metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N′,N′-Tetra­methyl-N,N′-di­propyl­ethane-1,2-diaminium tetra­chlorido­cobaltate(II)

aDepartment of Chemistry, PO Box 3000, FI-90014 University of Oulu, Finland
*Correspondence e-mail: raija.oilunkaniemi@oulu.fi

(Received 9 November 2011; accepted 25 November 2011; online 30 November 2011)

The crystal structure of the title compound, (C12H30N2)[CoCl4], is composed of discrete (C12H30N2)2+ cations and [CoCl4]2− anions. The asymmetric unit contains a half-cation and a half-anion. The atoms of the cation occupy general positions about an inversion centre, which is located at the midpoint of the central C—C bond. The Co atoms lie on a twofold rotation axis. The slightly distorted tetra­hedral coordination environment around the metal atom consists of two Cl atoms and their symmetry-related pairs.

Related literature

For the synthesis and structural characterization of C12H30N22+·Cl22−, see: Närhi et al. (2011[Närhi, S. M., Asikkala, J., Kostamo, J., Lajunen, M. K., Oilunkaniemi, R. & Laitinen, R. S. (2011). Z. Naturforsch. Teil B, 66b, 755-758.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H30N2)[CoCl4]

  • Mr = 403.11

  • Monoclinic, C 2/c

  • a = 13.583 (3) Å

  • b = 9.2334 (18) Å

  • c = 14.981 (3) Å

  • β = 101.83 (3)°

  • V = 1839.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.51 mm−1

  • T = 120 K

  • 0.25 × 0.20 × 0.10 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.705, Tmax = 0.864

  • 11798 measured reflections

  • 1799 independent reflections

  • 1596 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.08

  • 1799 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Selected bond lengths (Å)

Co1—Cl1 2.2731 (9)
Co1—Cl2 2.2759 (8)

Data collection: COLLECT (Bruker, 2008[Bruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999)[Brandenburg, K. (1999). DIAMOND. Crystal Impact GmbH, Bonn, Germany.]; software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The asymmetric unit of (C12H30N2)[CoCl4] consists of half of the cation and half of the anion (see Fig. 1). The N—C bond lengths in the cation range from 1.501 (3) to 1.530 (3) Å and the C—C bond lengths from 1.509 (4) to 1.525 (4) Å. These can be compared to the bond lengths in the related chloride and bromide (Närhi et al. 2011). In the title compound, the two n-propyl chains are almost coplanar with the N1—C1—C1ii—N1ii skeleton with all torsional angles ca 180 °, whereas in (C12H30N2)Cl2 and (C12H30N2)Br2 the n-propyl chains are in the anti-configuration with respect to the corresponding NCCN skeleton (Närhi et al. 2011). The cobalt atom shows a slightly distorted tetrahedral coordination geometry and the Co—Cl bond lengths of 2.2731 (9) Å and 2.2759 (8) Å are quite normal.

The packing of the title compound consists of layers of cations. The isolated anions lay between these layers with several hydrogen bonds connecting the anions and cations, as shown in Fig. 2. The packing of the molecules is shown in Fig. 3.

Related literature top

For the synthesis and structural characterization of C12H30N22+.Cl22- see Närhi et al. (2011).

Experimental top

Addition of solution of (C12H30N2)Cl2 (0.118 g, 0.432 mmol) in 5 ml MeOH to solution of CoCl2 . 6 H2O (0.103 g, 0.433 mmol) in 5 ml MeOH gave a purple solution from which the title compound was obtained as crystalline blue precipitate.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.99 Å and with Uiso(H) = 1.2 Ueq(C) and 0.98 Å and Uiso(H) = 1.2 Ueq(C)for the methylene and methyl H atoms, respectively.

Structure description top

The asymmetric unit of (C12H30N2)[CoCl4] consists of half of the cation and half of the anion (see Fig. 1). The N—C bond lengths in the cation range from 1.501 (3) to 1.530 (3) Å and the C—C bond lengths from 1.509 (4) to 1.525 (4) Å. These can be compared to the bond lengths in the related chloride and bromide (Närhi et al. 2011). In the title compound, the two n-propyl chains are almost coplanar with the N1—C1—C1ii—N1ii skeleton with all torsional angles ca 180 °, whereas in (C12H30N2)Cl2 and (C12H30N2)Br2 the n-propyl chains are in the anti-configuration with respect to the corresponding NCCN skeleton (Närhi et al. 2011). The cobalt atom shows a slightly distorted tetrahedral coordination geometry and the Co—Cl bond lengths of 2.2731 (9) Å and 2.2759 (8) Å are quite normal.

The packing of the title compound consists of layers of cations. The isolated anions lay between these layers with several hydrogen bonds connecting the anions and cations, as shown in Fig. 2. The packing of the molecules is shown in Fig. 3.

For the synthesis and structural characterization of C12H30N22+.Cl22- see Närhi et al. (2011).

Computing details top

Data collection: COLLECT (Bruker, 2008); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound indicating the numbering of the atoms. The thermal ellipsoids have been drawn at 50% probability. Symmetry code: (i) = -x, y, 0.5 - z (ii) = 0.5 - x, 0.5 - y, -z.
[Figure 2] Fig. 2. The closest contacts between an anion and the closest cations. The spacefilling presentation is shown in the insert.
[Figure 3] Fig. 3. The packing of the molecules viewed along the a axis.
N,N,N',N'-Tetramethyl-N,N'- dipropylethane-1,2-diaminium tetrachloridocobaltate(II) top
Crystal data top
(C12H30N2)[CoCl4]F(000) = 844
Mr = 403.11Dx = 1.456 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1596 reflections
a = 13.583 (3) Åθ = 3.1–26.0°
b = 9.2334 (18) ŵ = 1.51 mm1
c = 14.981 (3) ÅT = 120 K
β = 101.83 (3)°Plate, blue
V = 1839.1 (6) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1799 independent reflections
Radiation source: fine-focus sealed tube1596 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
φ scans, and ω scans with κ offsetsθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1516
Tmin = 0.705, Tmax = 0.864k = 1111
11798 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0551P)2 + 2.1498P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1799 reflectionsΔρmax = 0.41 e Å3
91 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0131 (12)
Crystal data top
(C12H30N2)[CoCl4]V = 1839.1 (6) Å3
Mr = 403.11Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.583 (3) ŵ = 1.51 mm1
b = 9.2334 (18) ÅT = 120 K
c = 14.981 (3) Å0.25 × 0.20 × 0.10 mm
β = 101.83 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1799 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
1596 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.864Rint = 0.098
11798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.08Δρmax = 0.41 e Å3
1799 reflectionsΔρmin = 0.45 e Å3
91 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.27789 (5)0.25000.0254 (2)
Cl10.12341 (5)0.42242 (8)0.32854 (5)0.0369 (2)
Cl20.06661 (5)0.13400 (8)0.15413 (5)0.0348 (2)
N10.24693 (16)0.4259 (2)0.07011 (14)0.0271 (5)
C10.2084 (2)0.3026 (3)0.00547 (18)0.0289 (6)
H1A0.17750.34300.05500.035*
H1B0.15560.24940.02880.035*
C20.2940 (2)0.3728 (3)0.16405 (18)0.0346 (7)
H2A0.35420.31580.16120.052*
H2B0.24570.31220.18740.052*
H2C0.31290.45590.20470.052*
C30.3208 (2)0.5173 (3)0.03321 (19)0.0322 (6)
H3A0.34040.60070.07340.048*
H3B0.28970.55140.02800.048*
H3C0.38050.45950.03020.048*
C40.15188 (19)0.5122 (3)0.07434 (18)0.0309 (6)
H4A0.11940.54040.01140.037*
H4B0.10470.44740.09750.037*
C50.1662 (2)0.6471 (3)0.1325 (2)0.0379 (7)
H5A0.21600.71170.11300.046*
H5B0.19150.62090.19720.046*
C60.0652 (2)0.7244 (3)0.1219 (2)0.0420 (7)
H6A0.03880.74510.05730.063*
H6B0.07430.81540.15630.063*
H6C0.01770.66250.14540.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0235 (3)0.0307 (3)0.0215 (3)0.0000.00327 (19)0.000
Cl10.0295 (4)0.0445 (5)0.0335 (4)0.0022 (3)0.0012 (3)0.0116 (3)
Cl20.0375 (4)0.0359 (4)0.0341 (4)0.0039 (3)0.0148 (3)0.0067 (3)
N10.0294 (11)0.0279 (12)0.0234 (11)0.0014 (9)0.0042 (8)0.0016 (9)
C10.0251 (13)0.0304 (14)0.0292 (14)0.0022 (11)0.0009 (10)0.0011 (11)
C20.0360 (15)0.0416 (16)0.0249 (13)0.0076 (12)0.0027 (11)0.0036 (12)
C30.0308 (14)0.0323 (15)0.0330 (14)0.0063 (11)0.0056 (11)0.0002 (11)
C40.0276 (13)0.0348 (15)0.0293 (14)0.0027 (11)0.0037 (10)0.0000 (11)
C50.0345 (15)0.0369 (17)0.0397 (16)0.0003 (12)0.0014 (12)0.0016 (13)
C60.0363 (17)0.0354 (17)0.0523 (19)0.0036 (12)0.0044 (14)0.0043 (14)
Geometric parameters (Å, º) top
Co1—Cl12.2731 (9)C2—H2C0.9800
Co1—Cl1i2.2731 (9)C3—H3A0.9800
Co1—Cl22.2759 (8)C3—H3B0.9800
Co1—Cl2i2.2759 (8)C3—H3C0.9800
N1—C31.501 (3)C4—C51.509 (4)
N1—C21.504 (3)C4—H4A0.9900
N1—C11.516 (3)C4—H4B0.9900
N1—C41.530 (3)C5—C61.525 (4)
C1—C1ii1.524 (5)C5—H5A0.9900
C1—H1A0.9900C5—H5B0.9900
C1—H1B0.9900C6—H6A0.9800
C2—H2A0.9800C6—H6B0.9800
C2—H2B0.9800C6—H6C0.9800
Cl1—Co1—Cl1i108.10 (5)N1—C3—H3A109.5
Cl1—Co1—Cl2108.84 (3)N1—C3—H3B109.5
Cl1i—Co1—Cl2111.25 (3)H3A—C3—H3B109.5
Cl1—Co1—Cl2i111.25 (3)N1—C3—H3C109.5
Cl1i—Co1—Cl2i108.84 (3)H3A—C3—H3C109.5
Cl2—Co1—Cl2i108.57 (4)H3B—C3—H3C109.5
C3—N1—C2109.9 (2)C5—C4—N1116.4 (2)
C3—N1—C1110.8 (2)C5—C4—H4A108.2
C2—N1—C1112.2 (2)N1—C4—H4A108.2
C3—N1—C4110.9 (2)C5—C4—H4B108.2
C2—N1—C4109.4 (2)N1—C4—H4B108.2
C1—N1—C4103.54 (19)H4A—C4—H4B107.3
N1—C1—C1ii112.4 (3)C4—C5—C6108.7 (2)
N1—C1—H1A109.1C4—C5—H5A110.0
C1ii—C1—H1A109.1C6—C5—H5A110.0
N1—C1—H1B109.1C4—C5—H5B110.0
C1ii—C1—H1B109.1C6—C5—H5B110.0
H1A—C1—H1B107.9H5A—C5—H5B108.3
N1—C2—H2A109.5C5—C6—H6A109.5
N1—C2—H2B109.5C5—C6—H6B109.5
H2A—C2—H2B109.5H6A—C6—H6B109.5
N1—C2—H2C109.5C5—C6—H6C109.5
H2A—C2—H2C109.5H6A—C6—H6C109.5
H2B—C2—H2C109.5H6B—C6—H6C109.5
C3—N1—C1—C1ii63.7 (3)C2—N1—C4—C561.9 (3)
C2—N1—C1—C1ii59.5 (3)C1—N1—C4—C5178.3 (2)
C4—N1—C1—C1ii177.4 (3)N1—C4—C5—C6175.3 (2)
C3—N1—C4—C559.4 (3)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula(C12H30N2)[CoCl4]
Mr403.11
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)13.583 (3), 9.2334 (18), 14.981 (3)
β (°) 101.83 (3)
V3)1839.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.705, 0.864
No. of measured, independent and
observed [I > 2σ(I)] reflections
11798, 1799, 1596
Rint0.098
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.08
No. of reflections1799
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.45

Computer programs: COLLECT (Bruker, 2008), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Co1—Cl12.2731 (9)Co1—Cl22.2759 (8)
 

Acknowledgements

Financial support from the Academy of Finland is gratefully acknowledged.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GmbH, Bonn, Germany.  Google Scholar
First citationBruker (2008). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNärhi, S. M., Asikkala, J., Kostamo, J., Lajunen, M. K., Oilunkaniemi, R. & Laitinen, R. S. (2011). Z. Naturforsch. Teil B, 66b, 755-758.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds