organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(Naphthalen-1-yl)benzamide

aDepartment of Chemistry, Taiyuan Normal University, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: ruitaozhu@126.com

(Received 27 October 2011; accepted 1 November 2011; online 5 November 2011)

In the title compound, C17H13NO, the N—H and C=O bonds are anti with respect to each other. The dihedral angle between the naphthalene ring system and the phenyl ring is 86.63 (5)°. In the crystal, N—H⋯O hydrogen bonds link mol­ecules into chains along [010].

Related literature

For a related structure, see: Zhang et al. (2011[Zhang, S., Zhang, Y., Wang, C. & Zhu, R. (2011). Acta Cryst. E67, o2831.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13NO

  • Mr = 247.28

  • Orthorhombic, P b c a

  • a = 8.2630 (8) Å

  • b = 9.3792 (9) Å

  • c = 33.806 (3) Å

  • V = 2620.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.45 × 0.24 × 0.13 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.990

  • 12210 measured reflections

  • 2307 independent reflections

  • 1253 reflections with I > 2σ(I)

  • Rint = 0.086

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.129

  • S = 1.04

  • 2307 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.21 2.892 (3) 136
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We recently determined the crystal structure of N-(1-naphthyl)benzenesulfonamide (Zhang et al., 2011) and in this paper we present the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are normal. The dihedral angle between the naphthylene ring system and the phenyl ring is 86.63 (5)°. In the crystal, N—H···O hydrogen bonds link molecules into chains along [010] (Fig. 2).

Related literature top

For a related structure, see: Zhang et al. (2011). For standard bond-length data, see: Allen et al. (1987).

Experimental top

To a 100 ml round flask fitted with a condenser was added 1-naphthylamine (1.43 g, 10 mmol), dichloromethane (15 ml) and triethylamine(0.5 ml) with magnetic stirring. Benzoyl chloride (1.16 ml, 10 mmol) was added gradually. The reaction mixture was stirred at room temperature for 1 h and then refluxed for 2 h. The product precipitated as a white powder, which was washed three times with water and dichloromethane. Recrystallization from ethyl alcohol produced the crystals of the title compound.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their respective parent atoms, with C—H = 0.93 Å, N—H = 0.86Å and Uiso(H)= 1.2Ueq(C,N).

Structure description top

We recently determined the crystal structure of N-(1-naphthyl)benzenesulfonamide (Zhang et al., 2011) and in this paper we present the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are normal. The dihedral angle between the naphthylene ring system and the phenyl ring is 86.63 (5)°. In the crystal, N—H···O hydrogen bonds link molecules into chains along [010] (Fig. 2).

For a related structure, see: Zhang et al. (2011). For standard bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with the donor-acceptor distances of hydrogen bonds drawn as dashed lines. H atoms are not shown.
N-(Naphthalen-1-yl)benzamide top
Crystal data top
C17H13NOF(000) = 1040
Mr = 247.28Dx = 1.254 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1469 reflections
a = 8.2630 (8) Åθ = 2.7–20.5°
b = 9.3792 (9) ŵ = 0.08 mm1
c = 33.806 (3) ÅT = 298 K
V = 2620.0 (4) Å3Prism, colorless
Z = 80.45 × 0.24 × 0.13 mm
Data collection top
Bruker SMART CCD
diffractometer
2307 independent reflections
Radiation source: fine-focus sealed tube1253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
φ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 98
Tmin = 0.966, Tmax = 0.990k = 1011
12210 measured reflectionsl = 4026
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0469P)2]
where P = (Fo2 + 2Fc2)/3
2307 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C17H13NOV = 2620.0 (4) Å3
Mr = 247.28Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.2630 (8) ŵ = 0.08 mm1
b = 9.3792 (9) ÅT = 298 K
c = 33.806 (3) Å0.45 × 0.24 × 0.13 mm
Data collection top
Bruker SMART CCD
diffractometer
2307 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1253 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.990Rint = 0.086
12210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2307 reflectionsΔρmin = 0.18 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2455 (2)0.6961 (2)0.36346 (6)0.0567 (6)
H10.26710.78550.36550.068*
O10.3279 (2)0.48418 (17)0.33881 (5)0.0644 (5)
C10.3422 (3)0.6140 (3)0.34048 (7)0.0511 (7)
C20.4657 (3)0.6894 (3)0.31610 (7)0.0439 (6)
C30.5181 (3)0.6226 (3)0.28213 (8)0.0538 (7)
H30.47790.53300.27560.065*
C40.6293 (3)0.6871 (3)0.25781 (8)0.0650 (8)
H40.66200.64230.23460.078*
C50.6924 (3)0.8183 (3)0.26772 (9)0.0701 (8)
H50.76810.86170.25130.084*
C60.6433 (3)0.8845 (3)0.30176 (9)0.0717 (8)
H60.68740.97220.30870.086*
C70.5284 (3)0.8213 (3)0.32578 (8)0.0602 (7)
H70.49330.86770.34850.072*
C80.1091 (3)0.6407 (2)0.38450 (7)0.0520 (7)
C90.0404 (4)0.6895 (3)0.37506 (8)0.0648 (8)
H90.05210.75920.35570.078*
C100.1779 (3)0.6353 (3)0.39436 (9)0.0813 (9)
H100.28000.67000.38800.098*
C110.1619 (4)0.5323 (3)0.42238 (9)0.0821 (9)
H110.25360.49440.43440.099*
C120.0082 (3)0.4827 (3)0.43327 (8)0.0628 (8)
C130.1314 (3)0.5404 (2)0.41501 (7)0.0516 (7)
C140.2849 (3)0.4941 (3)0.42846 (8)0.0630 (8)
H140.37830.53210.41730.076*
C150.2966 (4)0.3944 (3)0.45750 (9)0.0806 (9)
H150.39830.36620.46630.097*
C160.1598 (5)0.3343 (4)0.47420 (9)0.0965 (11)
H160.16980.26350.49330.116*
C170.0127 (5)0.3784 (3)0.46272 (9)0.0897 (10)
H170.07830.33880.47460.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0702 (14)0.0349 (11)0.0651 (14)0.0063 (11)0.0122 (12)0.0000 (11)
O10.0830 (14)0.0361 (10)0.0742 (13)0.0041 (9)0.0132 (10)0.0025 (10)
C10.0635 (18)0.0372 (15)0.0526 (16)0.0037 (14)0.0026 (14)0.0038 (14)
C20.0440 (14)0.0370 (14)0.0507 (15)0.0007 (12)0.0028 (12)0.0061 (14)
C30.0499 (16)0.0433 (16)0.0681 (18)0.0021 (12)0.0011 (14)0.0042 (15)
C40.0602 (17)0.0634 (19)0.0714 (19)0.0100 (15)0.0134 (15)0.0011 (17)
C50.0666 (19)0.0567 (19)0.087 (2)0.0005 (16)0.0210 (16)0.0140 (18)
C60.076 (2)0.0451 (16)0.094 (2)0.0135 (15)0.0137 (17)0.0008 (18)
C70.0731 (18)0.0453 (16)0.0621 (17)0.0050 (14)0.0059 (14)0.0019 (15)
C80.0624 (18)0.0399 (14)0.0538 (16)0.0019 (13)0.0041 (14)0.0017 (14)
C90.0682 (19)0.0570 (17)0.0691 (19)0.0079 (16)0.0035 (16)0.0083 (15)
C100.061 (2)0.096 (2)0.088 (2)0.0123 (18)0.0057 (17)0.006 (2)
C110.072 (2)0.090 (2)0.084 (2)0.0040 (19)0.0180 (17)0.012 (2)
C120.078 (2)0.0556 (17)0.0551 (17)0.0001 (15)0.0143 (15)0.0084 (15)
C130.0720 (19)0.0381 (14)0.0448 (14)0.0031 (14)0.0037 (14)0.0027 (13)
C140.0745 (19)0.0567 (18)0.0577 (18)0.0079 (15)0.0008 (15)0.0013 (15)
C150.103 (3)0.076 (2)0.0631 (19)0.0211 (19)0.0074 (18)0.0149 (19)
C160.138 (3)0.085 (2)0.067 (2)0.024 (3)0.015 (2)0.028 (2)
C170.109 (3)0.083 (2)0.077 (2)0.005 (2)0.0259 (19)0.020 (2)
Geometric parameters (Å, º) top
N1—C11.354 (3)C8—C131.408 (3)
N1—C81.431 (3)C9—C101.405 (4)
N1—H10.8600C9—H90.9300
O1—C11.225 (2)C10—C111.360 (4)
C1—C21.490 (3)C10—H100.9300
C2—C31.378 (3)C11—C121.402 (4)
C2—C71.381 (3)C11—H110.9300
C3—C41.373 (3)C12—C171.406 (4)
C3—H30.9300C12—C131.415 (3)
C4—C51.377 (3)C13—C141.416 (3)
C4—H40.9300C14—C151.359 (3)
C5—C61.369 (3)C14—H140.9300
C5—H50.9300C15—C161.384 (4)
C6—C71.383 (3)C15—H150.9300
C6—H60.9300C16—C171.341 (4)
C7—H70.9300C16—H160.9300
C8—C91.356 (3)C17—H170.9300
C1—N1—C8122.9 (2)C8—C9—C10120.3 (3)
C1—N1—H1118.5C8—C9—H9119.8
C8—N1—H1118.5C10—C9—H9119.8
O1—C1—N1122.3 (2)C11—C10—C9120.2 (3)
O1—C1—C2120.8 (2)C11—C10—H10119.9
N1—C1—C2116.9 (2)C9—C10—H10119.9
C3—C2—C7119.1 (2)C10—C11—C12120.4 (3)
C3—C2—C1117.4 (2)C10—C11—H11119.8
C7—C2—C1123.4 (2)C12—C11—H11119.8
C4—C3—C2120.6 (2)C11—C12—C17121.8 (3)
C4—C3—H3119.7C11—C12—C13119.8 (3)
C2—C3—H3119.7C17—C12—C13118.3 (3)
C3—C4—C5120.1 (3)C8—C13—C12117.9 (2)
C3—C4—H4120.0C8—C13—C14123.9 (2)
C5—C4—H4120.0C12—C13—C14118.2 (2)
C6—C5—C4119.8 (3)C15—C14—C13120.5 (3)
C6—C5—H5120.1C15—C14—H14119.8
C4—C5—H5120.1C13—C14—H14119.8
C5—C6—C7120.1 (3)C14—C15—C16121.1 (3)
C5—C6—H6119.9C14—C15—H15119.4
C7—C6—H6119.9C16—C15—H15119.4
C2—C7—C6120.2 (2)C17—C16—C15119.7 (3)
C2—C7—H7119.9C17—C16—H16120.1
C6—C7—H7119.9C15—C16—H16120.1
C9—C8—C13121.1 (2)C16—C17—C12122.1 (3)
C9—C8—N1118.6 (2)C16—C17—H17119.0
C13—C8—N1120.2 (2)C12—C17—H17119.0
C8—N1—C1—O16.5 (4)C9—C10—C11—C122.2 (4)
C8—N1—C1—C2171.9 (2)C10—C11—C12—C17178.7 (3)
O1—C1—C2—C324.1 (3)C10—C11—C12—C130.1 (4)
N1—C1—C2—C3154.3 (2)C9—C8—C13—C125.4 (3)
O1—C1—C2—C7156.2 (2)N1—C8—C13—C12176.3 (2)
N1—C1—C2—C725.4 (3)C9—C8—C13—C14174.6 (2)
C7—C2—C3—C41.1 (3)N1—C8—C13—C143.7 (3)
C1—C2—C3—C4178.6 (2)C11—C12—C13—C83.8 (4)
C2—C3—C4—C51.6 (4)C17—C12—C13—C8177.6 (2)
C3—C4—C5—C60.4 (4)C11—C12—C13—C14176.2 (2)
C4—C5—C6—C71.2 (4)C17—C12—C13—C142.4 (4)
C3—C2—C7—C60.5 (4)C8—C13—C14—C15178.5 (2)
C1—C2—C7—C6179.8 (2)C12—C13—C14—C151.5 (4)
C5—C6—C7—C21.7 (4)C13—C14—C15—C161.0 (4)
C1—N1—C8—C9117.0 (3)C14—C15—C16—C172.6 (5)
C1—N1—C8—C1364.6 (3)C15—C16—C17—C121.5 (5)
C13—C8—C9—C103.2 (4)C11—C12—C17—C16177.6 (3)
N1—C8—C9—C10178.4 (2)C13—C12—C17—C161.0 (5)
C8—C9—C10—C110.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.212.892 (3)136
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC17H13NO
Mr247.28
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)8.2630 (8), 9.3792 (9), 33.806 (3)
V3)2620.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.45 × 0.24 × 0.13
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.966, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
12210, 2307, 1253
Rint0.086
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.129, 1.04
No. of reflections2307
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.8602.2142.892 (3)135.61
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors gratefully acknowledge the Project of ShanXi scientific and technology (20110321044).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, S., Zhang, Y., Wang, C. & Zhu, R. (2011). Acta Cryst. E67, o2831.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds