organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[3-({(E)-2-[(4-Fluoro­phenyl)carbamo­thioyl]hydrazinyl­idene}methyl)-4-hy­dr­oxy­benzyl]methyl­tri­phenyl­phos­phonium chloride

aInstitute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: Edward.Tiekink@gmail.com

(Received 10 November 2011; accepted 11 November 2011; online 16 November 2011)

The cation in the title salt, C33H28FN3OPS+·Cl, is highly twisted with the phospho­nium group occupying a position almost normal to the central hydroxyl­benzene ring [P—C—C—C tosrsion angle = −100.9 (3)°], and with the hydrazone substituent twisted out of the plane [C—C—C—N torsion angle = 13.1 (4)°]. The fluoro­benzene ring is twisted out of the plane of the adjacent thio­urea residue, forming a dihedral angle of 51.69 (10)°. The configuration about the C=N bond [1.281 (4) Å] is E, the O—H and N—H hydrogen atoms are syn, and in the thio­urea residue, the N—H hydrogen atoms are anti, allowing for the formation of an intra­molecular N—H⋯N hydrogen bond. In the crystal, dimeric aggregates mediated by N—H⋯S bonds are formed, which are linked to the Cl anions by O—H⋯Cl hydrogen bonds. The four-component aggregates are linked into a three-dimensional structure by C—H⋯Cl inter­actions.

Related literature

For the crystal structure of the related compound salicyl­aldehyde 4-phenyl­thio­semicarbazone, see: Rubčić et al. (2008[Rubčić, M., Đilović, I., Cindrić, M. & Matković-Čalogović, D. (2008). Acta Cryst. C64, o570-o573.]). For the anti-tumour, anti-viral and anti-fungal activity of thio­semicarbazones, see: Kalinowski et al. (2009[Kalinowski, D. S., Quach, P. & Richardson, D. R. (2009). Future Med. Chem, 1, 1143-1151.]); Beraldo & Gambino (2004[Beraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31-39.]). For the biological properties of triphenyl­phospho­nium-containing Schiff bases, see: Shahabadi et al. (2010[Shahabadi, N., Kashanian, S. & Darabi, F. (2010). Eur. J. Med. Chem. 45, 4239-4245.]).

[Scheme 1]

Experimental

Crystal data
  • C33H28FN3OPS+·Cl

  • Mr = 600.06

  • Monoclinic, P 21 /c

  • a = 17.5495 (6) Å

  • b = 9.4617 (3) Å

  • c = 19.0569 (6) Å

  • β = 107.298 (4)°

  • V = 3021.24 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Agilent SuperNova Dual diffractometer with Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.919, Tmax = 0.945

  • 12024 measured reflections

  • 6178 independent reflections

  • 4374 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.154

  • S = 1.04

  • 6178 reflections

  • 382 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯N1 0.87 (1) 2.16 (3) 2.580 (4) 109 (3)
O1—H1⋯Cl1 0.84 (1) 2.17 (1) 3.005 (2) 173 (4)
N2—H2⋯S1i 0.88 (1) 2.58 (2) 3.429 (3) 162 (3)
C6—H6⋯Cl1ii 0.95 2.69 3.572 (3) 154
C19—H19a⋯Cl1ii 0.99 2.51 3.488 (3) 168
C19—H19b⋯Cl1iii 0.99 2.59 3.553 (3) 165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

As part of efforts in improving the water solubility and biological properties of thiosemicarbazones (Kalinowski et al., 2009; Beraldo & Gambino, 2004), we report herein a new thiosemicarbazone molecule characterized as its Cl- salt, (I), containing a cationic triphenylphosphonium moiety, which is known to exhibit biological properties (Shahabadi et al., 2010). A related structure has been reported previously (Rubčić et al., 2008).

The components of the salt, (I), are illustrated in Fig. 1. With respect to the central hydroxybenzene ring in the cation, the phosphonium-P atom lies in a position almost perpendicular to the ring with the P1—C19—C20—C21 being -100.9 (3)°. On the other side, the hydrazone residue is twisted out of the central plane, with the C25—C24—C26—N1 torsion angle = 13.1 (4)°. The terminal fluorobenzene ring is significantly twisted out of the plane through the adjacent thiourea residue forming a dihedral angle of 51.69 (10)°. The configuration about the C26N1 bond [1.281 (4) Å] is E. While the O—H and N—H hydrogen atoms are syn, in the thiourea residue, the N—H hydrogen atoms are anti. The latter allows for the formation of an intramolecular N—H···N hydrogen bond, Table 1.

The crystal packing features centrosymmetric {···HNCS}2 synthons, Table 1. Two Cl- anions are linked to the resulting dimeric aggregates via O—H···Cl hydrogen bonds, with the neutral four component aggregates linked into the three-dimensional architecture by C—H···Cl interactions, Fig. 2 and Table 1. Globally, the crystal structure comprises rows of hydrogen bonded thiourea residues sandwiched by the hydrazone and phosphonium substituents, with the sandwiches stacking along the a axis, Fig. 3.

Related literature top

For the crystal structure of the related compound salicylaldehyde 4-phenylthiosemicarbazone, see: Rubčić et al. (2008). For the anti-tumour, anti-viral and anti-fungal activity of thiosemicarbazones, see: Kalinowski et al. (2009); Beraldo & Gambino (2004). For the biological properties of triphenylphosphonium-containing Schiff bases, see: Shahabadi et al. (2010).

Experimental top

(3-Formyl-4-hydroxy-phenyl)methyl-triphenyl-phosphonium chloride (0.382 g, 1 mmol) was dissolved in ethanol (30 ml) and added to an ethanolic solution (20 ml) of 4-fluorophenyl-3-thiosemicarbazide (0.18 5 g, 1 mmol). The reaction mixture was refluxed for 4 h and the title compound separated as a yellow powder upon cooling. Recrystallization from ethanol afforded yellow crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 to 0.99 Å, Uiso(H) = 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The O—H and N—H H-atoms were located in a difference map and refined with distance restraints of 0.84±0.01 and 0.88±0.01 Å, respectively, and with unrestrained Uiso(H).

Structure description top

As part of efforts in improving the water solubility and biological properties of thiosemicarbazones (Kalinowski et al., 2009; Beraldo & Gambino, 2004), we report herein a new thiosemicarbazone molecule characterized as its Cl- salt, (I), containing a cationic triphenylphosphonium moiety, which is known to exhibit biological properties (Shahabadi et al., 2010). A related structure has been reported previously (Rubčić et al., 2008).

The components of the salt, (I), are illustrated in Fig. 1. With respect to the central hydroxybenzene ring in the cation, the phosphonium-P atom lies in a position almost perpendicular to the ring with the P1—C19—C20—C21 being -100.9 (3)°. On the other side, the hydrazone residue is twisted out of the central plane, with the C25—C24—C26—N1 torsion angle = 13.1 (4)°. The terminal fluorobenzene ring is significantly twisted out of the plane through the adjacent thiourea residue forming a dihedral angle of 51.69 (10)°. The configuration about the C26N1 bond [1.281 (4) Å] is E. While the O—H and N—H hydrogen atoms are syn, in the thiourea residue, the N—H hydrogen atoms are anti. The latter allows for the formation of an intramolecular N—H···N hydrogen bond, Table 1.

The crystal packing features centrosymmetric {···HNCS}2 synthons, Table 1. Two Cl- anions are linked to the resulting dimeric aggregates via O—H···Cl hydrogen bonds, with the neutral four component aggregates linked into the three-dimensional architecture by C—H···Cl interactions, Fig. 2 and Table 1. Globally, the crystal structure comprises rows of hydrogen bonded thiourea residues sandwiched by the hydrazone and phosphonium substituents, with the sandwiches stacking along the a axis, Fig. 3.

For the crystal structure of the related compound salicylaldehyde 4-phenylthiosemicarbazone, see: Rubčić et al. (2008). For the anti-tumour, anti-viral and anti-fungal activity of thiosemicarbazones, see: Kalinowski et al. (2009); Beraldo & Gambino (2004). For the biological properties of triphenylphosphonium-containing Schiff bases, see: Shahabadi et al. (2010).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structures of the ions comprising the asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level.
[Figure 2] Fig. 2. A view in projection down the b axis of the crystal packing in (I) highlighting the mode of association between the constituent ions. The N—H···S, O—H···Cl and C—H···Cl interactions are shown as orange, blue and brown dashed lines, respectively.
[Figure 3] Fig. 3. A view in projection down the c axis of the crystal packing in (I) highlighting the stacking of layers along the a-direction. The N—H···S, O—H···Cl and C—H···Cl interactions are shown as orange, blue and brown dashed lines, respectively.
[3-({(E)-2-[(4-Fluorophenyl)carbamothioyl]hydrazinylidene}methyl)-4- hydroxybenzyl]methyltriphenylphosphonium chloride top
Crystal data top
C33H28FN3OPS+·ClF(000) = 1248
Mr = 600.06Dx = 1.319 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3679 reflections
a = 17.5495 (6) Åθ = 2.4–29.2°
b = 9.4617 (3) ŵ = 0.29 mm1
c = 19.0569 (6) ÅT = 100 K
β = 107.298 (4)°Prism, yellow
V = 3021.24 (17) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
6178 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4374 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.040
Detector resolution: 10.4041 pixels mm-1θmax = 26.5°, θmin = 2.4°
ω scanh = 1722
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 119
Tmin = 0.919, Tmax = 0.945l = 2316
12024 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0639P)2 + 2.4147P]
where P = (Fo2 + 2Fc2)/3
6178 reflections(Δ/σ)max = 0.001
382 parametersΔρmax = 0.62 e Å3
3 restraintsΔρmin = 0.38 e Å3
Crystal data top
C33H28FN3OPS+·ClV = 3021.24 (17) Å3
Mr = 600.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.5495 (6) ŵ = 0.29 mm1
b = 9.4617 (3) ÅT = 100 K
c = 19.0569 (6) Å0.30 × 0.25 × 0.20 mm
β = 107.298 (4)°
Data collection top
Agilent SuperNova Dual
diffractometer with Atlas detector
6178 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
4374 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 0.945Rint = 0.040
12024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0543 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.62 e Å3
6178 reflectionsΔρmin = 0.38 e Å3
382 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.91349 (4)0.62474 (8)0.85886 (4)0.02368 (19)
P10.83503 (5)1.15927 (8)0.50731 (4)0.0200 (2)
S10.48397 (5)0.43111 (9)0.38203 (4)0.0283 (2)
F10.58227 (13)0.3645 (3)0.08217 (11)0.0512 (6)
O10.78340 (13)0.6681 (2)0.71688 (12)0.0280 (5)
N10.67395 (15)0.6310 (3)0.49955 (14)0.0253 (6)
N20.60362 (15)0.5553 (3)0.47947 (14)0.0262 (6)
N30.61878 (16)0.5438 (3)0.36568 (14)0.0276 (6)
C10.74010 (17)1.1072 (3)0.44749 (15)0.0212 (6)
C20.66882 (19)1.1318 (4)0.46326 (18)0.0316 (8)
H2A0.66871.18120.50660.038*
C30.5978 (2)1.0833 (4)0.41479 (19)0.0386 (9)
H3A0.54871.09830.42530.046*
C40.5985 (2)1.0125 (4)0.35068 (19)0.0368 (8)
H40.55010.97690.31850.044*
C50.66894 (19)0.9939 (3)0.33374 (18)0.0301 (7)
H50.66880.94910.28910.036*
C60.73978 (19)1.0410 (3)0.38218 (17)0.0266 (7)
H60.78851.02800.37080.032*
C70.87455 (18)1.2911 (3)0.46083 (16)0.0245 (7)
C80.8314 (2)1.4157 (4)0.4393 (3)0.0535 (12)
H80.78141.42730.44820.064*
C90.8606 (2)1.5209 (4)0.4055 (3)0.0553 (12)
H90.83131.60610.39190.066*
C100.9327 (2)1.5034 (4)0.39112 (18)0.0351 (8)
H100.95221.57570.36640.042*
C110.9762 (2)1.3819 (4)0.4124 (2)0.0373 (9)
H111.02581.36990.40250.045*
C120.9474 (2)1.2765 (3)0.4485 (2)0.0352 (8)
H120.97821.19370.46490.042*
C130.82929 (18)1.2290 (3)0.59315 (17)0.0247 (7)
C140.8756 (2)1.3467 (4)0.62295 (19)0.0340 (8)
H140.90231.39820.59450.041*
C150.8824 (2)1.3879 (4)0.6947 (2)0.0420 (9)
H150.91431.46720.71530.050*
C160.8437 (2)1.3158 (4)0.7353 (2)0.0427 (9)
H160.84841.34600.78390.051*
C170.7978 (2)1.1993 (4)0.70702 (19)0.0372 (9)
H170.77111.14950.73620.045*
C180.7904 (2)1.1543 (4)0.63557 (18)0.0311 (8)
H180.75911.07360.61590.037*
C190.89916 (17)1.0055 (3)0.52567 (15)0.0187 (6)
H19A0.89720.95820.47880.022*
H19B0.95491.03500.54990.022*
C200.87243 (17)0.9036 (3)0.57481 (15)0.0202 (6)
C210.91367 (18)0.8996 (3)0.64994 (16)0.0229 (7)
H210.96120.95320.66840.027*
C220.88599 (18)0.8185 (3)0.69762 (16)0.0241 (7)
H220.91510.81540.74830.029*
C230.81585 (18)0.7415 (3)0.67172 (16)0.0213 (6)
C240.77585 (17)0.7385 (3)0.59589 (16)0.0207 (6)
C250.80530 (17)0.8198 (3)0.54838 (16)0.0205 (6)
H250.77880.81750.49710.025*
C260.70392 (18)0.6542 (3)0.56854 (17)0.0242 (7)
H260.67880.61590.60210.029*
C270.57265 (18)0.5127 (3)0.40903 (16)0.0244 (7)
C280.60814 (18)0.4968 (4)0.29226 (16)0.0272 (7)
C290.6181 (2)0.5918 (4)0.24096 (19)0.0366 (8)
H290.63000.68790.25420.044*
C300.6108 (2)0.5470 (4)0.1695 (2)0.0392 (9)
H300.61810.61100.13370.047*
C310.59293 (19)0.4090 (4)0.15287 (18)0.0344 (8)
C320.5849 (2)0.3102 (4)0.20287 (19)0.0355 (8)
H320.57380.21400.18940.043*
C330.59363 (19)0.3568 (3)0.27397 (17)0.0292 (7)
H330.58950.29110.31040.035*
H10.8166 (17)0.658 (4)0.7584 (10)0.044 (11)*
H20.576 (2)0.541 (4)0.5103 (18)0.055 (12)*
H30.6576 (14)0.604 (3)0.3836 (17)0.033 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0248 (4)0.0288 (4)0.0148 (3)0.0007 (3)0.0017 (3)0.0035 (3)
P10.0206 (4)0.0245 (4)0.0136 (4)0.0001 (3)0.0030 (3)0.0014 (3)
S10.0221 (4)0.0395 (5)0.0211 (4)0.0075 (4)0.0031 (3)0.0067 (3)
F10.0479 (13)0.0864 (17)0.0230 (11)0.0020 (12)0.0162 (10)0.0122 (11)
O10.0261 (12)0.0405 (13)0.0144 (11)0.0072 (10)0.0014 (10)0.0073 (10)
N10.0207 (13)0.0324 (15)0.0190 (13)0.0064 (12)0.0002 (11)0.0023 (11)
N20.0196 (13)0.0397 (16)0.0166 (14)0.0095 (12)0.0011 (11)0.0033 (11)
N30.0259 (15)0.0371 (16)0.0173 (14)0.0111 (13)0.0024 (12)0.0043 (12)
C10.0221 (15)0.0267 (16)0.0127 (14)0.0000 (13)0.0021 (12)0.0062 (12)
C20.0315 (18)0.044 (2)0.0186 (16)0.0004 (16)0.0064 (14)0.0002 (14)
C30.0254 (18)0.060 (2)0.0289 (19)0.0069 (17)0.0061 (15)0.0011 (17)
C40.0273 (18)0.054 (2)0.0244 (18)0.0106 (17)0.0003 (15)0.0022 (16)
C50.0314 (18)0.0347 (18)0.0204 (16)0.0019 (15)0.0017 (14)0.0030 (14)
C60.0241 (16)0.0345 (18)0.0205 (16)0.0005 (14)0.0055 (14)0.0009 (13)
C70.0245 (16)0.0286 (17)0.0188 (16)0.0016 (14)0.0037 (13)0.0038 (13)
C80.032 (2)0.053 (2)0.079 (3)0.0109 (19)0.022 (2)0.032 (2)
C90.039 (2)0.049 (2)0.078 (3)0.013 (2)0.018 (2)0.037 (2)
C100.040 (2)0.037 (2)0.0269 (18)0.0071 (17)0.0080 (16)0.0106 (15)
C110.047 (2)0.0324 (19)0.043 (2)0.0008 (17)0.0297 (19)0.0060 (16)
C120.045 (2)0.0244 (17)0.043 (2)0.0091 (16)0.0237 (18)0.0107 (15)
C130.0281 (17)0.0258 (16)0.0199 (16)0.0023 (14)0.0067 (14)0.0028 (13)
C140.0306 (18)0.0364 (19)0.036 (2)0.0020 (16)0.0113 (16)0.0081 (15)
C150.0318 (19)0.049 (2)0.042 (2)0.0003 (18)0.0047 (17)0.0235 (18)
C160.044 (2)0.052 (2)0.029 (2)0.0047 (19)0.0053 (18)0.0166 (17)
C170.035 (2)0.052 (2)0.0255 (19)0.0059 (18)0.0097 (16)0.0017 (16)
C180.0321 (18)0.0364 (19)0.0235 (17)0.0009 (15)0.0063 (15)0.0031 (14)
C190.0172 (14)0.0256 (15)0.0120 (14)0.0004 (12)0.0023 (12)0.0010 (12)
C200.0233 (15)0.0217 (15)0.0139 (14)0.0032 (13)0.0030 (12)0.0010 (12)
C210.0200 (15)0.0272 (16)0.0160 (15)0.0027 (13)0.0033 (12)0.0003 (12)
C220.0264 (16)0.0315 (17)0.0103 (14)0.0028 (14)0.0010 (13)0.0006 (12)
C230.0216 (15)0.0254 (16)0.0163 (15)0.0026 (13)0.0048 (12)0.0032 (12)
C240.0198 (15)0.0254 (16)0.0152 (14)0.0010 (13)0.0025 (12)0.0010 (12)
C250.0220 (15)0.0251 (16)0.0121 (14)0.0015 (13)0.0015 (12)0.0019 (12)
C260.0222 (16)0.0312 (17)0.0184 (16)0.0036 (13)0.0046 (13)0.0001 (13)
C270.0243 (16)0.0271 (17)0.0186 (15)0.0005 (14)0.0016 (13)0.0009 (13)
C280.0229 (16)0.0398 (19)0.0176 (16)0.0025 (15)0.0037 (13)0.0017 (14)
C290.041 (2)0.039 (2)0.0296 (19)0.0111 (17)0.0116 (16)0.0011 (15)
C300.041 (2)0.051 (2)0.0283 (19)0.0029 (18)0.0139 (17)0.0076 (17)
C310.0265 (17)0.062 (2)0.0174 (16)0.0049 (17)0.0099 (14)0.0044 (16)
C320.036 (2)0.044 (2)0.0276 (19)0.0017 (17)0.0125 (16)0.0088 (16)
C330.0315 (18)0.0339 (19)0.0219 (17)0.0078 (15)0.0076 (14)0.0035 (14)
Geometric parameters (Å, º) top
P1—C11.786 (3)C12—H120.9500
P1—C71.785 (3)C13—C181.396 (4)
P1—C131.794 (3)C13—C141.395 (4)
P1—C191.808 (3)C14—C151.392 (5)
S1—C271.675 (3)C14—H140.9500
F1—C311.370 (4)C15—C161.355 (5)
O1—C231.356 (3)C15—H150.9500
O1—H10.837 (10)C16—C171.378 (5)
N1—C261.281 (4)C16—H160.9500
N1—N21.379 (3)C17—C181.395 (4)
N2—C271.351 (4)C17—H170.9500
N2—H20.881 (10)C18—H180.9500
N3—C271.350 (4)C19—C201.513 (4)
N3—C281.427 (4)C19—H19A0.9900
N3—H30.874 (10)C19—H19B0.9900
C1—C21.390 (4)C20—C251.385 (4)
C1—C61.392 (4)C20—C211.400 (4)
C2—C31.391 (5)C21—C221.383 (4)
C2—H2A0.9500C21—H210.9500
C3—C41.397 (5)C22—C231.388 (4)
C3—H3A0.9500C22—H220.9500
C4—C51.379 (5)C23—C241.407 (4)
C4—H40.9500C24—C251.399 (4)
C5—C61.383 (4)C24—C261.453 (4)
C5—H50.9500C25—H250.9500
C6—H60.9500C26—H260.9500
C7—C121.373 (4)C28—C331.374 (5)
C7—C81.394 (5)C28—C291.377 (4)
C8—C91.365 (5)C29—C301.394 (5)
C8—H80.9500C29—H290.9500
C9—C101.383 (5)C30—C311.358 (5)
C9—H90.9500C30—H300.9500
C10—C111.373 (5)C31—C321.372 (5)
C10—H100.9500C32—C331.389 (4)
C11—C121.390 (4)C32—H320.9500
C11—H110.9500C33—H330.9500
C1—P1—C7107.60 (14)C14—C15—H15119.7
C1—P1—C13112.88 (14)C15—C16—C17120.9 (3)
C7—P1—C13109.30 (15)C15—C16—H16119.6
C1—P1—C19108.09 (14)C17—C16—H16119.6
C7—P1—C19110.30 (14)C16—C17—C18120.0 (3)
C13—P1—C19108.65 (14)C16—C17—H17120.0
C23—O1—H1111 (3)C18—C17—H17120.0
C26—N1—N2115.7 (2)C13—C18—C17119.4 (3)
C27—N2—N1119.5 (2)C13—C18—H18120.3
C27—N2—H2119 (3)C17—C18—H18120.3
N1—N2—H2122 (3)C20—C19—P1110.05 (19)
C27—N3—C28127.2 (3)C20—C19—H19A109.7
C27—N3—H3116 (2)P1—C19—H19A109.7
C28—N3—H3116 (2)C20—C19—H19B109.7
C2—C1—C6120.3 (3)P1—C19—H19B109.7
C2—C1—P1123.0 (2)H19A—C19—H19B108.2
C6—C1—P1116.7 (2)C25—C20—C21118.8 (3)
C3—C2—C1119.2 (3)C25—C20—C19121.8 (3)
C3—C2—H2A120.4C21—C20—C19119.3 (3)
C1—C2—H2A120.4C22—C21—C20120.7 (3)
C2—C3—C4120.0 (3)C22—C21—H21119.6
C2—C3—H3A120.0C20—C21—H21119.6
C4—C3—H3A120.0C21—C22—C23120.3 (3)
C5—C4—C3120.5 (3)C21—C22—H22119.8
C5—C4—H4119.7C23—C22—H22119.8
C3—C4—H4119.7O1—C23—C22122.6 (3)
C4—C5—C6119.5 (3)O1—C23—C24117.8 (3)
C4—C5—H5120.2C22—C23—C24119.6 (3)
C6—C5—H5120.2C25—C24—C23119.1 (3)
C5—C6—C1120.4 (3)C25—C24—C26121.2 (3)
C5—C6—H6119.8C23—C24—C26119.6 (3)
C1—C6—H6119.8C20—C25—C24121.2 (3)
C12—C7—C8119.1 (3)C20—C25—H25119.4
C12—C7—P1122.2 (2)C24—C25—H25119.4
C8—C7—P1118.6 (2)N1—C26—C24120.7 (3)
C9—C8—C7120.6 (3)N1—C26—H26119.7
C9—C8—H8119.7C24—C26—H26119.7
C7—C8—H8119.7N3—C27—N2113.9 (3)
C8—C9—C10120.0 (4)N3—C27—S1125.7 (2)
C8—C9—H9120.0N2—C27—S1120.3 (2)
C10—C9—H9120.0C33—C28—C29120.2 (3)
C11—C10—C9120.2 (3)C33—C28—N3120.7 (3)
C11—C10—H10119.9C29—C28—N3119.0 (3)
C9—C10—H10119.9C28—C29—C30120.0 (3)
C10—C11—C12119.6 (3)C28—C29—H29120.0
C10—C11—H11120.2C30—C29—H29120.0
C12—C11—H11120.2C31—C30—C29117.9 (3)
C7—C12—C11120.4 (3)C31—C30—H30121.0
C7—C12—H12119.8C29—C30—H30121.0
C11—C12—H12119.8C30—C31—F1118.7 (3)
C18—C13—C14119.6 (3)C30—C31—C32123.8 (3)
C18—C13—P1120.8 (2)F1—C31—C32117.5 (3)
C14—C13—P1118.7 (2)C31—C32—C33117.2 (3)
C15—C14—C13119.5 (3)C31—C32—H32121.4
C15—C14—H14120.2C33—C32—H32121.4
C13—C14—H14120.2C28—C33—C32120.8 (3)
C16—C15—C14120.6 (3)C28—C33—H33119.6
C16—C15—H15119.7C32—C33—H33119.6
C26—N1—N2—C27172.7 (3)C14—C13—C18—C170.6 (5)
C7—P1—C1—C2114.6 (3)P1—C13—C18—C17169.7 (3)
C13—P1—C1—C26.1 (3)C16—C17—C18—C130.5 (5)
C19—P1—C1—C2126.3 (3)C1—P1—C19—C2071.1 (2)
C7—P1—C1—C664.5 (3)C7—P1—C19—C20171.5 (2)
C13—P1—C1—C6174.8 (2)C13—P1—C19—C2051.7 (2)
C19—P1—C1—C654.6 (3)P1—C19—C20—C2575.2 (3)
C6—C1—C2—C33.2 (5)P1—C19—C20—C21100.9 (3)
P1—C1—C2—C3177.8 (3)C25—C20—C21—C222.9 (4)
C1—C2—C3—C40.9 (5)C19—C20—C21—C22173.3 (3)
C2—C3—C4—C52.0 (6)C20—C21—C22—C231.1 (5)
C3—C4—C5—C62.6 (5)C21—C22—C23—O1175.4 (3)
C4—C5—C6—C10.3 (5)C21—C22—C23—C244.4 (4)
C2—C1—C6—C52.6 (5)O1—C23—C24—C25176.3 (3)
P1—C1—C6—C5178.2 (2)C22—C23—C24—C253.5 (4)
C1—P1—C7—C12123.2 (3)O1—C23—C24—C262.2 (4)
C13—P1—C7—C12113.9 (3)C22—C23—C24—C26178.0 (3)
C19—P1—C7—C125.5 (3)C21—C20—C25—C243.8 (4)
C1—P1—C7—C859.7 (3)C19—C20—C25—C24172.4 (3)
C13—P1—C7—C863.2 (3)C23—C24—C25—C200.6 (4)
C19—P1—C7—C8177.4 (3)C26—C24—C25—C20177.9 (3)
C12—C7—C8—C90.9 (6)N2—N1—C26—C24177.1 (3)
P1—C7—C8—C9178.1 (4)C25—C24—C26—N113.1 (4)
C7—C8—C9—C101.2 (7)C23—C24—C26—N1168.4 (3)
C8—C9—C10—C111.6 (7)C28—N3—C27—N2170.9 (3)
C9—C10—C11—C120.1 (6)C28—N3—C27—S19.9 (5)
C8—C7—C12—C112.6 (6)N1—N2—C27—N33.7 (4)
P1—C7—C12—C11179.7 (3)N1—N2—C27—S1175.5 (2)
C10—C11—C12—C72.2 (6)C27—N3—C28—C3347.5 (5)
C1—P1—C13—C1851.5 (3)C27—N3—C28—C29137.0 (3)
C7—P1—C13—C18171.2 (3)C33—C28—C29—C302.2 (5)
C19—P1—C13—C1868.4 (3)N3—C28—C29—C30177.7 (3)
C1—P1—C13—C14139.3 (3)C28—C29—C30—C310.7 (5)
C7—P1—C13—C1419.6 (3)C29—C30—C31—F1177.3 (3)
C19—P1—C13—C14100.8 (3)C29—C30—C31—C322.8 (6)
C18—C13—C14—C150.0 (5)C30—C31—C32—C331.8 (5)
P1—C13—C14—C15169.3 (3)F1—C31—C32—C33178.3 (3)
C13—C14—C15—C160.8 (5)C29—C28—C33—C323.2 (5)
C14—C15—C16—C170.8 (6)N3—C28—C33—C32178.6 (3)
C15—C16—C17—C180.2 (6)C31—C32—C33—C281.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.87 (1)2.16 (3)2.580 (4)109 (3)
O1—H1···Cl10.84 (1)2.17 (1)3.005 (2)173 (4)
N2—H2···S1i0.88 (1)2.58 (2)3.429 (3)162 (3)
C6—H6···Cl1ii0.952.693.572 (3)154
C19—H19a···Cl1ii0.992.513.488 (3)168
C19—H19b···Cl1iii0.992.593.553 (3)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x+2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC33H28FN3OPS+·Cl
Mr600.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)17.5495 (6), 9.4617 (3), 19.0569 (6)
β (°) 107.298 (4)
V3)3021.24 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.919, 0.945
No. of measured, independent and
observed [I > 2σ(I)] reflections
12024, 6178, 4374
Rint0.040
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.154, 1.04
No. of reflections6178
No. of parameters382
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.38

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···N10.874 (10)2.16 (3)2.580 (4)109 (3)
O1—H1···Cl10.837 (10)2.173 (11)3.005 (2)173 (4)
N2—H2···S1i0.881 (10)2.579 (16)3.429 (3)162 (3)
C6—H6···Cl1ii0.952.693.572 (3)154
C19—H19a···Cl1ii0.992.513.488 (3)168
C19—H19b···Cl1iii0.992.593.553 (3)165
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z1/2; (iii) x+2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: tkongwai@yahoo.com.

Acknowledgements

We thank the University of Malaya (UMRG-RG148–11AFR) for supporting this study and for support of the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBeraldo, H. & Gambino, D. (2004). Mini Rev. Med. Chem. 4, 31–39.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationKalinowski, D. S., Quach, P. & Richardson, D. R. (2009). Future Med. Chem, 1, 1143–1151.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRubčić, M., Đilović, I., Cindrić, M. & Matković-Čalogović, D. (2008). Acta Cryst. C64, o570–o573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahabadi, N., Kashanian, S. & Darabi, F. (2010). Eur. J. Med. Chem. 45, 4239–4245.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds