organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Iso­propyl 3,4-dihy­dr­oxy­benzoate

aCollege of Life Sciences, Northwest University, Xi'an 710069, People's Republic of China, bCollege of Chemistry & Chemical Engineering, Xian Shiyou University, Xi'an 710065, People's Republic of China, and cCollege of Life Sciences and Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi'an 710069, People's Republic of China
*Correspondence e-mail: zhengxh@nwu.edu.cn

(Received 19 September 2011; accepted 27 October 2011; online 9 November 2011)

In the crystal structure of the title compound, C10H12O4, O—H⋯O hydrogen bonds incorporating R22(10) and R22(14) motifs link mol­ecules into chains along [1[\overline{1}]0]. An intra­molecular O—H⋯O hydrogen bond is also observed.

Related literature

The title compound is a derivative of protocatechuic acid (3,4-dihy­droxy­benzoic acid). For the properties of esters of protocatechuic acid, see: Shizuka et al. (2004[Shizuka, S., Yasuko, O. & Jun, K. (2004). Biosci. Biotechnol. Biochem. 68, 1221-1227.]); Yun-Choi et al. (1996[Yun-Choi, H. S., Kim, M. H. & Jung, K. H. (1996). Arch. Pharm. Res. 19, 66-70.]); Robert et al. (1986[Robert, W. G., Bienen, E. J. & Allen, B. C. J. (1986). Mol. Biochem. Parasitol. 21, 55-63.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O4

  • Mr = 196.20

  • Triclinic, [P \overline 1]

  • a = 5.8485 (12) Å

  • b = 9.1844 (17) Å

  • c = 9.9834 (19) Å

  • α = 72.629 (3)°

  • β = 80.547 (3)°

  • γ = 78.980 (3)°

  • V = 499.06 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.37 × 0.25 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 2520 measured reflections

  • 1745 independent reflections

  • 1289 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.133

  • S = 1.04

  • 1745 reflections

  • 131 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.82 2.15 2.844 (2) 142
O3—H3⋯O4 0.82 2.28 2.720 (2) 115
O4—H4⋯O2ii 0.82 1.93 2.747 (2) 175
Symmetry codes: (i) -x+1, -y-1, -z; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Esters of protocatechuic acid has been shown to have, a DPPH radical scavenging ability, anti-thrombotic activity, and can act as inhibitors of the sn-glycerol-3-phosphate oxidase of Trypanosoma brucei brucei (Shizuka et al., 2004; Yun-Choi et al., 1996; Robert et al., 1986).

The molecular structure of the title compound (I) is shown in Fig. 1. Intramolecular O—H···O hydrogen bonds form R22(10) and R22(14) motifs (Bernstein et al., 1995). In the crystal, intermolecular O—H···O hydrogen bonds link molecules into chains propagating along [110] (see Fig. 2).

Related literature top

The title compound is a derivative of protocatechuic acid (3,4-dihydroxybenzoic acid). For the properties of esters of protocatechuic acid, see: Shizuka et al. (2004); Yun-Choi et al. (1996); Robert et al. (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a solution of 0.1M protocatechuic acid in 500 ml of 2-propanol at room temperature, 0.01M TsOH in 2-propanol was added. After the solution had been allowed to stir and reflux for 16 h, the solvent was removed under reduced pressure. The residue was extracted with ethyl acetate three times and filtered. The filtrate was washed successively with dilute saturated aqueous NaHCO3 solution, saturated aqueous NaCl, dried over MgSO4, and evaporated. The crude product was purified by chromatography (SiO2; elution with petroleum ether-acetoacetate, 6:1 v/v). Yield 30%. X-ray quality crystals were grown from a solution of the title compound in acetone and toluene at room temperature. Spectroscopic analysis: IR(KBr, χm-1): 3458, 3314, 2985, 2957, 1677, 1609, 1531, 1445, 1378, 1347, 1299, 1238, 1165, 1101; 1H NMR (DMSO, δ, p.p.m.): 9.539 (s, 1 H), 9.536 (s, 1 H), 7.363—7.366(d, 1 H), 7.299—7.316 (dd, 1 H), 6.804—7.818 (d, 1 H), 5.037—5.079(m, 1 H), 1.285 (s, 3 H), 1.275 (s, 3 H).

Refinement top

All H atoms were visible in difference maps but were included in calculated positions with C—H = 0.93 - 0.98Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.2Ueq(Cmethyl,O).

Structure description top

Esters of protocatechuic acid has been shown to have, a DPPH radical scavenging ability, anti-thrombotic activity, and can act as inhibitors of the sn-glycerol-3-phosphate oxidase of Trypanosoma brucei brucei (Shizuka et al., 2004; Yun-Choi et al., 1996; Robert et al., 1986).

The molecular structure of the title compound (I) is shown in Fig. 1. Intramolecular O—H···O hydrogen bonds form R22(10) and R22(14) motifs (Bernstein et al., 1995). In the crystal, intermolecular O—H···O hydrogen bonds link molecules into chains propagating along [110] (see Fig. 2).

The title compound is a derivative of protocatechuic acid (3,4-dihydroxybenzoic acid). For the properties of esters of protocatechuic acid, see: Shizuka et al. (2004); Yun-Choi et al. (1996); Robert et al. (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with Hydrogen bonds shown as dashed lines.
Isopropyl 3,4-dihydroxybenzoate top
Crystal data top
C10H12O4Z = 2
Mr = 196.20F(000) = 208
Triclinic, P1Dx = 1.306 Mg m3
Hall symbol: -P 1Melting point: 407(1) K
a = 5.8485 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1844 (17) ÅCell parameters from 666 reflections
c = 9.9834 (19) Åθ = 2.4–24.2°
α = 72.629 (3)°µ = 0.10 mm1
β = 80.547 (3)°T = 296 K
γ = 78.980 (3)°Needle, colorless
V = 499.06 (17) Å30.37 × 0.25 × 0.15 mm
Data collection top
Bruker APEXII CCD
diffractometer
1289 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 25.1°, θmin = 2.2°
φ and ω scansh = 66
2520 measured reflectionsk = 1010
1745 independent reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0685P)2 + 0.037P]
where P = (Fo2 + 2Fc2)/3
1745 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C10H12O4γ = 78.980 (3)°
Mr = 196.20V = 499.06 (17) Å3
Triclinic, P1Z = 2
a = 5.8485 (12) ÅMo Kα radiation
b = 9.1844 (17) ŵ = 0.10 mm1
c = 9.9834 (19) ÅT = 296 K
α = 72.629 (3)°0.37 × 0.25 × 0.15 mm
β = 80.547 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1289 reflections with I > 2σ(I)
2520 measured reflectionsRint = 0.012
1745 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
1745 reflectionsΔρmin = 0.23 e Å3
131 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2571 (2)0.15042 (14)0.29888 (13)0.0554 (4)
O20.0069 (2)0.13603 (15)0.16625 (15)0.0666 (5)
O30.7691 (2)0.42927 (15)0.09653 (16)0.0672 (5)
H30.70880.46230.04520.101*
O40.3545 (3)0.32701 (15)0.01531 (15)0.0667 (5)
H40.24610.27410.05860.100*
C10.0633 (5)0.2409 (3)0.4524 (3)0.0925 (9)
H1A0.16500.18390.42880.139*
H1B0.15410.33080.47540.139*
H1C0.01430.17710.53210.139*
C20.2856 (5)0.3780 (3)0.3562 (3)0.0811 (7)
H2A0.35990.31820.43850.122*
H2B0.20300.47360.37150.122*
H2C0.40240.39880.27620.122*
C30.1158 (4)0.2893 (2)0.3288 (2)0.0605 (6)
H3A0.03690.35110.24620.073*
C40.1778 (3)0.0861 (2)0.21617 (18)0.0471 (5)
C50.3358 (3)0.05140 (19)0.19011 (18)0.0436 (4)
C60.2685 (3)0.12546 (19)0.10392 (18)0.0463 (5)
H60.12550.08950.06730.056*
C70.4099 (3)0.25143 (19)0.07177 (18)0.0469 (5)
C80.6225 (3)0.3068 (2)0.12786 (19)0.0485 (5)
C90.6887 (3)0.2345 (2)0.2151 (2)0.0553 (5)
H90.83010.27200.25340.066*
C100.5479 (3)0.1072 (2)0.2463 (2)0.0521 (5)
H100.59490.05900.30470.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0583 (9)0.0500 (8)0.0628 (8)0.0063 (6)0.0190 (7)0.0256 (6)
O20.0620 (9)0.0635 (9)0.0807 (10)0.0197 (7)0.0336 (8)0.0342 (8)
O30.0612 (9)0.0555 (8)0.0889 (11)0.0185 (7)0.0253 (8)0.0338 (7)
O40.0740 (11)0.0547 (8)0.0803 (10)0.0211 (7)0.0381 (8)0.0354 (8)
C10.0704 (16)0.107 (2)0.116 (2)0.0091 (14)0.0063 (15)0.0656 (18)
C20.0992 (19)0.0651 (14)0.0901 (17)0.0163 (13)0.0072 (14)0.0374 (13)
C30.0705 (14)0.0491 (11)0.0651 (13)0.0111 (10)0.0207 (11)0.0265 (10)
C40.0507 (11)0.0447 (10)0.0442 (10)0.0008 (8)0.0102 (8)0.0110 (8)
C50.0439 (10)0.0397 (9)0.0434 (10)0.0011 (8)0.0072 (8)0.0077 (8)
C60.0433 (10)0.0438 (10)0.0492 (10)0.0045 (8)0.0136 (8)0.0115 (8)
C70.0518 (11)0.0398 (10)0.0491 (10)0.0002 (8)0.0119 (8)0.0133 (8)
C80.0461 (11)0.0407 (10)0.0540 (11)0.0027 (8)0.0091 (8)0.0101 (8)
C90.0452 (11)0.0516 (11)0.0684 (13)0.0057 (9)0.0203 (9)0.0166 (9)
C100.0521 (11)0.0488 (11)0.0580 (11)0.0020 (9)0.0159 (9)0.0172 (9)
Geometric parameters (Å, º) top
O1—C41.330 (2)C2—H2B0.9600
O1—C31.464 (2)C2—H2C0.9600
O2—C41.215 (2)C3—H3A0.9800
O3—C81.361 (2)C4—C51.479 (2)
O3—H30.8200C5—C61.386 (2)
O4—C71.372 (2)C5—C101.389 (3)
O4—H40.8200C6—C71.377 (2)
C1—C31.497 (3)C6—H60.9300
C1—H1A0.9600C7—C81.391 (3)
C1—H1B0.9600C8—C91.380 (3)
C1—H1C0.9600C9—C101.381 (3)
C2—C31.502 (3)C9—H90.9300
C2—H2A0.9600C10—H100.9300
C4—O1—C3118.03 (14)O2—C4—O1123.08 (16)
C8—O3—H3109.5O2—C4—C5123.18 (17)
C7—O4—H4109.5O1—C4—C5113.73 (15)
C3—C1—H1A109.5C6—C5—C10119.21 (16)
C3—C1—H1B109.5C6—C5—C4117.83 (16)
H1A—C1—H1B109.5C10—C5—C4122.95 (17)
C3—C1—H1C109.5C7—C6—C5121.01 (16)
H1A—C1—H1C109.5C7—C6—H6119.5
H1B—C1—H1C109.5C5—C6—H6119.5
C3—C2—H2A109.5O4—C7—C6123.48 (16)
C3—C2—H2B109.5O4—C7—C8116.86 (15)
H2A—C2—H2B109.5C6—C7—C8119.66 (16)
C3—C2—H2C109.5O3—C8—C9119.09 (16)
H2A—C2—H2C109.5O3—C8—C7121.41 (16)
H2B—C2—H2C109.5C9—C8—C7119.49 (16)
O1—C3—C1108.46 (17)C8—C9—C10120.90 (17)
O1—C3—C2105.88 (17)C8—C9—H9119.6
C1—C3—C2113.43 (18)C10—C9—H9119.6
O1—C3—H3A109.7C9—C10—C5119.73 (18)
C1—C3—H3A109.7C9—C10—H10120.1
C2—C3—H3A109.7C5—C10—H10120.1
C4—O1—C3—C185.7 (2)C5—C6—C7—C80.8 (3)
C4—O1—C3—C2152.21 (17)O4—C7—C8—O30.6 (3)
C3—O1—C4—O20.9 (3)C6—C7—C8—O3178.80 (16)
C3—O1—C4—C5178.76 (15)O4—C7—C8—C9179.39 (17)
O2—C4—C5—C60.3 (3)C6—C7—C8—C90.0 (3)
O1—C4—C5—C6179.44 (15)O3—C8—C9—C10178.19 (17)
O2—C4—C5—C10179.34 (18)C7—C8—C9—C100.6 (3)
O1—C4—C5—C100.4 (3)C8—C9—C10—C50.5 (3)
C10—C5—C6—C71.0 (3)C6—C5—C10—C90.3 (3)
C4—C5—C6—C7178.12 (15)C4—C5—C10—C9178.72 (17)
C5—C6—C7—O4178.53 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.822.152.844 (2)142
O3—H3···O40.822.282.720 (2)115
O4—H4···O2ii0.821.932.747 (2)175
Symmetry codes: (i) x+1, y1, z; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC10H12O4
Mr196.20
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.8485 (12), 9.1844 (17), 9.9834 (19)
α, β, γ (°)72.629 (3), 80.547 (3), 78.980 (3)
V3)499.06 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.37 × 0.25 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2520, 1745, 1289
Rint0.012
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.04
No. of reflections1745
No. of parameters131
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.8202.1502.844 (2)142.27
O3—H3···O40.8202.2762.720 (2)114.47
O4—H4···O2ii0.8201.9292.747 (2)175.23
Symmetry codes: (i) x+1, y1, z; (ii) x, y, z.
 

Acknowledgements

The authors are grateful for financial support from the National Natural Sciences Foundation of China (grant No. 20875074), the Higher Specialized Research Fund for the Doctoral Program (grant Nos. 20106101110001 and 20106101120024), the Important Science & Technology Specific Projects of the Innovative Program of Shannxi Province (grant No. 2010ZDKG-46) and the Scientific Research Foundation for PhDs of Xi'an Shiyou University (grant No. 2011BS004).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRobert, W. G., Bienen, E. J. & Allen, B. C. J. (1986). Mol. Biochem. Parasitol. 21, 55–63.  PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShizuka, S., Yasuko, O. & Jun, K. (2004). Biosci. Biotechnol. Biochem. 68, 1221–1227.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYun-Choi, H. S., Kim, M. H. & Jung, K. H. (1996). Arch. Pharm. Res. 19, 66–70.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds