)
H70.72900.63980.13370.065*
C31.1092 (2)0.3847 (3)0.06834 (13)0.0552 (7)
H31.18870.40840.08020.066*
C51.0168 (3)0.5704 (3)0.12682 (12)0.0520 (7)
H51.09390.59800.14070.062*
O1W0.6164 (3)0.1290 (2)0.08683 (12)0.0789 (7)
H1WA0.679 (6)0.071 (7)0.073 (3)0.27 (4)*
H1WB0.593 (4)0.085 (4)0.1230 (19)0.130 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0407 (4)0.0475 (4)0.0372 (3)0.0041 (3)0.0073 (3)0.0041 (3)
S20.0381 (3)0.0438 (4)0.0470 (4)0.0016 (3)0.0049 (3)0.0076 (3)
S30.0509 (4)0.0457 (4)0.0487 (4)0.0147 (3)0.0176 (3)0.0088 (3)
N20.0308 (10)0.0446 (12)0.0373 (10)0.0012 (8)0.0025 (8)0.0077 (9)
N40.0423 (11)0.0442 (13)0.0363 (11)0.0041 (9)0.0060 (9)0.0003 (9)
N50.0432 (12)0.0470 (13)0.0434 (12)0.0013 (10)0.0001 (9)0.0033 (10)
N60.0392 (11)0.0471 (13)0.0403 (11)0.0049 (9)0.0019 (9)0.0064 (10)
O20.0464 (11)0.0685 (13)0.0645 (12)0.0073 (9)0.0055 (9)0.0286 (10)
C240.0353 (13)0.0353 (13)0.0319 (11)0.0013 (10)0.0001 (10)0.0070 (10)
C160.0321 (12)0.0392 (14)0.0321 (12)0.0000 (10)0.0004 (9)0.0036 (10)
O10.0534 (11)0.0576 (13)0.0666 (12)0.0114 (9)0.0089 (9)0.0233 (10)
C80.0389 (13)0.0430 (14)0.0307 (12)0.0013 (10)0.0004 (10)0.0067 (11)
C100.0451 (14)0.0397 (14)0.0337 (12)0.0017 (11)0.0002 (10)0.0017 (11)
C200.0350 (13)0.0375 (14)0.0398 (13)0.0025 (10)0.0018 (10)0.0083 (11)
C150.0380 (13)0.0415 (14)0.0355 (12)0.0014 (11)0.0010 (10)0.0017 (11)
C90.0379 (13)0.0454 (15)0.0313 (12)0.0014 (11)0.0027 (10)0.0061 (11)
N30.0487 (12)0.0406 (12)0.0345 (10)0.0035 (9)0.0069 (9)0.0001 (9)
N10.0385 (11)0.0450 (12)0.0414 (11)0.0037 (9)0.0025 (9)0.0054 (10)
C130.0276 (11)0.0439 (14)0.0346 (12)0.0019 (10)0.0010 (9)0.0009 (11)
C40.0447 (15)0.0487 (16)0.0373 (13)0.0034 (12)0.0056 (11)0.0073 (12)
C120.0329 (12)0.0422 (14)0.0331 (12)0.0008 (10)0.0010 (10)0.0006 (10)
C140.0366 (13)0.0502 (16)0.0326 (12)0.0058 (11)0.0007 (10)0.0035 (11)
C110.0453 (14)0.0381 (14)0.0415 (13)0.0019 (11)0.0010 (11)0.0014 (11)
C10.0477 (16)0.0579 (18)0.0440 (14)0.0072 (13)0.0041 (12)0.0048 (13)
C190.0324 (13)0.0504 (16)0.0574 (16)0.0016 (11)0.0048 (11)0.0051 (13)
C210.0440 (14)0.0458 (16)0.0484 (15)0.0084 (12)0.0081 (12)0.0052 (12)
C220.0588 (17)0.0461 (16)0.0492 (15)0.0045 (13)0.0042 (13)0.0104 (13)
C60.067 (2)0.0495 (17)0.0520 (16)0.0082 (14)0.0080 (14)0.0066 (13)
C170.0412 (14)0.0404 (15)0.0479 (14)0.0023 (11)0.0007 (11)0.0053 (12)
C180.0353 (14)0.0530 (17)0.0634 (17)0.0087 (12)0.0035 (12)0.0026 (14)
C20.0413 (15)0.076 (2)0.0586 (17)0.0156 (14)0.0047 (13)0.0043 (16)
C230.0528 (17)0.0515 (17)0.0507 (16)0.0107 (13)0.0016 (12)0.0124 (13)
C70.0529 (17)0.0523 (18)0.0575 (17)0.0025 (13)0.0021 (13)0.0093 (14)
C30.0374 (15)0.072 (2)0.0567 (17)0.0002 (13)0.0064 (12)0.0029 (15)
C50.0480 (16)0.0574 (18)0.0505 (16)0.0131 (13)0.0100 (12)0.0044 (14)
O1W0.0971 (18)0.0642 (15)0.0753 (16)0.0058 (13)0.0050 (13)0.0143 (13)
Geometric parameters (Å, º) top
S1—C121.750 (2)N1—H10.8600
S1—C111.803 (3)C4—C51.407 (4)
S2—C131.748 (2)C4—C31.414 (4)
S2—C141.801 (2)C14—H14A0.9700
S3—C121.723 (2)C14—H14B0.9700
S3—C131.731 (2)C11—H11A0.9700
N2—C151.343 (3)C11—H11B0.9700
N2—C161.408 (3)C1—C21.408 (4)
N2—H20.8600C1—H1A0.9300
N4—C131.299 (3)C19—C181.353 (4)
N4—N31.392 (3)C19—H190.9300
N5—C71.313 (3)C21—C221.352 (4)
N5—C81.365 (3)C21—H210.9300
N6—C231.316 (3)C22—C231.403 (4)
N6—C241.367 (3)C22—H220.9300
O2—C151.222 (3)C6—C51.357 (4)
C24—C201.414 (3)C6—C71.400 (4)
C24—C161.424 (3)C6—H60.9300
C16—C171.370 (3)C17—C181.406 (3)
O1—C101.221 (3)C17—H170.9300
C8—C41.414 (3)C18—H180.9300
C8—C91.424 (3)C2—C31.347 (4)
C10—N11.345 (3)C2—H2A0.9300
C10—C111.517 (3)C23—H230.9300
C20—C211.409 (3)C7—H70.9300
C20—C191.413 (3)C3—H30.9300
C15—C141.516 (3)C5—H50.9300
C9—C11.367 (3)O1W—H1WA0.95 (6)
C9—N11.408 (3)O1W—H1WB0.93 (4)
N3—C121.298 (3)
C12—S1—C1199.71 (11)C15—C14—H14B107.6
C13—S2—C14100.22 (11)S2—C14—H14B107.6
C12—S3—C1386.72 (11)H14A—C14—H14B107.1
C15—N2—C16127.9 (2)C10—C11—S1117.78 (17)
C15—N2—H2116.0C10—C11—H11A107.9
C16—N2—H2116.0S1—C11—H11A107.9
C13—N4—N3112.00 (18)C10—C11—H11B107.9
C7—N5—C8117.0 (2)S1—C11—H11B107.9
C23—N6—C24117.0 (2)H11A—C11—H11B107.2
N6—C24—C20122.5 (2)C9—C1—C2119.9 (3)
N6—C24—C16118.1 (2)C9—C1—H1A120.0
C20—C24—C16119.3 (2)C2—C1—H1A120.0
C17—C16—N2124.3 (2)C18—C19—C20120.0 (2)
C17—C16—C24119.8 (2)C18—C19—H19120.0
N2—C16—C24115.88 (19)C20—C19—H19120.0
N5—C8—C4123.0 (2)C22—C21—C20119.3 (2)
N5—C8—C9118.0 (2)C22—C21—H21120.3
C4—C8—C9119.1 (2)C20—C21—H21120.3
O1—C10—N1124.5 (2)C21—C22—C23119.1 (2)
O1—C10—C11118.9 (2)C21—C22—H22120.4
N1—C10—C11116.6 (2)C23—C22—H22120.4
C21—C20—C19123.2 (2)C5—C6—C7118.7 (3)
C21—C20—C24117.6 (2)C5—C6—H6120.7
C19—C20—C24119.2 (2)C7—C6—H6120.7
O2—C15—N2123.9 (2)C16—C17—C18119.9 (2)
O2—C15—C14118.1 (2)C16—C17—H17120.0
N2—C15—C14117.8 (2)C18—C17—H17120.0
C1—C9—N1124.6 (2)C19—C18—C17121.7 (2)
C1—C9—C8120.1 (2)C19—C18—H18119.2
N1—C9—C8115.3 (2)C17—C18—H18119.2
C12—N3—N4112.3 (2)C3—C2—C1121.5 (3)
C10—N1—C9129.6 (2)C3—C2—H2A119.3
C10—N1—H1115.2C1—C2—H2A119.3
C9—N1—H1115.2N6—C23—C22124.3 (2)
N4—C13—S3114.42 (17)N6—C23—H23117.8
N4—C13—S2126.16 (17)C22—C23—H23117.8
S3—C13—S2119.42 (14)N5—C7—C6124.5 (3)
C5—C4—C3123.9 (2)N5—C7—H7117.8
C5—C4—C8117.0 (2)C6—C7—H7117.8
C3—C4—C8119.1 (2)C2—C3—C4120.3 (2)
N3—C12—S3114.56 (17)C2—C3—H3119.8
N3—C12—S1125.12 (19)C4—C3—H3119.8
S3—C12—S1120.31 (13)C6—C5—C4119.9 (2)
C15—C14—S2118.78 (16)C6—C5—H5120.1
C15—C14—H14A107.6C4—C5—H5120.1
S2—C14—H14A107.6H1WA—O1W—H1WB99 (4)
C23—N6—C24—C202.3 (3)N4—N3—C12—S30.5 (3)
C23—N6—C24—C16177.1 (2)N4—N3—C12—S1179.22 (15)
C15—N2—C16—C1710.7 (4)C13—S3—C12—N30.37 (18)
C15—N2—C16—C24170.7 (2)C13—S3—C12—S1179.18 (15)
N6—C24—C16—C17179.8 (2)C11—S1—C12—N33.3 (2)
C20—C24—C16—C170.3 (3)C11—S1—C12—S3175.39 (14)
N6—C24—C16—N21.1 (3)O2—C15—C14—S2165.45 (19)
C20—C24—C16—N2178.34 (19)N2—C15—C14—S218.5 (3)
C7—N5—C8—C41.0 (3)C13—S2—C14—C1587.36 (19)
C7—N5—C8—C9178.3 (2)O1—C10—C11—S1154.2 (2)
N6—C24—C20—C212.6 (3)N1—C10—C11—S128.2 (3)
C16—C24—C20—C21176.8 (2)C12—S1—C11—C1064.46 (19)
N6—C24—C20—C19178.5 (2)N1—C9—C1—C2178.6 (2)
C16—C24—C20—C192.1 (3)C8—C9—C1—C21.3 (4)
C16—N2—C15—O23.4 (4)C21—C20—C19—C18177.0 (2)
C16—N2—C15—C14172.5 (2)C24—C20—C19—C181.8 (4)
N5—C8—C9—C1178.4 (2)C19—C20—C21—C22180.0 (2)
C4—C8—C9—C10.9 (3)C24—C20—C21—C221.2 (3)
N5—C8—C9—N11.7 (3)C20—C21—C22—C230.4 (4)
C4—C8—C9—N1179.0 (2)N2—C16—C17—C18179.7 (2)
C13—N4—N3—C120.3 (3)C24—C16—C17—C181.8 (3)
O1—C10—N1—C92.8 (4)C20—C19—C18—C170.3 (4)
C11—C10—N1—C9179.8 (2)C16—C17—C18—C192.1 (4)
C1—C9—N1—C102.6 (4)C9—C1—C2—C30.3 (4)
C8—C9—N1—C10177.5 (2)C24—N6—C23—C220.6 (4)
N3—N4—C13—S30.1 (2)C21—C22—C23—N60.7 (4)
N3—N4—C13—S2179.95 (15)C8—N5—C7—C60.4 (4)
C12—S3—C13—N40.17 (18)C5—C6—C7—N50.7 (4)
C12—S3—C13—S2179.74 (14)C1—C2—C3—C41.1 (4)
C14—S2—C13—N45.8 (2)C5—C4—C3—C2177.7 (3)
C14—S2—C13—S3174.10 (13)C8—C4—C3—C21.4 (4)
N5—C8—C4—C50.6 (3)C7—C6—C5—C41.1 (4)
C9—C8—C4—C5178.7 (2)C3—C4—C5—C6178.6 (3)
N5—C8—C4—C3179.8 (2)C8—C4—C5—C60.5 (4)
C9—C8—C4—C30.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.95 (7)2.07 (7)2.990 (3)162 (6)
O1W—H1WB···O2i0.94 (4)1.91 (4)2.841 (3)175 (4)
C11—H11B···O1Wii0.972.493.332 (4)145
C23—H23···O1iii0.932.553.411 (4)155
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H18N6O2S3·H2O
Mr536.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.8215 (8), 10.2355 (8), 21.5510 (16)
β (°) 90.068 (1)
V3)2387.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.949, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
12711, 4542, 3469
Rint0.031
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.109, 1.02
No. of reflections4542
No. of parameters333
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.19

Computer programs: APEX2 (Bruker 2001), SMART (Bruker 2001), SAINT (Bruker 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.95 (7)2.07 (7)2.990 (3)162 (6)
O1W—H1WB···O2i0.94 (4)1.91 (4)2.841 (3)175 (4)
C11—H11B···O1Wii0.972.493.332 (4)145
C23—H23···O1iii0.932.553.411 (4)155
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the Project of the Shanghai Municipal Education Commission (09YZ245, 10YZ111, 10ZZ98), the `Chen Guang' project supported by the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation (09 C G52), the State Key Laboratory of Pollution Control and the Resource Reuse Foundation (PCRRF09001) for financial support.

References

First citationBruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGurn, N. (2001). J. Sci. Ind. Res. 60, 601–605.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVullo, D., Franchi, M., Gallori, E., Pastorek, J., Scozzafava, A., Pastorekova, S. & Supuran, C. T. (2003). Bioorg. Med. Chem. Lett. 13, 1005–1009.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWen, Y.-H., Zhang, S.-S., Yu, B.-H., Li, X.-M. & Liu, Q. (2005). Acta Cryst. E61, o347–o348.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, S. S., Wen, Y.-H., Yu, B.-H., Liu, Q. & Li, X.-M. (2005). Indian J. Heterocycl. Chem. 15, 117–120.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds