metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ-aqua-tri­aqua­[μ6-1,3,4,6-tetra­kis­(carboxyl­atometh­yl)-7,8-di­phenyl­glycoluril]dizinc] monohydrate]

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China, and bCollege of Chemistry, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: qiuwenge@bjut.edu.cn

(Received 14 October 2011; accepted 18 November 2011; online 25 November 2011)

In the crystal structure of the title coordination polymer, {[Zn2(C24H18N4O10)(H2O)4]·H2O}n, the mol­ecular building block (MBB), viz [Zn2(CO2)4(H2O)4], comprises two ZnII cations, each bridged by three carboxyl­ate groups from different ligand mol­ecules. These two ZnII cations exhibit different coordination environments: a distorted trigonal–pyramidal coordination, as an inter­mediate, is formed by the two coordinated water mol­ecules and three carboxyl­ate groups, and a distorted octa­hedral geometry defined by three water mol­ecules and three carboxyl­ate groups, in which two carboxyl­ate groups from the same side of the clip glycoluril ring and one water mol­ecule are bidentate bridging, whereas others are monodentate units. Every ligand mol­ecule connects four MBBs, thus forming a three-dimensional structure. Extensive intra- and inter­molecular O—H⋯O hydrogen bonding is observed.

Related literature

For the use of clip ligands in the generation of coordination frameworks, see: Deshpande et al. (2008[Deshpande, M. S., Kumbhar, A. S. & Puranik, V. G. (2008). Cryst. Growth Des. 8, 1952-1960.]); Li et al. (2008.[Li, Y., Meng, X., Cao, L., Wang, Y., Yin, G., Gao, M., Wen, L. & Wu, A. (2008). Cryst. Growth Des. 8, 1645-1653.]). For the synthesis of the ligand, see: Kang et al. (2004[Kang, J., Ju, H. K. & Jo, J. H. (2004). Supramol. Chem. 16, 175-179.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C24H18N4O10)(H2O)4]·H2O

  • Mr = 743.24

  • Orthorhombic, P b c a

  • a = 18.091 (4) Å

  • b = 15.245 (3) Å

  • c = 19.007 (4) Å

  • V = 5242.0 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.92 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.700, Tmax = 0.802

  • 33644 measured reflections

  • 4616 independent reflections

  • 4022 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.151

  • S = 1.13

  • 4616 reflections

  • 413 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O11 2.059 (3)
Zn1—O1 2.063 (3)
Zn1—O4i 2.063 (4)
Zn1—O7ii 2.091 (3)
Zn1—O12 2.116 (4)
Zn1—O13 2.183 (3)
Zn2—O5iii 1.960 (3)
Zn2—O6 2.014 (3)
Zn2—O10iv 2.030 (3)
Zn2—O13v 2.133 (3)
Zn2—O14 2.183 (4)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+1, -y, -z+2; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H15B⋯O1vi 0.84 (3) 2.54 (6) 3.108 (6) 126 (6)
O15—H15B⋯O3vi 0.84 (3) 2.29 (6) 2.995 (6) 141 (6)
O15—H15A⋯O2v 0.83 (3) 2.23 (6) 2.954 (6) 145 (8)
O14—H14A⋯O3iv 0.85 1.99 2.812 (5) 164
O14—H14B⋯O8 0.85 2.30 3.104 (5) 159
O13—H13B⋯O2 0.97 1.86 2.684 (5) 142
O13—H13A⋯O9vii 0.97 1.90 2.671 (5) 134
O12—H12B⋯O15viii 0.85 1.91 2.723 (6) 158
O12—H12A⋯O14viii 0.85 2.03 2.827 (5) 156
O11—H11A⋯O10i 0.85 2.10 2.945 (5) 170
O11—H11B⋯O8i 0.85 1.98 2.749 (5) 150
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2]; (v) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}]; (vii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (viii) [x-{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The clip ligands, such as molecular clips based on concave glycoluril unit or its derivatives, would offer the possibility of the construction of frameworks with novel patterns not easily achievable by planar or linear ligands, which are widely used by chemists in the generation of coordination frameworks (Li et al. 2008; Deshpande et al. 2008). Herein we chose a multicarboxylate derivative of glycoluril, 1,3,4,6-tetracarboxymethyl-7,8-diphenylglycoluril, as a clip ligand, reacted with zinc nitrate affording a new three-dimensional coordination polymer, (I), {[Zn(II)2(L)(H2O)4](H2O)}n, where L=1,3,4,6-tetracarboxymethyl-7,8-diphenylglycoluril.

The molecular building blocks (MBBs) comprise two zinc centres, in which the two Zn atoms are five-coordinated and six-coordinated, respectively (Table 1 and Fig. 1). The different coordination environments in the dinuclear zinc cluster reveal that the Zn1 centre coordinated by five oxygen atoms from three L ligands and two water molecules, and Zn2 centre coordinated by six oxygen atoms from three L ligands and three water molecules. Each L ligand molecule connects four MBBs to form a three-dimensional coordination polymer (Fig. 2). A non-coordinated water molecules occupy the interstitial voids within the framework.

Related literature top

For the use of clip ligands in the generation of coordination frameworks, see: Deshpande et al. (2008); Li et al. 2008. For the synthesis of the ligand, see: Kang et al. (2004).

Experimental top

The tetracarboxylic ligand, H4L was synthesised according to the literature procedure of Kang (2004). A mixture of H4L (20 mg, 0.0380 mmol) and zinc nitrate hexahydrate (28.28 mg, 0.095 mmol) in water (4 mL) was added to a 5 mL sealed glass vial, and heated at 333 K for a week. Colourless rod-like crystals of the title compound were abtained after cooling to room temperature (yield=34% based on H4L)

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Structure description top

The clip ligands, such as molecular clips based on concave glycoluril unit or its derivatives, would offer the possibility of the construction of frameworks with novel patterns not easily achievable by planar or linear ligands, which are widely used by chemists in the generation of coordination frameworks (Li et al. 2008; Deshpande et al. 2008). Herein we chose a multicarboxylate derivative of glycoluril, 1,3,4,6-tetracarboxymethyl-7,8-diphenylglycoluril, as a clip ligand, reacted with zinc nitrate affording a new three-dimensional coordination polymer, (I), {[Zn(II)2(L)(H2O)4](H2O)}n, where L=1,3,4,6-tetracarboxymethyl-7,8-diphenylglycoluril.

The molecular building blocks (MBBs) comprise two zinc centres, in which the two Zn atoms are five-coordinated and six-coordinated, respectively (Table 1 and Fig. 1). The different coordination environments in the dinuclear zinc cluster reveal that the Zn1 centre coordinated by five oxygen atoms from three L ligands and two water molecules, and Zn2 centre coordinated by six oxygen atoms from three L ligands and three water molecules. Each L ligand molecule connects four MBBs to form a three-dimensional coordination polymer (Fig. 2). A non-coordinated water molecules occupy the interstitial voids within the framework.

For the use of clip ligands in the generation of coordination frameworks, see: Deshpande et al. (2008); Li et al. 2008. For the synthesis of the ligand, see: Kang et al. (2004).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of (I) with the atom labeling and displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (A) -x + 1/2, -y, z + 1/2; (B) -x, y + 1/2, -z + 1/2; (C) x + 1/2, -y + 1/2, -z.]
[Figure 2] Fig. 2. A view of the polymeric structure of (I). The hydrogen atoms and the water molecules in the channels have been omitted for clarity.
Poly[[µ-aqua-triaqua[µ6-1,3,4,6-tetrakis(carboxylatomethyl)- 7,8-diphenylglycoluril]dizinc] monohydrate] top
Crystal data top
[Zn2(C24H18N4O10)(H2O)4]·H2OF(000) = 3040
Mr = 743.24Dx = 1.884 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 11423 reflections
a = 18.091 (4) Åθ = 2.4–27.9°
b = 15.245 (3) ŵ = 1.92 mm1
c = 19.007 (4) ÅT = 113 K
V = 5242.0 (18) Å3Rod, colourless
Z = 80.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn 70CCD
diffractometer
4616 independent reflections
Radiation source: rotating anode4022 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.086
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.4°
ω scansh = 2121
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 1818
Tmin = 0.700, Tmax = 0.802l = 1422
33644 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0772P)2 + 11.5013P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
4616 reflectionsΔρmax = 0.61 e Å3
413 parametersΔρmin = 0.85 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0169 (7)
Crystal data top
[Zn2(C24H18N4O10)(H2O)4]·H2OV = 5242.0 (18) Å3
Mr = 743.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.091 (4) ŵ = 1.92 mm1
b = 15.245 (3) ÅT = 113 K
c = 19.007 (4) Å0.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn 70CCD
diffractometer
4616 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
4022 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.802Rint = 0.086
33644 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0603 restraints
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0772P)2 + 11.5013P]
where P = (Fo2 + 2Fc2)/3
4616 reflectionsΔρmax = 0.61 e Å3
413 parametersΔρmin = 0.85 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.31740 (3)0.38833 (3)0.58277 (3)0.0244 (2)
Zn20.72087 (3)0.09336 (4)0.98785 (3)0.0257 (2)
O10.31600 (17)0.3726 (2)0.69057 (16)0.0236 (7)
O20.2850 (2)0.5068 (2)0.72587 (18)0.0309 (8)
O30.25130 (17)0.2574 (2)0.83197 (17)0.0245 (7)
O40.3152 (2)0.1190 (2)0.97441 (18)0.0328 (9)
O50.3015 (2)0.0169 (2)0.93205 (19)0.0328 (8)
O60.62798 (18)0.1136 (2)0.93178 (19)0.0286 (8)
O70.59177 (18)0.0269 (2)0.9208 (2)0.0310 (8)
O80.51124 (19)0.2312 (2)1.00804 (16)0.0279 (8)
O90.3748 (2)0.4990 (2)1.0069 (2)0.0381 (9)
O100.32546 (18)0.3666 (2)0.99074 (18)0.0268 (8)
O110.3804 (2)0.2759 (2)0.58136 (19)0.0363 (9)
H11B0.42660.27850.57370.054*
H11A0.36570.23070.55930.054*
O120.2201 (2)0.3113 (3)0.5791 (2)0.0416 (10)
H12A0.21280.29410.53710.062*
H12B0.22660.26470.60280.062*
O130.24415 (19)0.5017 (2)0.59018 (17)0.0272 (7)
H13A0.19330.48420.58180.033*
H13B0.24730.52780.63660.033*
O140.67873 (19)0.2110 (2)1.03965 (19)0.0342 (8)
H14B0.63290.22271.04210.041*
H14A0.69710.23071.07760.041*
N10.36573 (19)0.3234 (2)0.82313 (18)0.0166 (8)
N20.3603 (2)0.1803 (2)0.84462 (19)0.0185 (8)
N30.4826 (2)0.1711 (2)0.89992 (19)0.0199 (8)
N40.4545 (2)0.3105 (2)0.91913 (18)0.0184 (8)
C10.3114 (2)0.4320 (3)0.7363 (2)0.0204 (10)
C20.3388 (3)0.4123 (3)0.8108 (2)0.0209 (10)
H2A0.37830.45300.82180.025*
H2B0.29860.42360.84340.025*
C30.3197 (2)0.2545 (3)0.8337 (2)0.0178 (9)
C40.4399 (2)0.1956 (3)0.8382 (2)0.0172 (9)
C50.4854 (2)0.2371 (3)0.9482 (2)0.0212 (10)
C60.4411 (2)0.3008 (3)0.8433 (2)0.0159 (9)
C70.3268 (3)0.0946 (3)0.8513 (2)0.0212 (10)
H7A0.35830.05210.82790.025*
H7B0.27980.09520.82690.025*
C80.3140 (2)0.0645 (3)0.9261 (2)0.0218 (10)
C90.4996 (3)0.0798 (3)0.9173 (2)0.0239 (10)
H9A0.47680.04280.88190.029*
H9B0.47620.06630.96190.029*
C100.5807 (3)0.0544 (3)0.9226 (2)0.0223 (10)
C110.4525 (3)0.3943 (3)0.9552 (2)0.0231 (10)
H11C0.46860.43930.92250.028*
H11D0.48830.39260.99320.028*
C120.3774 (3)0.4225 (3)0.9862 (2)0.0224 (10)
C130.4999 (2)0.3428 (3)0.7982 (2)0.0191 (9)
C140.5696 (3)0.3608 (3)0.8253 (3)0.0265 (10)
H140.57740.35700.87350.032*
C150.6269 (3)0.3841 (3)0.7820 (3)0.0331 (12)
H150.67310.39680.80080.040*
C160.6152 (3)0.3886 (3)0.7088 (3)0.0353 (13)
H160.65450.40120.67890.042*
C170.5468 (3)0.3745 (3)0.6818 (3)0.0328 (12)
H170.53890.38030.63370.039*
C180.4879 (3)0.3512 (3)0.7261 (2)0.0251 (10)
H180.44110.34130.70740.030*
C190.4733 (3)0.1581 (3)0.7713 (2)0.0203 (9)
C200.5502 (3)0.1551 (3)0.7646 (3)0.0277 (11)
H200.57990.16870.80310.033*
C210.5826 (3)0.1320 (3)0.7011 (3)0.0330 (12)
H210.63380.13300.69630.040*
C220.5384 (3)0.1072 (3)0.6447 (3)0.0354 (13)
H220.55990.09160.60200.042*
C230.4627 (3)0.1059 (3)0.6521 (3)0.0366 (13)
H230.43330.08660.61510.044*
C240.4298 (3)0.1333 (3)0.7148 (2)0.0257 (10)
H240.37850.13490.71850.031*
O150.7371 (3)0.1916 (3)0.8159 (3)0.0617 (13)
H15A0.713 (4)0.150 (4)0.799 (4)0.093*
H15B0.757 (4)0.224 (4)0.786 (3)0.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0274 (4)0.0245 (3)0.0212 (3)0.0003 (2)0.0003 (2)0.0001 (2)
Zn20.0249 (4)0.0253 (3)0.0271 (4)0.0041 (2)0.0018 (2)0.0009 (2)
O10.0285 (18)0.0260 (16)0.0163 (16)0.0054 (14)0.0012 (13)0.0012 (14)
O20.043 (2)0.0228 (17)0.0272 (18)0.0090 (15)0.0027 (15)0.0014 (14)
O30.0157 (16)0.0287 (17)0.0289 (17)0.0010 (13)0.0010 (14)0.0010 (14)
O40.048 (2)0.0281 (18)0.0225 (18)0.0025 (16)0.0010 (16)0.0011 (15)
O50.048 (2)0.0211 (17)0.0290 (18)0.0078 (16)0.0056 (17)0.0021 (15)
O60.0238 (18)0.0242 (17)0.038 (2)0.0003 (14)0.0037 (16)0.0008 (15)
O70.0240 (18)0.0201 (16)0.049 (2)0.0055 (14)0.0008 (16)0.0012 (15)
O80.0345 (19)0.0334 (19)0.0157 (16)0.0041 (15)0.0071 (14)0.0027 (14)
O90.034 (2)0.0239 (18)0.056 (2)0.0008 (16)0.0126 (18)0.0084 (17)
O100.0241 (18)0.0259 (17)0.0303 (18)0.0014 (14)0.0053 (14)0.0036 (15)
O110.037 (2)0.0284 (19)0.044 (2)0.0042 (16)0.0063 (17)0.0023 (16)
O120.046 (2)0.046 (2)0.033 (2)0.0173 (19)0.0009 (17)0.0060 (17)
O130.0264 (17)0.0277 (17)0.0276 (17)0.0007 (14)0.0025 (14)0.0041 (14)
O140.035 (2)0.0332 (19)0.035 (2)0.0018 (16)0.0008 (16)0.0056 (16)
N10.0154 (18)0.0180 (17)0.0164 (18)0.0013 (14)0.0004 (14)0.0008 (14)
N20.0170 (18)0.0179 (18)0.0206 (19)0.0010 (14)0.0007 (15)0.0038 (15)
N30.024 (2)0.0194 (18)0.0167 (18)0.0047 (16)0.0055 (15)0.0016 (15)
N40.023 (2)0.0175 (18)0.0144 (18)0.0019 (15)0.0023 (15)0.0001 (14)
C10.016 (2)0.022 (2)0.023 (2)0.0018 (18)0.0008 (18)0.0038 (19)
C20.024 (2)0.021 (2)0.018 (2)0.0030 (18)0.0006 (19)0.0003 (18)
C30.021 (2)0.022 (2)0.0096 (19)0.0013 (18)0.0010 (17)0.0011 (17)
C40.016 (2)0.018 (2)0.018 (2)0.0002 (16)0.0008 (17)0.0041 (17)
C50.016 (2)0.026 (2)0.021 (2)0.0006 (18)0.0044 (18)0.0013 (19)
C60.015 (2)0.017 (2)0.016 (2)0.0012 (16)0.0001 (17)0.0006 (17)
C70.022 (2)0.019 (2)0.022 (2)0.0054 (18)0.0019 (19)0.0009 (18)
C80.019 (2)0.025 (2)0.022 (2)0.0014 (19)0.0011 (19)0.001 (2)
C90.027 (3)0.020 (2)0.025 (2)0.0024 (19)0.005 (2)0.0055 (19)
C100.025 (2)0.023 (2)0.019 (2)0.005 (2)0.0012 (19)0.0016 (19)
C110.025 (2)0.024 (2)0.020 (2)0.0045 (19)0.003 (2)0.0044 (19)
C120.029 (3)0.024 (2)0.014 (2)0.004 (2)0.0019 (19)0.0000 (18)
C130.019 (2)0.016 (2)0.023 (2)0.0018 (17)0.0044 (18)0.0001 (18)
C140.025 (3)0.027 (2)0.027 (2)0.001 (2)0.001 (2)0.003 (2)
C150.021 (3)0.036 (3)0.042 (3)0.005 (2)0.002 (2)0.002 (2)
C160.034 (3)0.027 (3)0.045 (3)0.001 (2)0.018 (3)0.008 (2)
C170.035 (3)0.034 (3)0.030 (3)0.007 (2)0.009 (2)0.010 (2)
C180.022 (2)0.027 (2)0.026 (2)0.004 (2)0.0000 (19)0.007 (2)
C190.027 (2)0.0133 (19)0.020 (2)0.0019 (18)0.0013 (19)0.0003 (17)
C200.026 (3)0.027 (2)0.029 (3)0.005 (2)0.001 (2)0.003 (2)
C210.030 (3)0.034 (3)0.035 (3)0.008 (2)0.008 (2)0.000 (2)
C220.051 (3)0.035 (3)0.020 (3)0.011 (2)0.011 (2)0.006 (2)
C230.050 (3)0.040 (3)0.019 (2)0.001 (3)0.007 (2)0.010 (2)
C240.030 (3)0.027 (2)0.020 (2)0.003 (2)0.000 (2)0.001 (2)
O150.078 (4)0.044 (3)0.063 (3)0.014 (2)0.023 (3)0.002 (2)
Geometric parameters (Å, º) top
Zn1—O112.059 (3)N4—C51.367 (6)
Zn1—O12.063 (3)N4—C111.452 (5)
Zn1—O4i2.063 (4)N4—C61.469 (5)
Zn1—O7ii2.091 (3)C1—C21.529 (6)
Zn1—O122.116 (4)C2—H2A0.9700
Zn1—O132.183 (3)C2—H2B0.9700
Zn2—O5iii1.960 (3)C4—C191.519 (6)
Zn2—O62.014 (3)C4—C61.607 (6)
Zn2—O10iv2.030 (3)C6—C131.507 (6)
Zn2—O13v2.133 (3)C7—C81.513 (6)
Zn2—O142.183 (4)C7—H7A0.9700
O1—C11.259 (6)C7—H7B0.9700
O2—C11.252 (5)C9—C101.521 (7)
O3—C31.238 (5)C9—H9A0.9700
O4—C81.238 (6)C9—H9B0.9700
O4—Zn1vi2.063 (4)C11—C121.543 (7)
O5—C81.266 (6)C11—H11C0.9700
O5—Zn2iii1.960 (3)C11—H11D0.9700
O6—C101.256 (6)C13—C141.389 (6)
O7—C101.256 (6)C13—C181.394 (6)
O7—Zn1v2.091 (3)C14—C151.371 (7)
O8—C51.233 (5)C14—H140.9300
O9—C121.230 (6)C15—C161.408 (8)
O10—C121.272 (6)C15—H150.9300
O10—Zn2vii2.030 (3)C16—C171.357 (8)
O11—H11B0.8500C16—H160.9300
O11—H11A0.8499C17—C181.404 (7)
O12—H12A0.8500C17—H170.9300
O12—H12B0.8501C18—H180.9300
O13—Zn2ii2.133 (3)C19—C241.384 (6)
O13—H13A0.9700C19—C201.399 (7)
O13—H13B0.9700C20—C211.388 (7)
O14—H14B0.8500C20—H200.9300
O14—H14A0.8500C21—C221.390 (8)
N1—C31.357 (5)C21—H210.9300
N1—C61.458 (5)C22—C231.377 (8)
N1—C21.459 (5)C22—H220.9300
N2—C31.365 (6)C23—C241.395 (7)
N2—C71.444 (5)C23—H230.9300
N2—C41.463 (5)C24—H240.9300
N3—C51.363 (6)O15—H15A0.83 (3)
N3—C41.454 (5)O15—H15B0.84 (3)
N3—C91.463 (5)
O11—Zn1—O185.56 (13)C19—C4—C6114.9 (3)
O11—Zn1—O4i87.28 (14)O8—C5—N3125.5 (4)
O1—Zn1—O4i170.01 (13)O8—C5—N4126.0 (4)
O11—Zn1—O7ii94.52 (14)N3—C5—N4108.5 (4)
O1—Zn1—O7ii96.54 (14)N1—C6—N4112.9 (3)
O4i—Zn1—O7ii90.95 (15)N1—C6—C13114.2 (3)
O11—Zn1—O1289.89 (16)N4—C6—C13113.5 (3)
O1—Zn1—O1287.59 (14)N1—C6—C4102.0 (3)
O4i—Zn1—O1285.44 (15)N4—C6—C499.3 (3)
O7ii—Zn1—O12174.17 (15)C13—C6—C4113.5 (3)
O11—Zn1—O13175.16 (13)N2—C7—C8114.9 (4)
O1—Zn1—O1391.19 (12)N2—C7—H7A108.5
O4i—Zn1—O1395.49 (13)C8—C7—H7A108.5
O7ii—Zn1—O1389.42 (13)N2—C7—H7B108.5
O12—Zn1—O1386.37 (15)C8—C7—H7B108.5
O5iii—Zn2—O6109.28 (15)H7A—C7—H7B107.5
O5iii—Zn2—O10iv102.44 (15)O4—C8—O5126.5 (4)
O6—Zn2—O10iv146.94 (14)O4—C8—C7119.3 (4)
O5iii—Zn2—O13v102.22 (14)O5—C8—C7114.1 (4)
O6—Zn2—O13v88.84 (14)N3—C9—C10117.4 (4)
O10iv—Zn2—O13v93.43 (13)N3—C9—H9A107.9
O5iii—Zn2—O1493.81 (14)C10—C9—H9A107.9
O6—Zn2—O1479.72 (13)N3—C9—H9B107.9
O10iv—Zn2—O1489.30 (13)C10—C9—H9B107.9
O13v—Zn2—O14162.73 (13)H9A—C9—H9B107.2
C1—O1—Zn1127.1 (3)O7—C10—O6127.2 (4)
C8—O4—Zn1vi134.7 (3)O7—C10—C9113.8 (4)
C8—O5—Zn2iii133.5 (3)O6—C10—C9118.9 (4)
C10—O6—Zn2122.1 (3)N4—C11—C12116.6 (4)
C10—O7—Zn1v137.4 (3)N4—C11—H11C108.1
C12—O10—Zn2vii120.0 (3)C12—C11—H11C108.1
Zn1—O11—H11B120.6N4—C11—H11D108.1
Zn1—O11—H11A120.6C12—C11—H11D108.1
H11B—O11—H11A105.1H11C—C11—H11D107.3
Zn1—O12—H12A109.4O9—C12—O10125.8 (5)
Zn1—O12—H12B109.4O9—C12—C11114.8 (4)
H12A—O12—H12B105.1O10—C12—C11119.3 (4)
Zn2ii—O13—Zn1107.08 (14)C14—C13—C18119.1 (4)
Zn2ii—O13—H13A110.3C14—C13—C6120.9 (4)
Zn1—O13—H13A110.3C18—C13—C6119.2 (4)
Zn2ii—O13—H13B110.3C15—C14—C13121.0 (5)
Zn1—O13—H13B110.3C15—C14—H14119.5
H13A—O13—H13B108.6C13—C14—H14119.5
Zn2—O14—H14B122.5C14—C15—C16119.4 (5)
Zn2—O14—H14A122.4C14—C15—H15120.3
H14B—O14—H14A105.2C16—C15—H15120.3
C3—N1—C6110.6 (3)C17—C16—C15120.2 (5)
C3—N1—C2122.5 (4)C17—C16—H16119.9
C6—N1—C2125.1 (3)C15—C16—H16119.9
C3—N2—C7122.4 (4)C16—C17—C18120.3 (5)
C3—N2—C4112.6 (3)C16—C17—H17119.8
C7—N2—C4124.3 (3)C18—C17—H17119.8
C5—N3—C4111.9 (3)C13—C18—C17119.7 (5)
C5—N3—C9122.9 (4)C13—C18—H18120.1
C4—N3—C9122.5 (4)C17—C18—H18120.1
C5—N4—C11122.7 (4)C24—C19—C20119.1 (4)
C5—N4—C6112.5 (3)C24—C19—C4121.8 (4)
C11—N4—C6123.2 (3)C20—C19—C4118.9 (4)
O2—C1—O1124.9 (4)C21—C20—C19120.5 (5)
O2—C1—C2116.7 (4)C21—C20—H20119.8
O1—C1—C2118.4 (4)C19—C20—H20119.8
N1—C2—C1116.1 (4)C20—C21—C22119.8 (5)
N1—C2—H2A108.3C20—C21—H21120.1
C1—C2—H2A108.3C22—C21—H21120.1
N1—C2—H2B108.3C23—C22—C21119.8 (5)
C1—C2—H2B108.3C23—C22—H22120.1
H2A—C2—H2B107.4C21—C22—H22120.1
O3—C3—N1125.6 (4)C22—C23—C24120.5 (5)
O3—C3—N2124.9 (4)C22—C23—H23119.7
N1—C3—N2109.5 (4)C24—C23—H23119.7
N3—C4—N2114.5 (3)C19—C24—C23120.1 (5)
N3—C4—C19111.6 (3)C19—C24—H24120.0
N2—C4—C19113.6 (3)C23—C24—H24120.0
N3—C4—C6101.5 (3)H15A—O15—H15B114 (4)
N2—C4—C699.7 (3)
O11—Zn1—O1—C1150.5 (4)N3—C4—C6—N1139.5 (3)
O4i—Zn1—O1—C1165.2 (7)N2—C4—C6—N121.9 (4)
O7ii—Zn1—O1—C156.4 (4)C19—C4—C6—N1100.0 (4)
O12—Zn1—O1—C1119.4 (4)N3—C4—C6—N423.5 (4)
O13—Zn1—O1—C133.1 (4)N2—C4—C6—N494.1 (3)
O5iii—Zn2—O6—C1037.3 (4)C19—C4—C6—N4144.1 (4)
O10iv—Zn2—O6—C10159.8 (3)N3—C4—C6—C1397.2 (4)
O13v—Zn2—O6—C1065.2 (4)N2—C4—C6—C13145.1 (3)
O14—Zn2—O6—C10127.8 (4)C19—C4—C6—C1323.3 (5)
O11—Zn1—O13—Zn2ii169.0 (16)C3—N2—C7—C896.5 (5)
O1—Zn1—O13—Zn2ii143.10 (15)C4—N2—C7—C893.1 (5)
O4i—Zn1—O13—Zn2ii44.33 (17)Zn1vi—O4—C8—O512.9 (8)
O7ii—Zn1—O13—Zn2ii46.57 (16)Zn1vi—O4—C8—C7168.7 (3)
O12—Zn1—O13—Zn2ii129.39 (16)Zn2iii—O5—C8—O40.0 (8)
Zn1—O1—C1—O222.7 (6)Zn2iii—O5—C8—C7178.5 (3)
Zn1—O1—C1—C2158.1 (3)N2—C7—C8—O417.2 (6)
C3—N1—C2—C178.8 (5)N2—C7—C8—O5164.2 (4)
C6—N1—C2—C1117.6 (4)C5—N3—C9—C1079.0 (6)
O2—C1—C2—N1176.9 (4)C4—N3—C9—C10120.9 (4)
O1—C1—C2—N12.4 (6)Zn1v—O7—C10—O69.9 (8)
C6—N1—C3—O3168.1 (4)Zn1v—O7—C10—C9174.1 (3)
C2—N1—C3—O32.4 (6)Zn2—O6—C10—O728.8 (6)
C6—N1—C3—N213.5 (5)Zn2—O6—C10—C9147.1 (3)
C2—N1—C3—N2179.3 (4)N3—C9—C10—O7163.9 (4)
C7—N2—C3—O33.9 (6)N3—C9—C10—O619.7 (6)
C4—N2—C3—O3175.3 (4)C5—N4—C11—C12104.8 (5)
C7—N2—C3—N1174.4 (4)C6—N4—C11—C1290.9 (5)
C4—N2—C3—N13.0 (5)Zn2vii—O10—C12—O915.3 (6)
C5—N3—C4—N286.1 (4)Zn2vii—O10—C12—C11167.5 (3)
C9—N3—C4—N275.9 (5)N4—C11—C12—O9169.6 (4)
C5—N3—C4—C19143.1 (4)N4—C11—C12—O1012.9 (6)
C9—N3—C4—C1954.9 (5)N1—C6—C13—C14151.7 (4)
C5—N3—C4—C620.2 (4)N4—C6—C13—C1420.4 (6)
C9—N3—C4—C6177.8 (4)C4—C6—C13—C1492.0 (5)
C3—N2—C4—N3123.4 (4)N1—C6—C13—C1838.2 (5)
C7—N2—C4—N365.4 (5)N4—C6—C13—C18169.5 (4)
C3—N2—C4—C19106.8 (4)C4—C6—C13—C1878.1 (5)
C7—N2—C4—C1964.5 (5)C18—C13—C14—C151.9 (7)
C3—N2—C4—C615.9 (4)C6—C13—C14—C15168.2 (4)
C7—N2—C4—C6172.8 (4)C13—C14—C15—C160.9 (7)
C4—N3—C5—O8172.1 (4)C14—C15—C16—C173.5 (8)
C9—N3—C5—O810.2 (7)C15—C16—C17—C183.1 (7)
C4—N3—C5—N47.7 (5)C14—C13—C18—C172.3 (7)
C9—N3—C5—N4169.6 (4)C6—C13—C18—C17168.0 (4)
C11—N4—C5—O83.9 (7)C16—C17—C18—C130.3 (7)
C6—N4—C5—O8169.8 (4)N3—C4—C19—C24147.2 (4)
C11—N4—C5—N3176.3 (4)N2—C4—C19—C2416.0 (6)
C6—N4—C5—N310.4 (5)C6—C4—C19—C2497.9 (5)
C3—N1—C6—N483.2 (4)N3—C4—C19—C2037.9 (5)
C2—N1—C6—N482.1 (5)N2—C4—C19—C20169.1 (4)
C3—N1—C6—C13145.3 (4)C6—C4—C19—C2077.0 (5)
C2—N1—C6—C1349.4 (5)C24—C19—C20—C213.4 (7)
C3—N1—C6—C422.4 (4)C4—C19—C20—C21171.7 (4)
C2—N1—C6—C4172.3 (4)C19—C20—C21—C223.3 (8)
C5—N4—C6—N1128.8 (4)C20—C21—C22—C230.1 (8)
C11—N4—C6—N165.4 (5)C21—C22—C23—C243.2 (8)
C5—N4—C6—C1399.3 (4)C20—C19—C24—C230.1 (7)
C11—N4—C6—C1366.5 (5)C4—C19—C24—C23174.7 (4)
C5—N4—C6—C421.5 (4)C22—C23—C24—C193.1 (8)
C11—N4—C6—C4172.7 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y, z+2; (iv) x+1/2, y+1/2, z+2; (v) x+1, y1/2, z+3/2; (vi) x, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15B···O1viii0.84 (3)2.54 (6)3.108 (6)126 (6)
O15—H15B···O3viii0.84 (3)2.29 (6)2.995 (6)141 (6)
O15—H15A···O2v0.83 (3)2.23 (6)2.954 (6)145 (8)
O14—H14A···O3iv0.851.992.812 (5)164
O14—H14B···O80.852.303.104 (5)159
O13—H13B···O20.971.862.684 (5)142
O13—H13A···O9ix0.971.902.671 (5)134
O12—H12B···O15x0.851.912.723 (6)158
O12—H12A···O14x0.852.032.827 (5)156
O11—H11A···O10i0.852.102.945 (5)170
O11—H11B···O8i0.851.982.749 (5)150
Symmetry codes: (i) x, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+2; (v) x+1, y1/2, z+3/2; (viii) x+1/2, y, z+3/2; (ix) x+1/2, y+1, z1/2; (x) x1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn2(C24H18N4O10)(H2O)4]·H2O
Mr743.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)113
a, b, c (Å)18.091 (4), 15.245 (3), 19.007 (4)
V3)5242.0 (18)
Z8
Radiation typeMo Kα
µ (mm1)1.92
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn 70CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.700, 0.802
No. of measured, independent and
observed [I > 2σ(I)] reflections
33644, 4616, 4022
Rint0.086
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.151, 1.13
No. of reflections4616
No. of parameters413
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0772P)2 + 11.5013P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.61, 0.85

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—O112.059 (3)Zn2—O5iii1.960 (3)
Zn1—O12.063 (3)Zn2—O62.014 (3)
Zn1—O4i2.063 (4)Zn2—O10iv2.030 (3)
Zn1—O7ii2.091 (3)Zn2—O13v2.133 (3)
Zn1—O122.116 (4)Zn2—O142.183 (4)
Zn1—O132.183 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y, z+2; (iv) x+1/2, y+1/2, z+2; (v) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15B···O1vi0.84 (3)2.54 (6)3.108 (6)126 (6)
O15—H15B···O3vi0.84 (3)2.29 (6)2.995 (6)141 (6)
O15—H15A···O2v0.83 (3)2.23 (6)2.954 (6)145 (8)
O14—H14A···O3iv0.851.992.812 (5)163.8
O14—H14B···O80.852.303.104 (5)158.6
O13—H13B···O20.971.862.684 (5)141.5
O13—H13A···O9vii0.971.902.671 (5)134.4
O12—H12B···O15viii0.851.912.723 (6)158.2
O12—H12A···O14viii0.852.032.827 (5)156.2
O11—H11A···O10i0.852.102.945 (5)170.3
O11—H11B···O8i0.851.982.749 (5)149.9
Symmetry codes: (i) x, y+1/2, z1/2; (iv) x+1/2, y+1/2, z+2; (v) x+1, y1/2, z+3/2; (vi) x+1/2, y, z+3/2; (vii) x+1/2, y+1, z1/2; (viii) x1/2, y, z+3/2.
 

Acknowledgements

This work was supported by the National High Technology Research and Development Program 863 (No. 2009AA063201).

References

First citationDeshpande, M. S., Kumbhar, A. S. & Puranik, V. G. (2008). Cryst. Growth Des. 8, 1952–1960.  Web of Science CSD CrossRef CAS Google Scholar
First citationKang, J., Ju, H. K. & Jo, J. H. (2004). Supramol. Chem. 16, 175–179.  Web of Science CrossRef CAS Google Scholar
First citationLi, Y., Meng, X., Cao, L., Wang, Y., Yin, G., Gao, M., Wen, L. & Wu, A. (2008). Cryst. Growth Des. 8, 1645–1653.  Web of Science CSD CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds