organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-n-Butyl-6-chloro-1-(2,4-di­methyl­phenyl­sulfon­yl)-1H-benzimidazole–2-n-butyl-5-chloro-1-(2,4-di­methyl­phenyl­sulfon­yl)-1H-benzimidazole (0.759/0.241)

aS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek Str., 77, Tashkent 100170, Uzbekistan, and bKara-Kalpak State University, Acad. Abdirov Str., 1, Nukus 742000, Uzbekistan
*Correspondence e-mail: abdireymovqudaybergen@mail.ru

(Received 18 October 2011; accepted 11 November 2011; online 19 November 2011)

The title compound, 0.759C19H21ClN2O2S·0.241C19H21ClN2O2S, was synthesized by aryl­sulfonyl­ation of 2-n-butyl-5-chloro-1H-benzimidazole in the presence of triethyl­amine. The crystal structure is composed of two mol­ecules, 2-n-butyl-6-chloro-1-(2,4-dimethylphenyl­sulfon­yl)-1H-benzimidazole and 1-(2,4-dimethylphenyl­sulfon­yl)-2-n-butyl-5-chloro-1H-benz­imidazole, in the refined ratio of 0.759 (4):0.241 (4) disordered at the same position in the unit cell. The mol­ecule has three essentially planar fragments viz. benzimidazole, dimethyl­benzene and n-butyl (r.m.s. deviations of 0.009, 0.024 and 0.003 Å, respectively). The angle between the benzimidazole and dimethyl­benzene fragments is 86.0 (1)°. In the crystal, pairs of inter­molecular C—H⋯π inter­actions form centrosymmetrical dimers, which are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the biological and pharmaceutical properties of benz­imid­azole derivatives, see: Koči et al. (2002[Koči, J., Klimešová, V., Waisser, K., Kaustová, J., Dahse, H. M. & Möllmann, U. (2002). Bioorg. Med. Chem. Lett. 12, 3275-3278.]); Matsuno et al. (2000[Matsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). Chem. Pharm. Bull. 48, 1778-1781.]); Garuti et al. (1999[Garuti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett. 9, 2525-2530.]). For the synthesis, biological activity and related structures of 2-n-butyl­benzimidazole derivatives, see: Kubo et al. (1993a[Kubo, K., Inada, Y., Koharo, Y., Sugiura, Y., Ojima, M., Itoh, K., Furukawa, Y., Nashikawa, K. & Naka, T. (1993a). J. Med. Chem. 36, 1772-1784.],b[Kubo, K., Kohara, Y., Yoshimura, Y., Inada, Y., Shibouta, Y., Furukawa, Y., Kato, T., Nashikawa, K. & Naka, T. (1993b). J. Med. Chem. 36, 2343-2349.]); For the aryl­sulfonyl­ation of benzimidazole derivatives, see: Abdireimov et al. (2010[Abdireimov, K. B., Mukhamedov, N. S., Aiymbetov, M. Zh. & Shakhidoyatov, Kh. M. (2010). Chem. Heterocycl. Compd, 46, 941-946.]).

[Scheme 1]

Experimental

Crystal data
  • 0.759C19H21ClN2O2S·0.241C19H21ClN2O2S

  • Mr = 376.89

  • Triclinic, [P \overline 1]

  • a = 8.7340 (17) Å

  • b = 10.251 (2) Å

  • c = 11.390 (2) Å

  • α = 71.29 (3)°

  • β = 78.38 (3)°

  • γ = 76.75 (3)°

  • V = 931.1 (3) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.98 mm−1

  • T = 290 K

  • 0.68 × 0.45 × 0.20 mm

Data collection
  • Stoe Stadi-4 four-circle diffractometer

  • Absorption correction: ψ scan (X-RED; Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.250, Tmax = 0.551

  • 2722 measured reflections

  • 2714 independent reflections

  • 2460 reflections with I > 2σ(I)

  • θmax = 60.0°

  • 3 standard reflections every 60 min intensity decay: 10.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.191

  • S = 1.12

  • 2714 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19B⋯O2i 0.96 2.62 3.554 (7) 165
C4—H4ACg3ii 0.93 2.76 3.665 (8) 163
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: STADI4 (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997[Stoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazole (Koči et al., 2002; Matsuno et al., 2000; Garuti et al., 1999) and 2-n-butylbenzimidazole (Kubo et al., 1993a; 1993b) derivatives are important heterocyclic compounds which have attracted great attention due to their biological and pharmaceutical activities.

Reaction of 2-1n-butyl-5-chloro-1H-benzimidazole with 2,4-dimethylbenzenesulfonyl chloride in the presence of triethylamine results in a mixture of 1-(2,4-dimethylbenzenesulfonyl)-2-n-butyl-6-chloro-1H-benzimidazole and 1-(2,4-dimethylbenzenesulfonyl)-2-n-butyl-5-chloro-1H-benzimidazole, in the refined ratio of 0.759 (4):0.241 (4) (Abdireimov et al., 2010). The structure of the received product is investigated by 1H NMR and X-ray diffraction.

As a whole the molecule consists of three flat fragments: benzimidazole (N1/C2/N3/C3A–C7A), dimethylbenzene (C12–C19) and n-butyl (C8–C11) (r.m.s. deviations are 0.009, 0.024 and 0.003 Å, respectively). The angle between flat benzimidazole and dimethylbenzene fragment is 86.0 (1)°, and between benzimidazole and n-butyl is 4.4 (2)° (Fig. 1).

The crystal structure is stabilized by intermolecular C—H···π interactions observed between the atoms of two benzene rings of neighboring molecules with distance C4—H···Cg3i = 3.665 (2) Å [symmetry code: (i) 1 - x, 1 - y, 1 - z; Cg3 is centroid of the C12–C17 benzene ring]. Observable C—H···π interactions form centrosymmetric dimers, another weak intermolecular H-bond such as C19—H···O2 sew these dimers (Table 1).

Related literature top

For the biological and pharmaceutical properties of benzimidazole derivatives, see: Koči et al. (2002); Matsuno et al. (2000); Garuti et al. (1999). For the synthesis, biological activity and related structures of 2-n-butylbenzimidazole derivatives, see: Kubo et al. (1993a,b); For the arylsulfonylation of benzimidazole derivatives, see: Abdireimov et al. (2010).

Experimental top

In the three-necked round-bottomed flask, supplied with a mechanical mixer, dropping funnel and backflow condenser, were placed 2.04 g (10 mmol) 2,4-dimethylbenzenesulfonyl chloride in 15 ml of acetone and was added a solution of 2.08 g (10 mmol) 2-1n-butyl-5-chloro-1H-benzimidazole and 1.01 g (10 mmol) triethylamine in 30 ml acetone by stirring and cooling. The reaction mixture was stirred at room temperature for 4 h. Afterwards acetone is evaporated. The residual product was washed with 100 ml of the water, obtained crystals were filtered and recrystallized from ethanol. 2.18 g (56%) mixed crystals of 1-(2,4-dimethylbenzenesulfonyl)-2-n-butyl-6-chloro-1H-benzimidazole (A) and 1-(2,4-dimethylbenzenesulfonyl)-2-n-butyl-5-chloro-1H-benzimidazole (B), melting in the temperature range of 108–117°C were obtained.

Colorless crystals suitable for XRD have been received from ethanol at room temperature.

Refinement top

The 10.4% decay correction was applied by using the programm X-RED. The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.97 Å for CH2; 0.96 Å for CH3; and 0.93 Å for Car) and included in the refinement in a riding motion approximation with Uiso=1.2Ueq(C) [Uiso=1.5Ueq(C) for methyl H atoms].

Structure description top

Benzimidazole (Koči et al., 2002; Matsuno et al., 2000; Garuti et al., 1999) and 2-n-butylbenzimidazole (Kubo et al., 1993a; 1993b) derivatives are important heterocyclic compounds which have attracted great attention due to their biological and pharmaceutical activities.

Reaction of 2-1n-butyl-5-chloro-1H-benzimidazole with 2,4-dimethylbenzenesulfonyl chloride in the presence of triethylamine results in a mixture of 1-(2,4-dimethylbenzenesulfonyl)-2-n-butyl-6-chloro-1H-benzimidazole and 1-(2,4-dimethylbenzenesulfonyl)-2-n-butyl-5-chloro-1H-benzimidazole, in the refined ratio of 0.759 (4):0.241 (4) (Abdireimov et al., 2010). The structure of the received product is investigated by 1H NMR and X-ray diffraction.

As a whole the molecule consists of three flat fragments: benzimidazole (N1/C2/N3/C3A–C7A), dimethylbenzene (C12–C19) and n-butyl (C8–C11) (r.m.s. deviations are 0.009, 0.024 and 0.003 Å, respectively). The angle between flat benzimidazole and dimethylbenzene fragment is 86.0 (1)°, and between benzimidazole and n-butyl is 4.4 (2)° (Fig. 1).

The crystal structure is stabilized by intermolecular C—H···π interactions observed between the atoms of two benzene rings of neighboring molecules with distance C4—H···Cg3i = 3.665 (2) Å [symmetry code: (i) 1 - x, 1 - y, 1 - z; Cg3 is centroid of the C12–C17 benzene ring]. Observable C—H···π interactions form centrosymmetric dimers, another weak intermolecular H-bond such as C19—H···O2 sew these dimers (Table 1).

For the biological and pharmaceutical properties of benzimidazole derivatives, see: Koči et al. (2002); Matsuno et al. (2000); Garuti et al. (1999). For the synthesis, biological activity and related structures of 2-n-butylbenzimidazole derivatives, see: Kubo et al. (1993a,b); For the arylsulfonylation of benzimidazole derivatives, see: Abdireimov et al. (2010).

Computing details top

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4 (Stoe & Cie, 1997); data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, displacement ellipsoids are drawn at the 30% probability level.
2-n-Butyl-6-chloro-1-(2,4-dimethylphenylsulfonyl)-1H- benzimidazole–2-n-butyl-5-chloro-1-(2,4-dimethylphenylsulfonyl)- 1H-benzimidazole (0.759/0.241) top
Crystal data top
0.7590.241C19H21ClN2O2S·0.2410.241C19H21ClN2O2SZ = 2
Mr = 376.89F(000) = 396
Triclinic, P1Dx = 1.344 Mg m3
Hall symbol: -P 1Melting point < 381(9) K
a = 8.7340 (17) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.251 (2) ÅCell parameters from 13 reflections
c = 11.390 (2) Åθ = 10–20°
α = 71.29 (3)°µ = 2.98 mm1
β = 78.38 (3)°T = 290 K
γ = 76.75 (3)°Prizmatic, colorless
V = 931.1 (3) Å30.68 × 0.45 × 0.20 mm
Data collection top
Stoe Stadi-4 four-circle
diffractometer
2460 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 60.0°, θmin = 4.1°
Scan width (ω) = 1.56 – 1.80, scan ratio 2θ:ω = 1.00 I(Net) and sigma(I) calculated according to Blessing (1987)h = 99
Absorption correction: ψ scan
(X-RED; Stoe & Cie, 1997)
k = 1011
Tmin = 0.250, Tmax = 0.551l = 012
2722 measured reflections3 standard reflections every 60 min
2714 independent reflections intensity decay: 10.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.191 w = 1/[σ2(Fo2) + (0.0919P)2 + 1.1929P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2714 reflectionsΔρmax = 0.35 e Å3
240 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (3)
Crystal data top
0.7590.241C19H21ClN2O2S·0.2410.241C19H21ClN2O2Sγ = 76.75 (3)°
Mr = 376.89V = 931.1 (3) Å3
Triclinic, P1Z = 2
a = 8.7340 (17) ÅCu Kα radiation
b = 10.251 (2) ŵ = 2.98 mm1
c = 11.390 (2) ÅT = 290 K
α = 71.29 (3)°0.68 × 0.45 × 0.20 mm
β = 78.38 (3)°
Data collection top
Stoe Stadi-4 four-circle
diffractometer
2460 reflections with I > 2σ(I)
Absorption correction: ψ scan
(X-RED; Stoe & Cie, 1997)
Rint = 0.000
Tmin = 0.250, Tmax = 0.551θmax = 60.0°
2722 measured reflections3 standard reflections every 60 min
2714 independent reflections intensity decay: 10.4%
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.12Δρmax = 0.35 e Å3
2714 reflectionsΔρmin = 0.45 e Å3
240 parameters
Special details top

Experimental. Empirical absorption correction using ψ Scan. Reflections used Mu * R = 0.00

H K L, θ, χ, Imin/Imax: -1 -2 4 45.0 82.7 0.455

1H NMR (400 MHz, CDCl~3~): 1-(2,4-dimethylbenzenesulfonyl)-2-n-butyl-6- chloro-1H-benzimidazole (A). 7.97 (1H, d, J2.1 Hz, H-7), 7.49 (1H, d, J8.3 Hz, H-17), 7.49 (1H, d, J8.5 Hz, H-4), 7.37 (2H, d, J7.9 Hz, H-14, 16), 7.29 (1H, dd, J2.o, J8.5 H-5), 3.08 (2H, m, CH2-8), 2.34 (6H, s, CH3-18, 19), 1.73 (2H, m, CH2-9), 1.37 (2H, m, CH2-10), 0.89 (3H, t, J7.3 Hz, CH3-11).

1-(2,4-dimethylbenzenesulfonyl)-2-n-butyl-5-chloro- 1H-benzimidazole (B). 7.95 (1H, d, J8.7 Hz, H-7), 7.78 (1H, d, J8.3 Hz, H-17), 7.52 (1H, d, J2.0 Hz, H-4), 7.35 (2H, d, J7.9 Hz, H-14, 16), 7.31 (1H, dd, J2.o, J8.5 H-6), 3.08 (2H, m, CH2-8), 2.34 (6H, s, CH3-18, 19), 1.73 (2H, m, CH2-9), 1.37 (2H, m, CH2-10), 0.90 (3H, t, J7.5 Hz, CH3-11).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.25613 (12)0.65554 (11)0.19565 (9)0.0537 (4)
O10.2520 (4)0.5625 (3)0.1267 (3)0.0660 (9)
O20.1230 (4)0.7622 (3)0.2077 (3)0.0647 (9)
N10.2783 (4)0.5558 (3)0.3424 (3)0.0511 (8)
N30.3767 (4)0.3796 (4)0.4993 (3)0.0606 (10)
C20.3863 (5)0.4310 (4)0.3785 (4)0.0552 (10)
C3A0.2567 (5)0.4705 (4)0.5479 (4)0.0552 (10)
C40.1997 (6)0.4606 (5)0.6731 (4)0.0688 (13)
H4A0.24280.38740.73700.083*
C50.0780 (6)0.5624 (5)0.6986 (4)0.0658 (12)
H5A0.03770.55840.78150.079*0.759 (4)
C60.0142 (5)0.6701 (5)0.6052 (4)0.0604 (11)
H6A0.06840.73720.62690.072*0.241 (4)
C70.0675 (5)0.6835 (5)0.4791 (4)0.0573 (11)
H7A0.02260.75640.41580.069*
C7A0.1909 (5)0.5817 (4)0.4545 (4)0.0498 (10)
C80.4990 (5)0.3662 (5)0.2876 (4)0.0606 (11)
H8A0.57040.43000.23850.073*
H8B0.43970.35190.23060.073*
C90.5963 (6)0.2267 (5)0.3510 (4)0.0640 (12)
H9A0.65860.24090.40610.077*
H9B0.52550.16310.40160.077*
C100.7063 (7)0.1625 (5)0.2552 (5)0.0754 (14)
H10A0.77740.22610.20520.090*
H10B0.64390.14960.19970.090*
C110.8036 (7)0.0226 (6)0.3163 (6)0.0918 (18)
H11A0.87250.01410.25280.138*
H11B0.73370.04170.36380.138*
H11C0.86620.03490.37100.138*
C120.4289 (5)0.7259 (4)0.1379 (4)0.0498 (10)
C130.4696 (5)0.8270 (4)0.1800 (4)0.0553 (11)
C140.6081 (6)0.8746 (4)0.1239 (4)0.0603 (11)
H14A0.63560.94130.15120.072*
C150.7100 (5)0.8296 (5)0.0291 (4)0.0615 (11)
C160.6664 (6)0.7320 (5)0.0118 (4)0.0657 (12)
H16A0.73170.69980.07570.079*
C170.5288 (6)0.6823 (5)0.0405 (4)0.0609 (11)
H17A0.50090.61780.01050.073*
C180.3722 (6)0.8773 (5)0.2876 (5)0.0702 (13)
H18A0.40750.95810.29060.105*
H18B0.38500.80430.36460.105*
H18C0.26230.90140.27610.105*
C190.8634 (6)0.8809 (7)0.0233 (6)0.0881 (16)
H19A0.90190.86310.10290.132*
H19B0.93990.83290.03310.132*
H19C0.84710.97960.03400.132*
Cl10.1412 (2)0.79798 (18)0.64266 (16)0.0782 (7)0.759 (4)
Cl1'0.0475 (7)0.5668 (7)0.8540 (5)0.081 (2)0.241 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0575 (7)0.0540 (7)0.0473 (6)0.0039 (5)0.0118 (5)0.0129 (5)
O10.077 (2)0.073 (2)0.0594 (18)0.0196 (16)0.0128 (15)0.0283 (16)
O20.0621 (18)0.0621 (18)0.0554 (18)0.0096 (14)0.0143 (14)0.0076 (14)
N10.056 (2)0.0460 (18)0.0433 (18)0.0003 (15)0.0038 (15)0.0104 (15)
N30.068 (2)0.053 (2)0.054 (2)0.0043 (17)0.0096 (17)0.0153 (17)
C20.056 (2)0.049 (2)0.059 (3)0.0009 (19)0.0074 (19)0.020 (2)
C3A0.058 (2)0.050 (2)0.054 (2)0.0005 (19)0.0065 (19)0.0173 (19)
C40.082 (3)0.066 (3)0.049 (3)0.000 (2)0.008 (2)0.013 (2)
C50.073 (3)0.070 (3)0.049 (2)0.009 (2)0.002 (2)0.019 (2)
C60.054 (2)0.062 (3)0.063 (3)0.006 (2)0.001 (2)0.025 (2)
C70.053 (2)0.056 (2)0.056 (3)0.0005 (19)0.0031 (19)0.016 (2)
C7A0.051 (2)0.049 (2)0.046 (2)0.0048 (18)0.0043 (17)0.0128 (18)
C80.063 (3)0.058 (3)0.058 (3)0.003 (2)0.004 (2)0.024 (2)
C90.063 (3)0.060 (3)0.065 (3)0.006 (2)0.008 (2)0.025 (2)
C100.084 (3)0.058 (3)0.078 (3)0.011 (2)0.008 (3)0.028 (3)
C110.082 (4)0.075 (4)0.112 (5)0.023 (3)0.021 (3)0.041 (3)
C120.057 (2)0.045 (2)0.045 (2)0.0020 (18)0.0097 (18)0.0132 (17)
C130.067 (3)0.045 (2)0.053 (2)0.001 (2)0.015 (2)0.0169 (19)
C140.071 (3)0.049 (2)0.063 (3)0.011 (2)0.021 (2)0.011 (2)
C150.063 (3)0.062 (3)0.053 (2)0.008 (2)0.013 (2)0.006 (2)
C160.071 (3)0.068 (3)0.054 (3)0.013 (2)0.002 (2)0.016 (2)
C170.076 (3)0.057 (3)0.051 (2)0.010 (2)0.004 (2)0.021 (2)
C180.085 (3)0.065 (3)0.065 (3)0.004 (2)0.009 (2)0.033 (2)
C190.076 (4)0.096 (4)0.086 (4)0.026 (3)0.013 (3)0.010 (3)
Cl10.0714 (11)0.0803 (12)0.0733 (11)0.0080 (8)0.0057 (8)0.0333 (9)
Cl1'0.077 (4)0.100 (4)0.069 (3)0.018 (3)0.010 (3)0.039 (3)
Geometric parameters (Å, º) top
S1—O21.419 (3)C9—H9A0.9700
S1—O11.427 (3)C9—H9B0.9700
S1—N11.679 (3)C10—C111.517 (7)
S1—C121.739 (4)C10—H10A0.9700
N1—C21.401 (5)C10—H10B0.9700
N1—C7A1.420 (5)C11—H11A0.9600
N3—C21.298 (6)C11—H11B0.9600
N3—C3A1.387 (5)C11—H11C0.9600
C2—C81.488 (6)C12—C171.394 (6)
C3A—C7A1.389 (6)C12—C131.410 (6)
C3A—C41.392 (6)C13—C141.366 (6)
C4—C51.366 (7)C13—C181.508 (6)
C4—H4A0.9300C14—C151.383 (7)
C5—C61.365 (7)C14—H14A0.9300
C5—Cl1'1.750 (7)C15—C161.382 (7)
C5—H5A0.9300C15—C191.493 (7)
C6—C71.390 (6)C16—C171.362 (7)
C6—Cl11.747 (5)C16—H16A0.9300
C6—H6A0.9300C17—H17A0.9300
C7—C7A1.371 (6)C18—H18A0.9600
C7—H7A0.9300C18—H18B0.9600
C8—C91.522 (6)C18—H18C0.9600
C8—H8A0.9700C19—H19A0.9600
C8—H8B0.9700C19—H19B0.9600
C9—C101.515 (6)C19—H19C0.9600
O2—S1—O1119.5 (2)C8—C9—H9B109.4
O2—S1—N1105.51 (18)H9A—C9—H9B108.0
O1—S1—N1106.36 (18)C9—C10—C11112.0 (5)
O2—S1—C12110.7 (2)C9—C10—H10A109.2
O1—S1—C12108.22 (19)C11—C10—H10A109.2
N1—S1—C12105.50 (18)C9—C10—H10B109.2
C2—N1—C7A106.4 (3)C11—C10—H10B109.2
C2—N1—S1126.9 (3)H10A—C10—H10B107.9
C7A—N1—S1126.7 (3)C10—C11—H11A109.5
C2—N3—C3A105.6 (3)C10—C11—H11B109.5
N3—C2—N1112.4 (4)H11A—C11—H11B109.5
N3—C2—C8124.4 (4)C10—C11—H11C109.5
N1—C2—C8123.2 (4)H11A—C11—H11C109.5
N3—C3A—C7A112.1 (4)H11B—C11—H11C109.5
N3—C3A—C4128.0 (4)C17—C12—C13118.9 (4)
C7A—C3A—C4119.9 (4)C17—C12—S1116.9 (3)
C5—C4—C3A117.5 (4)C13—C12—S1124.2 (3)
C5—C4—H4A121.3C14—C13—C12117.5 (4)
C3A—C4—H4A121.3C14—C13—C18119.6 (4)
C6—C5—C4121.5 (4)C12—C13—C18122.8 (4)
C6—C5—Cl1'122.7 (4)C13—C14—C15124.2 (4)
C4—C5—Cl1'114.0 (4)C13—C14—H14A117.9
C6—C5—H5A119.2C15—C14—H14A117.9
C4—C5—H5A119.2C16—C15—C14117.3 (4)
C5—C6—C7122.8 (4)C16—C15—C19121.5 (5)
C5—C6—Cl1119.8 (4)C14—C15—C19121.2 (5)
C7—C6—Cl1117.4 (4)C17—C16—C15120.8 (4)
C5—C6—H6A118.6C17—C16—H16A119.6
C7—C6—H6A118.6C15—C16—H16A119.6
C7A—C7—C6115.2 (4)C16—C17—C12121.4 (4)
C7A—C7—H7A122.4C16—C17—H17A119.3
C6—C7—H7A122.4C12—C17—H17A119.3
C7—C7A—C3A123.0 (4)C13—C18—H18A109.5
C7—C7A—N1133.5 (4)C13—C18—H18B109.5
C3A—C7A—N1103.5 (3)H18A—C18—H18B109.5
C2—C8—C9112.6 (4)C13—C18—H18C109.5
C2—C8—H8A109.1H18A—C18—H18C109.5
C9—C8—H8A109.1H18B—C18—H18C109.5
C2—C8—H8B109.1C15—C19—H19A109.5
C9—C8—H8B109.1C15—C19—H19B109.5
H8A—C8—H8B107.8H19A—C19—H19B109.5
C10—C9—C8111.0 (4)C15—C19—H19C109.5
C10—C9—H9A109.4H19A—C19—H19C109.5
C8—C9—H9A109.4H19B—C19—H19C109.5
C10—C9—H9B109.4
O2—S1—N1—C2174.6 (3)C4—C3A—C7A—N1180.0 (4)
O1—S1—N1—C246.7 (4)C2—N1—C7A—C7177.5 (5)
C12—S1—N1—C268.1 (4)S1—N1—C7A—C72.5 (7)
O2—S1—N1—C7A5.4 (4)C2—N1—C7A—C3A0.9 (4)
O1—S1—N1—C7A133.3 (3)S1—N1—C7A—C3A179.1 (3)
C12—S1—N1—C7A111.9 (4)N3—C2—C8—C93.6 (7)
C3A—N3—C2—N11.0 (5)N1—C2—C8—C9176.6 (4)
C3A—N3—C2—C8179.2 (4)C2—C8—C9—C10178.5 (4)
C7A—N1—C2—N31.2 (5)C8—C9—C10—C11179.4 (5)
S1—N1—C2—N3178.8 (3)O2—S1—C12—C17133.0 (3)
C7A—N1—C2—C8179.0 (4)O1—S1—C12—C170.2 (4)
S1—N1—C2—C81.0 (6)N1—S1—C12—C17113.3 (3)
C2—N3—C3A—C7A0.4 (5)O2—S1—C12—C1344.3 (4)
C2—N3—C3A—C4179.3 (5)O1—S1—C12—C13177.1 (3)
N3—C3A—C4—C5179.1 (5)N1—S1—C12—C1369.4 (4)
C7A—C3A—C4—C50.6 (7)C17—C12—C13—C141.5 (6)
C3A—C4—C5—C60.0 (8)S1—C12—C13—C14178.7 (3)
C3A—C4—C5—Cl1'164.9 (4)C17—C12—C13—C18177.9 (4)
C4—C5—C6—C70.1 (8)S1—C12—C13—C184.9 (6)
Cl1'—C5—C6—C7163.8 (4)C12—C13—C14—C150.0 (7)
C4—C5—C6—Cl1179.9 (4)C18—C13—C14—C15176.5 (4)
Cl1'—C5—C6—Cl116.3 (7)C13—C14—C15—C161.0 (7)
C5—C6—C7—C7A0.9 (7)C13—C14—C15—C19176.8 (4)
Cl1—C6—C7—C7A179.2 (3)C14—C15—C16—C170.4 (7)
C6—C7—C7A—C3A1.5 (6)C19—C15—C16—C17177.4 (5)
C6—C7—C7A—N1179.6 (4)C15—C16—C17—C121.1 (7)
N3—C3A—C7A—C7178.3 (4)C13—C12—C17—C162.1 (7)
C4—C3A—C7A—C71.4 (7)S1—C12—C17—C16179.5 (4)
N3—C3A—C7A—N10.3 (5)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19B···O2i0.962.623.554 (7)165
C4—H4A···Cg3ii0.932.763.665 (8)163
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula0.7590.241C19H21ClN2O2S·0.2410.241C19H21ClN2O2S
Mr376.89
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)8.7340 (17), 10.251 (2), 11.390 (2)
α, β, γ (°)71.29 (3), 78.38 (3), 76.75 (3)
V3)931.1 (3)
Z2
Radiation typeCu Kα
µ (mm1)2.98
Crystal size (mm)0.68 × 0.45 × 0.20
Data collection
DiffractometerStoe Stadi-4 four-circle
Absorption correctionψ scan
(X-RED; Stoe & Cie, 1997)
Tmin, Tmax0.250, 0.551
No. of measured, independent and
observed [I > 2σ(I)] reflections
2722, 2714, 2460
Rint0.000
θmax (°)60.0
(sin θ/λ)max1)0.562
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.191, 1.12
No. of reflections2714
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.45

Computer programs: STADI4 (Stoe & Cie, 1997), X-RED (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19B···O2i0.962.6193.554 (7)165
C4—H4A···Cg3ii0.932.7603.665 (8)163
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grants FA-F3-T045 and FA-A6-T114).

References

First citationAbdireimov, K. B., Mukhamedov, N. S., Aiymbetov, M. Zh. & Shakhidoyatov, Kh. M. (2010). Chem. Heterocycl. Compd, 46, 941–946.  Web of Science CrossRef CAS Google Scholar
First citationGaruti, L., Roberti, M. & Cermelli, C. (1999). Bioorg. Med. Chem. Lett. 9, 2525–2530.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoči, J., Klimešová, V., Waisser, K., Kaustová, J., Dahse, H. M. & Möllmann, U. (2002). Bioorg. Med. Chem. Lett. 12, 3275–3278.  Web of Science PubMed Google Scholar
First citationKubo, K., Inada, Y., Koharo, Y., Sugiura, Y., Ojima, M., Itoh, K., Furukawa, Y., Nashikawa, K. & Naka, T. (1993a). J. Med. Chem. 36, 1772–1784.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationKubo, K., Kohara, Y., Yoshimura, Y., Inada, Y., Shibouta, Y., Furukawa, Y., Kato, T., Nashikawa, K. & Naka, T. (1993b). J. Med. Chem. 36, 2343–2349.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMatsuno, T., Kato, M., Sasahara, H., Watanabe, T., Inaba, M., Takahashi, M., Yaguchi, S. I., Yoshioka, K., Sakato, M. & Kawashima, S. (2000). Chem. Pharm. Bull. 48, 1778–1781.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds