metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tetra­aqua­(μ4-imidazole-4,5-di­carboxyl­ato)(μ3-imidazole-4,5-di­carboxyl­ato)-μ3-sulfato-μ2-sulfato-cobalt(II)digadolinium(III)] monohydrate]

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510631, People's Republic of China
*Correspondence e-mail: licaizhu1977@yahoo.com.cn

(Received 29 October 2011; accepted 8 November 2011; online 12 November 2011)

The asymmetric unit of the title compound, {[CoGd2(C5H2N2O4)2(SO4)2(H2O)4]·H2O}n, contains one CoII ion, two GdIII ions, two imidazole-4,5-dicarboxyl­ate ligands, two SO42− anions, four coordinated water mol­ecules and one uncoordinated water mol­ecule. The CoII ion is six-coordinated by two O atoms from two coordinated water mol­ecules, as well as two O atoms and two N atoms from two imidazole-4,5-dicarboxyl­ate ligands, giving a slightly distorted octa­hedral geometry. Both GdIII ions are eight-coordinated in a distorted bicapped trigonal–prismatic geometry. One GdIII ion is coordinated by four O atoms from two imidazole-4,5-dicarboxyl­ate ligands, three O atoms from three SO42− anions and a water O atom; the other GdIII ion is bonded to five O atoms from three imidazole-4,5-dicarboxyl­ate ligands, two O atoms from two SO42− anions as well as a water O atom. These metal coordination units are connected by bridging imidazole-4,5-dicarboxyl­ate and sulfate ligands, generating a heterometallic layer parallel to the ac plane. The layers are stacked along the b axis via N—H⋯O, O—H⋯O, and C—H⋯O hydrogen-bonding inter­actions, generating a three-dimensional framework.

Related literature

For applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006[Cheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73-77.]); Kuang et al. (2007[Kuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526-m2527.]); Sun et al. (2006[Sun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700-4702.]); Zhu et al. (2010[Zhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299-1303.]).

[Scheme 1]

Experimental

Crystal data
  • [CoGd2(C5H2N2O4)2(SO4)2(H2O)4]·H2O

  • Mr = 963.82

  • Triclinic, [P \overline 1]

  • a = 9.0916 (5) Å

  • b = 10.7714 (6) Å

  • c = 12.9736 (7) Å

  • α = 93.119 (1)°

  • β = 96.416 (1)°

  • γ = 108.840 (1)°

  • V = 1189.35 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.48 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.284, Tmax = 0.378

  • 6174 measured reflections

  • 4208 independent reflections

  • 3790 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.054

  • S = 1.02

  • 4208 reflections

  • 397 parameters

  • 17 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.79 e Å−3

  • Δρmin = −0.81 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (4) 1.96 (4) 2.820 (5) 172 (5)
O1W—H1W⋯O5Wii 0.81 (4) 1.95 (3) 2.745 (5) 169 (6)
N3—H2⋯O14iii 0.87 (3) 1.93 (3) 2.787 (4) 169 (4)
O2W—H3W⋯O1i 0.80 (3) 2.09 (4) 2.878 (5) 171 (5)
O2W—H4W⋯O14i 0.81 (4) 2.04 (4) 2.842 (5) 172 (5)
O2W—H4W⋯O15i 0.81 (4) 2.52 (4) 3.035 (5) 123 (4)
O3W—H5W⋯O12iv 0.82 (3) 1.95 (4) 2.734 (4) 162 (5)
O3W—H6W⋯O14v 0.83 (3) 2.41 (4) 2.919 (4) 120 (3)
O4W—H7W⋯O3vi 0.82 (3) 2.49 (3) 3.306 (6) 174 (6)
O4W—H8W⋯O5Wiii 0.82 (5) 1.89 (5) 2.700 (6) 175 (6)
O5W—H9W⋯O12v 0.85 (4) 1.99 (4) 2.797 (6) 161 (5)
O5W—H10W⋯O1i 0.85 (5) 1.93 (5) 2.728 (5) 157 (6)
C3—H3⋯O3vii 0.93 2.44 3.193 (5) 138
Symmetry codes: (i) x-1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) -x+1, -y+2, -z; (v) -x+1, -y+1, -z; (vi) -x+1, -y+1, -z+1; (vii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe(Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined which is presented in this artcle.

The asymmetric unite of the title compound (Fig. 1), contains one CoII ion, two GdIII ions, two imidazole-4, 5-dicarboxylate ligands, two SO42- anions, four coordinated water molecules and one uncoordinated water molecule. The CoII ion is six-coordinated with two O atoms from two coordinated water molecules, two O atoms and two N atoms from two imidazole-4, 5-dicarboxylate ligands, giving a slightly distorted octahedral geometry. Both GdIII ions are eight-coordinated in a bicapped trigonal prismatic coordination geometry. One GdIII ion is coordinated by four O atoms from two imidazole-4,5-dicarboxylate ligands, three O atoms from three SO42- anions and one water molecule; the other GdIII ion is bonded to five O atoms from three imidazole-4, 5-dicarboxylate ligands, two O atoms from two SO42- anions as well as one coordinated water molecule. These metal coordination units are connected by bridging imidazole-4, 5-dicarboxylate and sulfate ligands, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along b axis via N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions to generate the three-dimensional framework(Table 1 and Fig. 2).

Related literature top

For applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).

Experimental top

A mixture of CoSO4.7H2O(0.141 g, 0.5 mmol), Gd2O3(0.09 g, 0.25 mmol), imidazole-4,5-dicarboxylic acid (0.156 g, 1 mmol), and H2O(7 ml) was sealed in a 20 ml Teflon-lined reaction vessel at 443 K for 5 days then slowly cooled to room temperature. The product was collected by filtration, washed with water and air-dried. Red block crystals suitable for X-ray analysis were obtained.

Refinement top

H atoms bonded to C atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C). H atoms bonded to N atoms and H atoms of water molecules were found from difference Fourier maps and refined isotropically with a restraint of N—H = 0.87 Å, O—H = 0.82 or 0.86 Å and Uiso(H) = 1.5 Ueq(N, O).

Structure description top

In the past few years, lanthanide-transition metal heterometallic complexs with bridging multifunctionnal organic ligands are of increasing interest, not only because of their impressive topological structures, but also due to their versatile applications in ion exchange, magnetism, bimetallic catalysis and luminescent probe(Cheng et al., 2006; Kuang et al., 2007; Sun et al., 2006; Zhu et al., 2010). As an extension of this research, the structure of the title compound, a new heterometallic coordination polymer, (I), has been determined which is presented in this artcle.

The asymmetric unite of the title compound (Fig. 1), contains one CoII ion, two GdIII ions, two imidazole-4, 5-dicarboxylate ligands, two SO42- anions, four coordinated water molecules and one uncoordinated water molecule. The CoII ion is six-coordinated with two O atoms from two coordinated water molecules, two O atoms and two N atoms from two imidazole-4, 5-dicarboxylate ligands, giving a slightly distorted octahedral geometry. Both GdIII ions are eight-coordinated in a bicapped trigonal prismatic coordination geometry. One GdIII ion is coordinated by four O atoms from two imidazole-4,5-dicarboxylate ligands, three O atoms from three SO42- anions and one water molecule; the other GdIII ion is bonded to five O atoms from three imidazole-4, 5-dicarboxylate ligands, two O atoms from two SO42- anions as well as one coordinated water molecule. These metal coordination units are connected by bridging imidazole-4, 5-dicarboxylate and sulfate ligands, generating a two-dimensional heterometallic layer. The two-dimensional layers are stacked along b axis via N—H···O, O—H···O, and C—H···O hydrogen-bonding interactions to generate the three-dimensional framework(Table 1 and Fig. 2).

For applications of lanthanide–transition metal heterometallic complexes with bridging multifunctional organic ligands, see: Cheng et al. (2006); Kuang et al. (2007); Sun et al. (2006); Zhu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure showing the atomic-numbering scheme and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (A) 2 - x, 1 - y, 1 - z; (B) 1 - x, 1 - y, 1 - z; (C) 1 - x, 1 - y, -z.
[Figure 2] Fig. 2. A view of the three-dimensional structure of the title compound, the hydrogen bonding interactions showed as broken lines.
Poly[[tetraaqua(µ4-imidazole-4,5-dicarboxylato)(µ3-imidazole-4,5- dicarboxylato)-µ3-sulfato-µ2-sulfato-cobalt(II)digadolinium(III)] monohydrate] top
Crystal data top
[CoGd2(C5H2N2O4)2(SO4)2(H2O)4]·H2OZ = 2
Mr = 963.82F(000) = 914
Triclinic, P1Dx = 2.691 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0916 (5) ÅCell parameters from 4033 reflections
b = 10.7714 (6) Åθ = 2.4–27.9°
c = 12.9736 (7) ŵ = 6.48 mm1
α = 93.119 (1)°T = 296 K
β = 96.416 (1)°Block, red
γ = 108.840 (1)°0.20 × 0.18 × 0.15 mm
V = 1189.35 (11) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
4208 independent reflections
Radiation source: fine-focus sealed tube3790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scanθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 108
Tmin = 0.284, Tmax = 0.378k = 912
6174 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0292P)2 + 0.3497P]
where P = (Fo2 + 2Fc2)/3
4208 reflections(Δ/σ)max = 0.002
397 parametersΔρmax = 0.79 e Å3
17 restraintsΔρmin = 0.81 e Å3
Crystal data top
[CoGd2(C5H2N2O4)2(SO4)2(H2O)4]·H2Oγ = 108.840 (1)°
Mr = 963.82V = 1189.35 (11) Å3
Triclinic, P1Z = 2
a = 9.0916 (5) ÅMo Kα radiation
b = 10.7714 (6) ŵ = 6.48 mm1
c = 12.9736 (7) ÅT = 296 K
α = 93.119 (1)°0.20 × 0.18 × 0.15 mm
β = 96.416 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
4208 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3790 reflections with I > 2σ(I)
Tmin = 0.284, Tmax = 0.378Rint = 0.016
6174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02217 restraints
wR(F2) = 0.054H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.79 e Å3
4208 reflectionsΔρmin = 0.81 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.90952 (2)0.549083 (19)0.364770 (14)0.01526 (7)
Gd20.37043 (2)0.410578 (19)0.108204 (14)0.01441 (7)
Co10.35411 (7)0.78823 (6)0.27426 (4)0.01829 (13)
S10.92233 (13)0.22231 (10)0.40357 (8)0.0196 (2)
S20.77447 (12)0.42234 (10)0.09511 (7)0.0157 (2)
C10.7564 (5)0.3980 (4)0.5774 (3)0.0152 (9)
C20.5906 (5)0.3349 (4)0.5377 (3)0.0175 (9)
C30.3614 (5)0.1987 (4)0.5498 (3)0.0224 (10)
H30.27900.13580.57380.027*
C40.4925 (5)0.3440 (4)0.4526 (3)0.0176 (9)
C50.5166 (5)0.4170 (4)0.3574 (3)0.0179 (9)
C60.5196 (5)0.6976 (4)0.1215 (3)0.0183 (9)
C70.5717 (5)0.8417 (4)0.1198 (3)0.0198 (9)
C80.5810 (6)1.0356 (4)0.1824 (3)0.0262 (11)
H80.56561.10380.22210.031*
C90.6687 (5)0.9312 (4)0.0646 (3)0.0212 (10)
C100.7527 (5)0.9224 (4)0.0265 (3)0.0253 (10)
N10.3480 (4)0.2571 (4)0.4626 (3)0.0219 (8)
N20.5066 (4)0.2422 (3)0.5971 (3)0.0188 (8)
N30.6720 (5)1.0523 (3)0.1057 (3)0.0251 (9)
N40.5169 (4)0.9092 (3)0.1936 (3)0.0209 (8)
O11.0507 (4)0.2115 (3)0.3471 (2)0.0307 (8)
O20.9891 (4)0.2677 (3)0.5141 (2)0.0260 (7)
O30.7976 (4)0.0979 (3)0.3993 (3)0.0429 (10)
O40.8622 (4)0.3220 (3)0.3559 (2)0.0236 (7)
O50.8508 (3)0.4831 (3)0.5314 (2)0.0191 (6)
O60.8087 (3)0.3626 (3)0.6615 (2)0.0195 (6)
O70.6446 (3)0.5035 (3)0.3536 (2)0.0227 (7)
O80.4026 (4)0.3819 (3)0.2864 (2)0.0291 (8)
O90.4237 (4)0.6481 (3)0.1835 (2)0.0216 (7)
O100.5663 (3)0.6222 (3)0.0648 (2)0.0201 (7)
O110.7322 (4)0.8084 (3)0.0689 (3)0.0373 (9)
O120.8336 (4)1.0256 (3)0.0559 (3)0.0371 (9)
O130.7800 (4)0.5049 (3)0.0081 (2)0.0261 (7)
O140.8239 (4)0.3108 (3)0.0655 (2)0.0302 (8)
O150.8852 (4)0.5027 (3)0.1839 (2)0.0315 (8)
O160.6158 (4)0.3748 (3)0.1261 (2)0.0296 (8)
H10.260 (4)0.251 (5)0.426 (3)0.044*
H20.725 (5)1.128 (3)0.087 (4)0.044*
O1W0.8720 (5)0.7325 (3)0.2745 (3)0.0411 (9)
H1W0.931 (6)0.807 (3)0.275 (4)0.062*
H2W0.843 (7)0.703 (5)0.216 (2)0.062*
O2W0.1300 (4)0.3676 (4)0.1756 (3)0.0301 (8)
H3W0.115 (5)0.331 (5)0.227 (2)0.045*
H4W0.046 (4)0.359 (5)0.143 (3)0.045*
O3W0.1637 (4)0.7554 (3)0.1538 (2)0.0305 (8)
H5W0.166 (7)0.811 (3)0.113 (3)0.046*
H6W0.131 (6)0.686 (3)0.114 (3)0.046*
O4W0.2924 (5)0.9293 (4)0.3611 (3)0.0402 (9)
H7W0.267 (6)0.916 (6)0.419 (2)0.060*
H8W0.221 (5)0.949 (6)0.330 (4)0.060*
O5W0.0564 (5)0.0166 (4)0.2481 (3)0.0440 (10)
H9W0.079 (7)0.006 (5)0.187 (2)0.066*
H10W0.028 (7)0.046 (4)0.271 (4)0.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.01463 (12)0.01957 (12)0.01160 (11)0.00505 (9)0.00226 (8)0.00460 (8)
Gd20.01453 (12)0.01764 (12)0.01186 (11)0.00550 (9)0.00300 (8)0.00492 (8)
Co10.0212 (3)0.0206 (3)0.0141 (3)0.0069 (2)0.0050 (2)0.0054 (2)
S10.0214 (6)0.0180 (5)0.0181 (5)0.0053 (4)0.0011 (4)0.0022 (4)
S20.0164 (5)0.0211 (5)0.0111 (5)0.0077 (4)0.0024 (4)0.0041 (4)
C10.020 (2)0.017 (2)0.0083 (19)0.0053 (18)0.0044 (17)0.0013 (16)
C20.022 (2)0.021 (2)0.0102 (19)0.0082 (18)0.0032 (17)0.0004 (17)
C30.021 (2)0.024 (2)0.020 (2)0.0035 (19)0.0038 (19)0.0055 (18)
C40.018 (2)0.021 (2)0.013 (2)0.0056 (18)0.0011 (17)0.0031 (17)
C50.017 (2)0.029 (2)0.010 (2)0.0095 (19)0.0058 (17)0.0057 (17)
C60.018 (2)0.020 (2)0.015 (2)0.0039 (18)0.0011 (18)0.0041 (18)
C70.023 (2)0.018 (2)0.018 (2)0.0057 (18)0.0050 (18)0.0017 (17)
C80.038 (3)0.017 (2)0.025 (2)0.009 (2)0.012 (2)0.0031 (19)
C90.026 (3)0.014 (2)0.021 (2)0.0034 (18)0.0045 (19)0.0031 (18)
C100.027 (3)0.024 (3)0.023 (2)0.003 (2)0.010 (2)0.005 (2)
N10.016 (2)0.031 (2)0.0177 (19)0.0067 (17)0.0005 (15)0.0044 (16)
N20.020 (2)0.0204 (19)0.0142 (17)0.0039 (15)0.0035 (15)0.0047 (14)
N30.035 (2)0.0154 (19)0.025 (2)0.0043 (17)0.0127 (18)0.0081 (16)
N40.024 (2)0.0188 (19)0.0185 (18)0.0050 (16)0.0045 (16)0.0011 (15)
O10.033 (2)0.046 (2)0.0184 (16)0.0199 (16)0.0057 (14)0.0000 (15)
O20.037 (2)0.0269 (17)0.0154 (15)0.0120 (15)0.0022 (14)0.0038 (13)
O30.031 (2)0.0262 (19)0.057 (2)0.0065 (15)0.0102 (18)0.0148 (17)
O40.0266 (18)0.0222 (16)0.0229 (16)0.0107 (14)0.0012 (14)0.0020 (13)
O50.0160 (16)0.0252 (16)0.0149 (14)0.0041 (13)0.0030 (12)0.0064 (12)
O60.0167 (16)0.0296 (17)0.0125 (14)0.0070 (13)0.0029 (12)0.0074 (12)
O70.0161 (16)0.0295 (17)0.0225 (16)0.0057 (13)0.0029 (13)0.0122 (13)
O80.0191 (17)0.048 (2)0.0167 (16)0.0052 (15)0.0010 (13)0.0133 (15)
O90.0276 (18)0.0182 (15)0.0193 (15)0.0049 (13)0.0105 (13)0.0067 (12)
O100.0246 (17)0.0149 (15)0.0209 (15)0.0048 (13)0.0084 (13)0.0036 (12)
O110.053 (2)0.0187 (18)0.037 (2)0.0021 (16)0.0258 (18)0.0011 (15)
O120.050 (2)0.0236 (18)0.039 (2)0.0061 (16)0.0248 (18)0.0103 (15)
O130.0230 (18)0.042 (2)0.0184 (16)0.0142 (15)0.0053 (13)0.0170 (14)
O140.039 (2)0.0200 (17)0.0346 (18)0.0095 (15)0.0187 (16)0.0038 (14)
O150.035 (2)0.0346 (19)0.0158 (16)0.0001 (15)0.0002 (14)0.0013 (14)
O160.0236 (18)0.045 (2)0.0275 (17)0.0164 (15)0.0122 (14)0.0208 (15)
O1W0.053 (3)0.029 (2)0.035 (2)0.0081 (18)0.0066 (19)0.0089 (16)
O2W0.0199 (18)0.049 (2)0.0271 (18)0.0154 (16)0.0092 (14)0.0182 (16)
O3W0.035 (2)0.0295 (18)0.0251 (17)0.0100 (16)0.0016 (15)0.0045 (14)
O4W0.055 (3)0.041 (2)0.032 (2)0.0265 (19)0.0098 (18)0.0015 (18)
O5W0.063 (3)0.040 (2)0.043 (2)0.028 (2)0.026 (2)0.0114 (18)
Geometric parameters (Å, º) top
Gd1—O72.283 (3)C3—N21.314 (5)
Gd1—O2i2.319 (3)C3—N11.336 (5)
Gd1—O42.337 (3)C3—H30.9300
Gd1—O152.343 (3)C4—N11.370 (5)
Gd1—O52.375 (3)C4—C51.498 (5)
Gd1—O1W2.447 (3)C5—O71.242 (5)
Gd1—O6i2.498 (3)C5—O81.249 (5)
Gd1—O5i2.562 (3)C6—O91.263 (5)
Gd1—C1i2.905 (4)C6—O101.268 (5)
Gd1—Gd1i4.0465 (4)C6—C71.471 (6)
Gd2—O11ii2.244 (3)C7—C91.373 (6)
Gd2—O13ii2.338 (3)C7—N41.399 (5)
Gd2—O82.348 (3)C8—N41.320 (5)
Gd2—O2W2.361 (3)C8—N31.347 (6)
Gd2—O162.373 (3)C8—H80.9300
Gd2—O10ii2.414 (3)C9—N31.372 (5)
Gd2—O102.535 (3)C9—C101.493 (6)
Gd2—O92.561 (3)C10—O121.226 (5)
Gd2—C62.934 (4)C10—O111.265 (5)
Gd2—Gd2ii4.0349 (4)N1—H10.87 (4)
Co1—N42.058 (4)N2—Co1iii2.086 (3)
Co1—N2iii2.086 (3)N3—H20.87 (3)
Co1—O6iii2.096 (3)O2—Gd1i2.319 (3)
Co1—O4W2.097 (4)O5—Gd1i2.562 (3)
Co1—O3W2.122 (3)O6—Co1iii2.096 (3)
Co1—O92.157 (3)O6—Gd1i2.498 (3)
S1—O31.443 (3)O10—Gd2ii2.414 (3)
S1—O11.478 (3)O11—Gd2ii2.244 (3)
S1—O21.483 (3)O13—Gd2ii2.338 (3)
S1—O41.486 (3)O1W—H1W0.81 (4)
S2—O141.459 (3)O1W—H2W0.789 (19)
S2—O151.469 (3)O2W—H3W0.80 (3)
S2—O131.470 (3)O2W—H4W0.81 (4)
S2—O161.476 (3)O3W—H5W0.82 (3)
C1—O51.264 (5)O3W—H6W0.83 (3)
C1—O61.269 (5)O4W—H7W0.82 (3)
C1—C21.458 (6)O4W—H8W0.82 (5)
C1—Gd1i2.905 (4)O5W—H9W0.85 (4)
C2—C41.369 (6)O5W—H10W0.85 (5)
C2—N21.377 (5)
O7—Gd1—O2i103.56 (11)O4W—Co1—O3W93.45 (14)
O7—Gd1—O487.61 (10)N4—Co1—O978.00 (12)
O2i—Gd1—O4139.04 (10)N2iii—Co1—O987.71 (13)
O7—Gd1—O1590.06 (11)O6iii—Co1—O991.82 (11)
O2i—Gd1—O15137.61 (11)O4W—Co1—O9178.18 (14)
O4—Gd1—O1580.42 (11)O3W—Co1—O987.04 (13)
O7—Gd1—O576.05 (10)O3—S1—O1112.2 (2)
O2i—Gd1—O571.43 (10)O3—S1—O2108.8 (2)
O4—Gd1—O573.46 (10)O1—S1—O2107.78 (19)
O15—Gd1—O5150.71 (11)O3—S1—O4110.53 (19)
O7—Gd1—O1W77.94 (12)O1—S1—O4107.51 (18)
O2i—Gd1—O1W74.57 (11)O2—S1—O4110.02 (17)
O4—Gd1—O1W146.18 (11)O14—S2—O15108.6 (2)
O15—Gd1—O1W69.33 (12)O14—S2—O13109.56 (18)
O5—Gd1—O1W130.26 (12)O15—S2—O13107.94 (19)
O7—Gd1—O6i164.37 (9)O14—S2—O16110.07 (19)
O2i—Gd1—O6i76.75 (10)O15—S2—O16109.10 (19)
O4—Gd1—O6i102.43 (10)O13—S2—O16111.47 (17)
O15—Gd1—O6i80.01 (10)O5—C1—O6118.6 (4)
O5—Gd1—O6i118.09 (9)O5—C1—C2123.7 (3)
O1W—Gd1—O6i87.23 (12)O6—C1—C2117.7 (3)
O7—Gd1—O5i144.56 (9)O5—C1—Gd1i61.8 (2)
O2i—Gd1—O5i75.17 (10)O6—C1—Gd1i58.9 (2)
O4—Gd1—O5i73.51 (10)C2—C1—Gd1i163.6 (3)
O15—Gd1—O5i115.09 (11)C4—C2—N2109.0 (4)
O5—Gd1—O5i69.99 (11)C4—C2—C1135.5 (4)
O1W—Gd1—O5i132.85 (11)N2—C2—C1115.5 (3)
O6i—Gd1—O5i50.97 (9)N2—C3—N1110.9 (4)
O7—Gd1—C1i168.66 (10)N2—C3—H3124.5
O2i—Gd1—C1i70.40 (11)N1—C3—H3124.5
O4—Gd1—C1i91.09 (11)C2—C4—N1105.5 (3)
O15—Gd1—C1i100.83 (11)C2—C4—C5133.9 (4)
O5—Gd1—C1i92.78 (10)N1—C4—C5120.4 (4)
O1W—Gd1—C1i108.73 (12)O7—C5—O8125.4 (4)
O6i—Gd1—C1i25.79 (9)O7—C5—C4119.5 (4)
O5i—Gd1—C1i25.77 (10)O8—C5—C4115.1 (4)
O7—Gd1—Gd1i111.99 (7)O9—C6—O10119.1 (4)
O2i—Gd1—Gd1i69.58 (7)O9—C6—C7117.3 (4)
O4—Gd1—Gd1i69.70 (7)O10—C6—C7123.6 (4)
O15—Gd1—Gd1i141.31 (9)O9—C6—Gd260.5 (2)
O5—Gd1—Gd1i36.51 (7)O10—C6—Gd259.4 (2)
O1W—Gd1—Gd1i144.09 (9)C7—C6—Gd2171.4 (3)
O6i—Gd1—Gd1i82.97 (6)C9—C7—N4109.2 (4)
O5i—Gd1—Gd1i33.48 (6)C9—C7—C6135.5 (4)
C1i—Gd1—Gd1i57.20 (7)N4—C7—C6115.3 (4)
O11ii—Gd2—O13ii104.05 (12)N4—C8—N3110.6 (4)
O11ii—Gd2—O890.51 (12)N4—C8—H8124.7
O13ii—Gd2—O8138.78 (11)N3—C8—H8124.7
O11ii—Gd2—O2W79.70 (13)N3—C9—C7105.2 (4)
O13ii—Gd2—O2W75.63 (11)N3—C9—C10119.4 (4)
O8—Gd2—O2W69.29 (11)C7—C9—C10135.2 (4)
O11ii—Gd2—O1685.00 (13)O12—C10—O11125.0 (4)
O13ii—Gd2—O16139.36 (10)O12—C10—C9117.9 (4)
O8—Gd2—O1679.29 (11)O11—C10—C9117.1 (4)
O2W—Gd2—O16144.68 (10)C3—N1—C4108.3 (3)
O11ii—Gd2—O10ii76.41 (10)C3—N1—H1125 (4)
O13ii—Gd2—O10ii71.52 (10)C4—N1—H1126 (4)
O8—Gd2—O10ii149.64 (11)C3—N2—C2106.3 (3)
O2W—Gd2—O10ii132.68 (11)C3—N2—Co1iii140.8 (3)
O16—Gd2—O10ii72.45 (10)C2—N2—Co1iii112.8 (3)
O11ii—Gd2—O10145.26 (11)C8—N3—C9109.0 (4)
O13ii—Gd2—O1076.33 (10)C8—N3—H2125 (4)
O8—Gd2—O10112.31 (10)C9—N3—H2126 (4)
O2W—Gd2—O10131.93 (11)C8—N4—C7106.0 (4)
O16—Gd2—O1074.61 (10)C8—N4—Co1139.7 (3)
O10ii—Gd2—O1070.80 (11)C7—N4—Co1114.0 (3)
O11ii—Gd2—O9163.85 (11)S1—O2—Gd1i144.35 (18)
O13ii—Gd2—O974.78 (10)S1—O4—Gd1141.43 (18)
O8—Gd2—O980.86 (10)C1—O5—Gd1143.6 (3)
O2W—Gd2—O984.47 (11)C1—O5—Gd1i92.4 (2)
O16—Gd2—O9106.54 (11)Gd1—O5—Gd1i110.01 (11)
O10ii—Gd2—O9117.44 (9)C1—O6—Co1iii115.4 (3)
O10—Gd2—O950.71 (9)C1—O6—Gd1i95.3 (2)
O11ii—Gd2—C6169.70 (11)Co1iii—O6—Gd1i143.17 (13)
O13ii—Gd2—C671.59 (11)C5—O7—Gd1145.3 (3)
O8—Gd2—C698.84 (11)C5—O8—Gd2134.4 (3)
O2W—Gd2—C6107.59 (12)C6—O9—Co1115.0 (3)
O16—Gd2—C692.46 (12)C6—O9—Gd294.1 (2)
O10ii—Gd2—C693.30 (11)Co1—O9—Gd2149.36 (13)
O10—Gd2—C625.50 (10)C6—O10—Gd2ii142.3 (3)
O9—Gd2—C625.43 (10)C6—O10—Gd295.1 (2)
O11ii—Gd2—Gd2ii112.07 (8)Gd2ii—O10—Gd2109.20 (11)
O13ii—Gd2—Gd2ii70.24 (7)C10—O11—Gd2ii159.9 (3)
O8—Gd2—Gd2ii139.01 (7)S2—O13—Gd2ii144.17 (19)
O2W—Gd2—Gd2ii145.64 (8)S2—O15—Gd1141.6 (2)
O16—Gd2—Gd2ii69.68 (7)S2—O16—Gd2142.69 (18)
O10ii—Gd2—Gd2ii36.40 (6)Gd1—O1W—H1W130 (4)
O10—Gd2—Gd2ii34.41 (6)Gd1—O1W—H2W104 (4)
O9—Gd2—Gd2ii82.98 (6)H1W—O1W—H2W108 (3)
C6—Gd2—Gd2ii57.82 (8)Gd2—O2W—H3W122 (4)
N4—Co1—N2iii102.68 (14)Gd2—O2W—H4W127 (3)
N4—Co1—O6iii169.67 (13)H3W—O2W—H4W108 (3)
N2iii—Co1—O6iii78.43 (12)Co1—O3W—H5W120 (4)
N4—Co1—O4W100.20 (15)Co1—O3W—H6W121 (4)
N2iii—Co1—O4W92.40 (14)H5W—O3W—H6W102 (3)
O6iii—Co1—O4W89.98 (14)Co1—O4W—H7W121 (4)
N4—Co1—O3W94.51 (14)Co1—O4W—H8W113 (4)
N2iii—Co1—O3W160.56 (13)H7W—O4W—H8W104 (3)
O6iii—Co1—O3W83.04 (12)H9W—O5W—H10W110 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iv0.87 (4)1.96 (4)2.820 (5)172 (5)
O1W—H1W···O5Wv0.81 (4)1.95 (3)2.745 (5)169 (6)
N3—H2···O14vi0.87 (3)1.93 (3)2.787 (4)169 (4)
O2W—H3W···O1iv0.80 (3)2.09 (4)2.878 (5)171 (5)
O2W—H4W···O14iv0.81 (4)2.04 (4)2.842 (5)172 (5)
O2W—H4W···O15iv0.81 (4)2.52 (4)3.035 (5)123 (4)
O3W—H5W···O12vii0.82 (3)1.95 (4)2.734 (4)162 (5)
O3W—H6W···O14ii0.83 (3)2.41 (4)2.919 (4)120 (3)
O4W—H7W···O3iii0.82 (3)2.49 (3)3.306 (6)174 (6)
O4W—H8W···O5Wvi0.82 (5)1.89 (5)2.700 (6)175 (6)
O5W—H9W···O12ii0.85 (4)1.99 (4)2.797 (6)161 (5)
O5W—H10W···O1iv0.85 (5)1.93 (5)2.728 (5)157 (6)
C3—H3···O3viii0.932.443.193 (5)138
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y+1, z; (vi) x, y+1, z; (vii) x+1, y+2, z; (viii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CoGd2(C5H2N2O4)2(SO4)2(H2O)4]·H2O
Mr963.82
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.0916 (5), 10.7714 (6), 12.9736 (7)
α, β, γ (°)93.119 (1), 96.416 (1), 108.840 (1)
V3)1189.35 (11)
Z2
Radiation typeMo Kα
µ (mm1)6.48
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.284, 0.378
No. of measured, independent and
observed [I > 2σ(I)] reflections
6174, 4208, 3790
Rint0.016
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.054, 1.02
No. of reflections4208
No. of parameters397
No. of restraints17
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.79, 0.81

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (4)1.96 (4)2.820 (5)172 (5)
O1W—H1W···O5Wii0.81 (4)1.95 (3)2.745 (5)169 (6)
N3—H2···O14iii0.87 (3)1.93 (3)2.787 (4)169 (4)
O2W—H3W···O1i0.80 (3)2.09 (4)2.878 (5)171 (5)
O2W—H4W···O14i0.81 (4)2.04 (4)2.842 (5)172 (5)
O2W—H4W···O15i0.81 (4)2.52 (4)3.035 (5)123 (4)
O3W—H5W···O12iv0.82 (3)1.95 (4)2.734 (4)162 (5)
O3W—H6W···O14v0.83 (3)2.41 (4)2.919 (4)120 (3)
O4W—H7W···O3vi0.82 (3)2.49 (3)3.306 (6)174 (6)
O4W—H8W···O5Wiii0.82 (5)1.89 (5)2.700 (6)175 (6)
O5W—H9W···O12v0.85 (4)1.99 (4)2.797 (6)161 (5)
O5W—H10W···O1i0.85 (5)1.93 (5)2.728 (5)157 (6)
C3—H3···O3vii0.93002.44003.193 (5)138.00
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x+1, y+2, z; (v) x+1, y+1, z; (vi) x+1, y+1, z+1; (vii) x+1, y, z+1.
 

Acknowledgements

The author acknowledges South China Normal University for supporting this work.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, J.-W., Zhang, J., Zheng, S.-T., Zhang, M.-B. & Yang, G.-Y. (2006). Angew. Chem. Int. Ed. 45, 73–77.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuang, D.-Z., Feng, Y.-L., Peng, Y.-L. & Deng, Y.-F. (2007). Acta Cryst. E63, m2526–m2527.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-Q., Zhang, J. & Yang, G.-Y. (2006). Chem. Commun. pp. 4700–4702.  Web of Science CSD CrossRef Google Scholar
First citationZhu, L.-C., Zhao, Y., Yu, S.-J. & Zhao, M.-M. (2010). Inorg. Chem. Commun. 13, 1299–1303.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds