metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­carbonyl-1κ2C,2κ3C-(μ-pyrazine-2,3-di­thiol­ato-1:2κ4S,S′:S,S′)(tri­methyl­phosphane-1κP)diiron(I)(FeFe)

aSchool of Materials Science and Engineering, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, People's Republic of China
*Correspondence e-mail: cust_gaoshang@yahoo.cn

(Received 3 November 2011; accepted 6 November 2011; online 12 November 2011)

In the title compound, [Fe2(C4H2N2S2)(C3H9P)(CO)5], the Fe2S2 core adopts a butterfly conformation. The PMe3 ligand is coordinated in the basal position, roughly cis to the Fe—Fe bond. The Fe—Fe distance of 2.4970 (6) Å is relatively short compared to those (ca 2.53 Å) found in another monosubstituted diiron compound. A rigid planar dithiol­ate bridge is featured, with an angle of 2.78 (1)° between the Fe—Fe bond and the normal to the pyrazine-2,3-dithiol­ate plane.

Related literature

The title compound was prepared as a biomimetic model of the [FeFe]-hydrogenase active site. For general background to hydrogenases and iron–sulfur–carbonyl complexes, see: Cammack (1999[Cammack, R. (1999). Nature (London), 297, 214-215.]); Evans & Pickett (2003[Evans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268-275.]); Liu & Xiao (2011[Liu, X.-F. & Xiao, X.-W. (2011). J. Organomet. Chem. 696, 2767-2771.]); Song et al. (2005[Song, L.-C., Yang, Z.-Y., Bian, H.-Z., Liu, Y., Wang, H.-T., Liu, X.-F. & Hu, Q.-M. (2005). Organometallics, 24, 6126-6135.]); Yin et al. (2011[Yin, B.-S., Li, T.-B. & Yang, M.-S. (2011). J. Coord. Chem. 64, 2066-2074.]). For related structures, see: Li et al. (2005[Li, P., Wang, M., He, C.-J., Li, G.-H., Liu, X.-Y., Chen, C.-N., Åkermark, B. & Sun, L.-C. (2005). Eur. J. Inorg. Chem. pp. 2506-2513.]); Liu & Yin (2010[Liu, X.-F. & Yin, B.-S. (2010). J. Coord. Chem. 63, 4061-4067.]). For the synthesis, see: Durgaprasad et al. (2011[Durgaprasad, G., Bolligarla, R. & Das, S. K. (2011). J. Organomet. Chem. 696, 3097-3105.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C4H2N2S2)(C3H9P)(CO)5]

  • Mr = 470.02

  • Orthorhombic, P b c a

  • a = 14.8307 (2) Å

  • b = 12.1463 (2) Å

  • c = 19.8806 (3) Å

  • V = 3581.25 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 273 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.828, Tmax = 0.828

  • 19251 measured reflections

  • 3327 independent reflections

  • 2445 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.070

  • S = 1.01

  • 3327 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—C1 1.803 (4)
Fe1—C2 1.784 (4)
Fe1—C3 1.780 (4)
Fe1—S1 2.2906 (9)
Fe1—S2 2.2893 (9)
Fe2—C4 1.761 (4)
Fe2—C5 1.771 (4)
Fe2—S1 2.2859 (9)
Fe2—S2 2.2783 (9)
Fe2—P1 2.2450 (9)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrogen evolution and uptake in nature is mostly catalyzed by the metalloenzymes called hydrogenases (Evans & Pickett, 2003). Among all types, the [FeFe]-hydrogenases ([FeFe]Hases) are most efficient (Cammack, 1999). The resemblance in structures between the [FeFe]Hase active site and the well known iron-sulfur-carbonyl complexes (Liu & Xiao, 2011; Song et al., 2005; Yin et al., 2011) draws intensive attention to the chemistry of such complexes. The title compound was prepared to mimic structurally the active site of [FeFe]Hases. Herein we report its crystal structure.

In agreement with other reported diiron complexes (Liu & Yin, 2010), the Fe2S2 unit in the title compound is in a butterfly conformation and each iron atom is coordinated with a pseudo-square-pyramidal geometry (Fig. 1). The deviation of Fe1 atom from the 2S2C-formed basal plane is 0.362 Å. The Fe—Fe distance of 2.4970 (6) Å in the title compound (Table 1) is enlarged by ca 0.03 Å than that found in [Fe2(µ-C4H2H2)(CO)6] (Durgaprasad et al., 2011), indicating the strong electron-donating ability of the PMe3 ligand. The Fe—P distance of 2.2450 (9) Å is in good agreement with those in the phosphane-coordinated diiron compounds (Li et al., 2005). The rigid dithiolate bridge is a special feature for the title compound. The calculated plane of the –SC4H2N2S– bridge is nearly a bisect plane of the molecule. The angle between the Fe—Fe bond and the normal of the pyrazine-2,3-dithiolate plane is 2.78 (1)°.

Related literature top

The title compound was prepared as a biomimetic model of the [FeFe]-hydrogenase active site. For general background to hydrogenases and iron–sulfur–carbonyl complexes, see: Cammack (1999); Evans & Pickett (2003); Liu & Xiao (2011); Song et al. (2005); Yin et al. (2011). For related structures, see: Li et al. (2005); Liu & Yin (2010). For the synthesis, see: Durgaprasad et al. (2011).

Experimental top

All reactions and operations related to the title compound were carried out under a dry, prepurified nitrogen atmosphere with standard Schlenk techniques. All solvents were dried and distilled prior to use according to standard methods. Me3NO and trimethylphosphane were available commercially and used without further purification. The starting material [Fe2(µ-C4H2N2)(CO)6] was prepared according to the literature procedure (Durgaprasad et al., 2011). [Fe2(µ-C4H2N2)(CO)6] (0.42 g, 1.0 mmol) and trimethylphosphane (0.08 g, 1.0 mmol) were reacted in CH3CN (20 ml) in the presence of Me3NO for 20 min at room temperature. The solvent was allowed to evaporate on a rotary evaporator to give a dark-red solid. The crude product was purified by column chromatography on Al2O3 using CH2Cl2/hexane as eluent to give a red solid (yield: 0.04 g, 10%). Recrystallization in a CH2Cl2/pentane solution afforded crystals of the title compound suitable for X-ray study.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (CH) and 0.96 (CH3) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Structure description top

Hydrogen evolution and uptake in nature is mostly catalyzed by the metalloenzymes called hydrogenases (Evans & Pickett, 2003). Among all types, the [FeFe]-hydrogenases ([FeFe]Hases) are most efficient (Cammack, 1999). The resemblance in structures between the [FeFe]Hase active site and the well known iron-sulfur-carbonyl complexes (Liu & Xiao, 2011; Song et al., 2005; Yin et al., 2011) draws intensive attention to the chemistry of such complexes. The title compound was prepared to mimic structurally the active site of [FeFe]Hases. Herein we report its crystal structure.

In agreement with other reported diiron complexes (Liu & Yin, 2010), the Fe2S2 unit in the title compound is in a butterfly conformation and each iron atom is coordinated with a pseudo-square-pyramidal geometry (Fig. 1). The deviation of Fe1 atom from the 2S2C-formed basal plane is 0.362 Å. The Fe—Fe distance of 2.4970 (6) Å in the title compound (Table 1) is enlarged by ca 0.03 Å than that found in [Fe2(µ-C4H2H2)(CO)6] (Durgaprasad et al., 2011), indicating the strong electron-donating ability of the PMe3 ligand. The Fe—P distance of 2.2450 (9) Å is in good agreement with those in the phosphane-coordinated diiron compounds (Li et al., 2005). The rigid dithiolate bridge is a special feature for the title compound. The calculated plane of the –SC4H2N2S– bridge is nearly a bisect plane of the molecule. The angle between the Fe—Fe bond and the normal of the pyrazine-2,3-dithiolate plane is 2.78 (1)°.

The title compound was prepared as a biomimetic model of the [FeFe]-hydrogenase active site. For general background to hydrogenases and iron–sulfur–carbonyl complexes, see: Cammack (1999); Evans & Pickett (2003); Liu & Xiao (2011); Song et al. (2005); Yin et al. (2011). For related structures, see: Li et al. (2005); Liu & Yin (2010). For the synthesis, see: Durgaprasad et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
Pentacarbonyl-1κ2C,2κ3C-(µ-pyrazine-2,3-dithiolato- 1:2κ4S,S':S,S')(trimethylphosphane- 1κP)diiron(I)(FeFe) top
Crystal data top
[Fe2(C4H2N2S2)(C3H9P)(CO)5]F(000) = 1888
Mr = 470.02Dx = 1.743 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2383 reflections
a = 14.8307 (2) Åθ = 2.4–21.5°
b = 12.1463 (2) ŵ = 1.97 mm1
c = 19.8806 (3) ÅT = 273 K
V = 3581.25 (9) Å3Block, red
Z = 80.10 × 0.10 × 0.10 mm
Data collection top
Bruker APEX CCD
diffractometer
3327 independent reflections
Radiation source: fine-focus sealed tube2445 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.828, Tmax = 0.828k = 1214
19251 measured reflectionsl = 2423
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.3172P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.27 e Å3
3327 reflectionsΔρmin = 0.32 e Å3
217 parameters
Crystal data top
[Fe2(C4H2N2S2)(C3H9P)(CO)5]V = 3581.25 (9) Å3
Mr = 470.02Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.8307 (2) ŵ = 1.97 mm1
b = 12.1463 (2) ÅT = 273 K
c = 19.8806 (3) Å0.10 × 0.10 × 0.10 mm
Data collection top
Bruker APEX CCD
diffractometer
3327 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2445 reflections with I > 2σ(I)
Tmin = 0.828, Tmax = 0.828Rint = 0.064
19251 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
3327 reflectionsΔρmin = 0.32 e Å3
217 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe20.03732 (3)0.27229 (3)0.07013 (2)0.03067 (13)
Fe10.01883 (3)0.18401 (4)0.18272 (2)0.03633 (14)
S20.01055 (5)0.37018 (7)0.16583 (4)0.0357 (2)
S10.09264 (5)0.18655 (6)0.10298 (4)0.0365 (2)
P10.17667 (5)0.34273 (7)0.06048 (4)0.0347 (2)
C110.1950 (2)0.4175 (3)0.01705 (17)0.0489 (9)
H11A0.25550.44530.01800.073*
H11B0.15320.47780.01970.073*
H11C0.18580.36900.05460.073*
C60.10919 (19)0.3860 (3)0.16280 (15)0.0343 (7)
N20.14764 (17)0.4745 (2)0.18771 (14)0.0444 (7)
C50.0049 (2)0.3498 (3)0.00154 (18)0.0383 (8)
N10.24488 (17)0.3034 (2)0.12409 (14)0.0457 (7)
C100.2693 (2)0.2451 (3)0.05956 (19)0.0543 (10)
H10A0.32530.28410.05530.081*
H10B0.26230.19580.02220.081*
H10C0.26930.20380.10070.081*
C70.1565 (2)0.3014 (3)0.13199 (15)0.0353 (8)
C10.0420 (2)0.1752 (3)0.2611 (2)0.0528 (10)
C30.1313 (2)0.1954 (3)0.21316 (18)0.0466 (9)
C40.0725 (2)0.1547 (3)0.02547 (18)0.0447 (9)
C90.2385 (2)0.4767 (3)0.18021 (18)0.0507 (10)
H9A0.27030.53670.19700.061*
C120.2126 (2)0.4416 (3)0.12345 (18)0.0530 (10)
H12A0.27290.46540.11370.080*
H12B0.21110.40780.16710.080*
H12C0.17280.50390.12290.080*
C20.0344 (2)0.0406 (3)0.16750 (17)0.0478 (9)
C80.2849 (2)0.3953 (3)0.14932 (19)0.0522 (10)
H8A0.34710.40250.14510.063*
O50.03314 (16)0.3954 (2)0.04409 (13)0.0617 (7)
O30.20369 (17)0.2019 (2)0.23081 (15)0.0719 (9)
O40.09513 (17)0.0780 (2)0.00373 (15)0.0741 (9)
O20.04365 (18)0.0509 (2)0.15663 (15)0.0756 (9)
O10.0802 (2)0.1710 (3)0.31047 (16)0.0905 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe20.0309 (2)0.0308 (3)0.0303 (3)0.0002 (2)0.00212 (19)0.0006 (2)
Fe10.0361 (3)0.0381 (3)0.0348 (3)0.0003 (2)0.0004 (2)0.0057 (2)
S20.0333 (4)0.0371 (5)0.0366 (5)0.0017 (4)0.0008 (3)0.0055 (4)
S10.0319 (4)0.0358 (5)0.0419 (5)0.0025 (4)0.0002 (4)0.0044 (4)
P10.0294 (4)0.0340 (5)0.0406 (5)0.0023 (4)0.0032 (4)0.0025 (4)
C110.042 (2)0.048 (2)0.057 (3)0.0001 (17)0.0125 (17)0.0151 (18)
C60.0349 (17)0.0404 (19)0.0275 (18)0.0021 (16)0.0011 (14)0.0025 (15)
N20.0447 (17)0.0452 (18)0.0433 (18)0.0106 (14)0.0005 (13)0.0074 (14)
C50.0347 (18)0.040 (2)0.040 (2)0.0022 (15)0.0006 (16)0.0049 (16)
N10.0300 (15)0.059 (2)0.0480 (19)0.0030 (14)0.0002 (13)0.0056 (15)
C100.0390 (19)0.054 (2)0.070 (3)0.0136 (17)0.0019 (18)0.0046 (19)
C70.0343 (18)0.041 (2)0.0307 (19)0.0045 (15)0.0025 (14)0.0020 (15)
C10.051 (2)0.057 (2)0.050 (3)0.0033 (19)0.0052 (19)0.0126 (19)
C30.051 (2)0.042 (2)0.046 (2)0.0031 (18)0.0053 (18)0.0098 (17)
C40.042 (2)0.044 (2)0.048 (2)0.0032 (17)0.0117 (17)0.0020 (18)
C90.049 (2)0.059 (3)0.044 (2)0.0245 (19)0.0006 (17)0.0078 (19)
C120.043 (2)0.055 (2)0.061 (3)0.0124 (18)0.0046 (18)0.0097 (19)
C20.042 (2)0.053 (3)0.048 (2)0.0001 (18)0.0039 (17)0.0102 (18)
C80.0300 (18)0.072 (3)0.054 (2)0.0123 (19)0.0010 (17)0.004 (2)
O50.0699 (18)0.0627 (18)0.0526 (18)0.0014 (14)0.0212 (14)0.0120 (14)
O30.0500 (16)0.082 (2)0.084 (2)0.0072 (14)0.0265 (15)0.0217 (16)
O40.0776 (19)0.0547 (18)0.090 (2)0.0011 (15)0.0267 (16)0.0290 (16)
O20.083 (2)0.0428 (18)0.101 (2)0.0090 (15)0.0070 (17)0.0054 (16)
O10.101 (2)0.107 (3)0.063 (2)0.011 (2)0.0383 (18)0.0209 (18)
Geometric parameters (Å, º) top
Fe1—C11.803 (4)C6—N21.314 (4)
Fe1—C21.784 (4)C6—C71.387 (4)
Fe1—C31.780 (4)N2—C91.356 (4)
Fe1—S12.2906 (9)C5—O51.143 (4)
Fe1—S22.2893 (9)N1—C71.320 (4)
Fe2—C41.761 (4)N1—C81.360 (4)
Fe2—C51.771 (4)C10—H10A0.9600
Fe2—S12.2859 (9)C10—H10B0.9600
Fe2—S22.2783 (9)C10—H10C0.9600
Fe2—P12.2450 (9)C1—O11.135 (4)
Fe2—Fe12.4970 (6)C3—O31.132 (4)
S2—C61.787 (3)C4—O41.148 (4)
S1—C71.782 (3)C9—C81.352 (5)
P1—C111.809 (3)C9—H9A0.9300
P1—C101.815 (3)C12—H12A0.9600
P1—C121.815 (3)C12—H12B0.9600
C11—H11A0.9600C12—H12C0.9600
C11—H11B0.9600C2—O21.139 (4)
C11—H11C0.9600C8—H8A0.9300
C4—Fe2—C598.48 (16)C10—P1—Fe2116.66 (12)
C4—Fe2—P189.61 (11)C12—P1—Fe2117.62 (11)
C5—Fe2—P193.26 (10)P1—C11—H11A109.5
C4—Fe2—S2153.63 (12)P1—C11—H11B109.5
C5—Fe2—S2107.71 (11)H11A—C11—H11B109.5
P1—Fe2—S291.89 (3)P1—C11—H11C109.5
C4—Fe2—S191.40 (11)H11A—C11—H11C109.5
C5—Fe2—S199.45 (10)H11B—C11—H11C109.5
P1—Fe2—S1166.96 (4)N2—C6—C7123.6 (3)
S2—Fe2—S181.51 (3)N2—C6—S2120.4 (2)
C4—Fe2—Fe197.83 (11)C7—C6—S2116.0 (2)
C5—Fe2—Fe1151.59 (10)C6—N2—C9113.9 (3)
P1—Fe2—Fe1109.96 (3)O5—C5—Fe2176.9 (3)
S2—Fe2—Fe157.07 (3)C7—N1—C8113.9 (3)
S1—Fe2—Fe157.02 (3)P1—C10—H10A109.5
C3—Fe1—C290.68 (15)P1—C10—H10B109.5
C3—Fe1—C1100.37 (16)H10A—C10—H10B109.5
C2—Fe1—C198.81 (16)P1—C10—H10C109.5
C3—Fe1—S291.35 (11)H10A—C10—H10C109.5
C2—Fe1—S2161.26 (11)H10B—C10—H10C109.5
C1—Fe1—S299.14 (12)N1—C7—C6122.7 (3)
C3—Fe1—S1155.60 (12)N1—C7—S1120.3 (2)
C2—Fe1—S189.39 (11)C6—C7—S1117.0 (2)
C1—Fe1—S1103.74 (12)O1—C1—Fe1179.1 (4)
S2—Fe1—S181.17 (3)O3—C3—Fe1178.1 (4)
C3—Fe1—Fe299.71 (11)O4—C4—Fe2179.7 (4)
C2—Fe1—Fe2104.66 (11)C8—C9—N2122.8 (3)
C1—Fe1—Fe2148.74 (11)C8—C9—H9A118.6
S2—Fe1—Fe256.65 (2)N2—C9—H9A118.6
S1—Fe1—Fe256.84 (2)P1—C12—H12A109.5
C6—S2—Fe2101.60 (11)P1—C12—H12B109.5
C6—S2—Fe199.45 (11)H12A—C12—H12B109.5
Fe2—S2—Fe166.28 (3)P1—C12—H12C109.5
C7—S1—Fe2100.61 (10)H12A—C12—H12C109.5
C7—S1—Fe199.80 (11)H12B—C12—H12C109.5
Fe2—S1—Fe166.13 (3)O2—C2—Fe1178.7 (3)
C11—P1—C10101.87 (16)C9—C8—N1123.1 (3)
C11—P1—C12102.21 (17)C9—C8—H8A118.5
C10—P1—C12102.53 (16)N1—C8—H8A118.5
C11—P1—Fe2113.71 (11)
C4—Fe2—Fe1—C386.09 (15)C5—Fe2—S1—Fe1162.74 (11)
C5—Fe2—Fe1—C3149.4 (2)P1—Fe2—S1—Fe14.13 (16)
P1—Fe2—Fe1—C36.35 (12)S2—Fe2—S1—Fe156.06 (3)
S2—Fe2—Fe1—C385.19 (12)C3—Fe1—S1—C7115.1 (3)
S1—Fe2—Fe1—C3172.66 (12)C2—Fe1—S1—C7154.63 (15)
C4—Fe2—Fe1—C27.18 (15)C1—Fe1—S1—C755.71 (16)
C5—Fe2—Fe1—C2117.4 (2)S2—Fe1—S1—C741.61 (10)
P1—Fe2—Fe1—C299.62 (11)Fe2—Fe1—S1—C797.35 (10)
S2—Fe2—Fe1—C2178.46 (11)C3—Fe1—S1—Fe217.7 (3)
S1—Fe2—Fe1—C279.39 (11)C2—Fe1—S1—Fe2108.02 (11)
C4—Fe2—Fe1—C1144.6 (3)C1—Fe1—S1—Fe2153.05 (12)
C5—Fe2—Fe1—C120.0 (3)S2—Fe1—S1—Fe255.73 (3)
P1—Fe2—Fe1—C1123.0 (2)C4—Fe2—P1—C1185.98 (17)
S2—Fe2—Fe1—C144.1 (2)C5—Fe2—P1—C1112.49 (17)
S1—Fe2—Fe1—C158.0 (2)S2—Fe2—P1—C11120.35 (13)
C4—Fe2—Fe1—S2171.28 (11)S1—Fe2—P1—C11179.51 (18)
C5—Fe2—Fe1—S264.2 (2)Fe1—Fe2—P1—C11175.83 (13)
P1—Fe2—Fe1—S278.84 (4)C4—Fe2—P1—C1032.18 (19)
S1—Fe2—Fe1—S2102.15 (3)C5—Fe2—P1—C10130.65 (18)
C4—Fe2—Fe1—S186.57 (11)S2—Fe2—P1—C10121.49 (14)
C5—Fe2—Fe1—S138.0 (2)S1—Fe2—P1—C1062.3 (2)
P1—Fe2—Fe1—S1179.01 (4)Fe1—Fe2—P1—C1066.01 (15)
S2—Fe2—Fe1—S1102.15 (3)C4—Fe2—P1—C12154.65 (18)
C4—Fe2—S2—C6115.1 (3)C5—Fe2—P1—C12106.88 (17)
C5—Fe2—S2—C657.96 (15)S2—Fe2—P1—C120.98 (14)
P1—Fe2—S2—C6151.99 (11)S1—Fe2—P1—C1260.1 (2)
S1—Fe2—S2—C639.31 (11)Fe1—Fe2—P1—C1256.46 (14)
Fe1—Fe2—S2—C695.33 (11)Fe2—S2—C6—N2147.9 (2)
C4—Fe2—S2—Fe119.8 (2)Fe1—S2—C6—N2144.6 (2)
C5—Fe2—S2—Fe1153.29 (10)Fe2—S2—C6—C730.9 (2)
P1—Fe2—S2—Fe1112.68 (3)Fe1—S2—C6—C736.6 (2)
S1—Fe2—S2—Fe156.02 (3)C7—C6—N2—C90.5 (4)
C3—Fe1—S2—C6160.66 (15)S2—C6—N2—C9178.2 (2)
C2—Fe1—S2—C6103.2 (4)C8—N1—C7—C60.5 (5)
C1—Fe1—S2—C659.94 (16)C8—N1—C7—S1179.2 (2)
S1—Fe1—S2—C642.68 (11)N2—C6—C7—N11.1 (5)
Fe2—Fe1—S2—C698.60 (11)S2—C6—C7—N1177.7 (2)
C3—Fe1—S2—Fe2100.74 (12)N2—C6—C7—S1178.7 (2)
C2—Fe1—S2—Fe24.6 (3)S2—C6—C7—S12.6 (3)
C1—Fe1—S2—Fe2158.53 (12)Fe2—S1—C7—N1145.7 (2)
S1—Fe1—S2—Fe255.92 (3)Fe1—S1—C7—N1146.9 (2)
C4—Fe2—S1—C7165.46 (16)Fe2—S1—C7—C634.5 (2)
C5—Fe2—S1—C766.63 (15)Fe1—S1—C7—C632.8 (2)
P1—Fe2—S1—C7100.24 (18)C6—N2—C9—C80.5 (5)
S2—Fe2—S1—C740.04 (11)N2—C9—C8—N11.1 (6)
Fe1—Fe2—S1—C796.11 (11)C7—N1—C8—C90.5 (5)
C4—Fe2—S1—Fe198.43 (12)

Experimental details

Crystal data
Chemical formula[Fe2(C4H2N2S2)(C3H9P)(CO)5]
Mr470.02
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)14.8307 (2), 12.1463 (2), 19.8806 (3)
V3)3581.25 (9)
Z8
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.828, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
19251, 3327, 2445
Rint0.064
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.070, 1.01
No. of reflections3327
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.32

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—C11.803 (4)Fe2—C51.771 (4)
Fe1—C21.784 (4)Fe2—S12.2859 (9)
Fe1—C31.780 (4)Fe2—S22.2783 (9)
Fe1—S12.2906 (9)Fe2—P12.2450 (9)
Fe1—S22.2893 (9)Fe2—Fe12.4970 (6)
Fe2—C41.761 (4)
 

Acknowledgements

The authors thank the Scientific and Technological Development Project of Jilin Province (grant No. 201101103) and the National Natural Science Foundation of China (grant No. 61106050) for financial support.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCammack, R. (1999). Nature (London), 297, 214–215.  Web of Science CrossRef Google Scholar
First citationDurgaprasad, G., Bolligarla, R. & Das, S. K. (2011). J. Organomet. Chem. 696, 3097–3105.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268–275.  Web of Science CrossRef PubMed Google Scholar
First citationLi, P., Wang, M., He, C.-J., Li, G.-H., Liu, X.-Y., Chen, C.-N., Åkermark, B. & Sun, L.-C. (2005). Eur. J. Inorg. Chem. pp. 2506–2513.  CSD CrossRef Google Scholar
First citationLiu, X.-F. & Xiao, X.-W. (2011). J. Organomet. Chem. 696, 2767–2771.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X.-F. & Yin, B.-S. (2010). J. Coord. Chem. 63, 4061–4067.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, L.-C., Yang, Z.-Y., Bian, H.-Z., Liu, Y., Wang, H.-T., Liu, X.-F. & Hu, Q.-M. (2005). Organometallics, 24, 6126–6135.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, B.-S., Li, T.-B. & Yang, M.-S. (2011). J. Coord. Chem. 64, 2066–2074.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds