metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[μ-Bis(di­phenyl­phosphan­yl-κP)methane]­deca­carbonyl­tri-μ-hydrido-trirhenium(I)(3 ReRe) di­chloro­methane solvate

aInorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden, and bDepartment of Chemistry, University of Eastern Finland, Box 111, FIN-80 101 Joensuu, Finland
*Correspondence e-mail: Ebbe.Nordlander@chemphys.lu.se

(Received 4 November 2011; accepted 18 November 2011; online 25 November 2011)

In the title compound, [Re3(μ-H)3(C25H22P2)(CO)10]·CH2Cl2, the three Re atoms form a triangle bearing ten terminal carbonyl groups and three edge-bridging hydrides. The bis­(diphenyl­phosphan­yl)methane ligand bridges two Re atoms. Neglecting the Re—Re inter­actions, each Re atom is in a slightly distorted octa­hedral coordination environment. The dichloro­methane solvent mol­ecule is disordered over two sets of sites with fixed occupancies of 0.6 and 0.4.

Related literature

For general background to the reaction between rhenium complexes and the bis(diphenylphosphanyl)methane ligand, see: Prest et al. (1982[Prest, W., Mays, J. & Raithby, R. (1982). J. Chem. Soc. Dalton Trans. pp. 737-745.]). For related rhenium complexes, see: Adams et al. (1993[Adams, J., Bruce, I., Skelton, W. & White, H. (1993). J. Organomet. Chem. 447, 91-101.]). For the treatment of the hydride atoms, see: Orpen (1980[Orpen, A. G. (1980). J. Chem. Soc. Dalton Trans. pp. 2509-2516.]).

[Scheme 1]

Experimental

Crystal data
  • [Re3H3(C25H22P2)(CO)10]·CH2Cl2

  • Mr = 1311.02

  • Monoclinic, P 21 /c

  • a = 16.7907 (6) Å

  • b = 14.5316 (5) Å

  • c = 17.1593 (6) Å

  • β = 106.445 (1)°

  • V = 4015.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.29 mm−1

  • T = 100 K

  • 0.16 × 0.15 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.320, Tmax = 0.527

  • 35918 measured reflections

  • 8540 independent reflections

  • 7349 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 1.06

  • 8540 reflections

  • 472 parameters

  • 42 restraints

  • H-atom parameters constrained

  • Δρmax = 3.82 e Å−3

  • Δρmin = −2.54 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound has been reported to form during the reaction between [Re3(µ-H)3(CO)12] and bis[(diphenylphosphino)methane] (dppm) (Prest et al.1982); however, its characterization was only based on spectroscopic analysis. We have synthesized this compound during our investigation of similar clusters with diphosphine ligands and the structure of the compound has been established by single-crystal X-ray diffraction. In the title cluster (Fig. 1) the three rhenium atoms form a triangle, bearing ten terminal CO groups with three edge-bridging hydrides. The bis[(diphenylphosphino)methane] ligand forms a symmetric bridge over the Re1—Re2 edge. The two triangular edges, Re1—Re3 and Re2—Re3, exhibit bond lengths typical of hydrogen bridged Re—H—Re bonds, 3.2909 (4) and 3.2901 (4) Å, and the third, shorter edge, Re1—Re2 [3.2358 (4) Å], which is doubly bridged by a hydride and the bis[(diphenylphosphino)methane] ligand are comparable with the corresponding interactions in [Re3(µ-H)3(CO)10(µ-dppa)] (dppa = C2(PPh2)2), where the corresponding Re1—Re3 and Re2—Re3 distances are 3.290 (1) and 3.290 (1) Å, respectively, and the doubly bridged Re1—Re2 distance is 3.303 (1) Å (Adams et al. 1993). The two Re—P bonds, Re1—P1 and Re2—P2 are very similar, 2.4535 (17) and 2.4592 (16) Å, respectively, and also similar to the corresponding Re—P distances reported for [Re3(µ-H)3(CO)10(µ-dppa)], Re1—P1 and Re2—P2, 2.456 (5) and 2.457 (5) Å, respectively.

Related literature top

For general background to the reaction between rhenium complexes and the bis[(diphenylphosphino)methane] ligand, see: Prest et al. (1982). For related rhenium complexes, see: Adams et al. (1993). For the treatment of the hydride atoms, see: Orpen (1980).

Experimental top

The cluster [Re3(µ-H)3(CO)11(NCMe)] (50 mg, 0.055 mmol) and bis[(diphenylphosphino)methane] (42 mg, 0.11 mmol) were stirred for 120 min in dichloromethane (20 ml). A solution of trimethylamine N-oxide (8.2 mg, 0.11 mmol) in dichloromethane (5 ml) was added dropwise during 30 minutes and the reaction was stirred at room temperature until complete conversion had occurred, as judged by spot TLC. The solvent was removed under vacuum and the residue dissolved in a minimum quantity of dichloromethane. The products were then separated by thin layer chromatography on silica using dichloromethane:petroleum ether (1:1) mixture as eluent. The order of elution (decreasing Rf values) was [Re2(CO)8(dppm)] (1) and [Re3(µ-H)3(CO)10(dppm)] (2). Final purification was achieved by recrystallization of compound (2) from dichloromethane-hexane.

Refinement top

The dichloromethane of crystallization is disordered over two sites with an occupancy ratio of 0.6/0.4. All C—Cl distances were restrained to be similar and the carbon atoms and chlorine atoms were restrained so that their Uij components approximate isotropic behavior. Furthermore, all disordered atoms were constrained to have similar anisotropic displacement parameters. Also, the coordinates of C1S and Cl2B were constrained to be the same. The idealized positions of the hydride H atoms were estimated using the XHYDEX program (Orpen, 1980). The hydride H atoms H1H, H2H, and H3H were constrained to ride on Re1, Re2 and Re3, respectively, with Uiso = 1.5 Ueq(parent Re atom). The hydrogen atoms were positioned geometrically and were also constrained to ride on their parent atoms, with C—H = 0.95 Å, and Uiso = 1.2 Ueq(parent atom). The highest peak is located 0.08 Å from atom Cl1 and the deepest hole is located 0.32 Å from atom Cl2B.

Structure description top

The title compound has been reported to form during the reaction between [Re3(µ-H)3(CO)12] and bis[(diphenylphosphino)methane] (dppm) (Prest et al.1982); however, its characterization was only based on spectroscopic analysis. We have synthesized this compound during our investigation of similar clusters with diphosphine ligands and the structure of the compound has been established by single-crystal X-ray diffraction. In the title cluster (Fig. 1) the three rhenium atoms form a triangle, bearing ten terminal CO groups with three edge-bridging hydrides. The bis[(diphenylphosphino)methane] ligand forms a symmetric bridge over the Re1—Re2 edge. The two triangular edges, Re1—Re3 and Re2—Re3, exhibit bond lengths typical of hydrogen bridged Re—H—Re bonds, 3.2909 (4) and 3.2901 (4) Å, and the third, shorter edge, Re1—Re2 [3.2358 (4) Å], which is doubly bridged by a hydride and the bis[(diphenylphosphino)methane] ligand are comparable with the corresponding interactions in [Re3(µ-H)3(CO)10(µ-dppa)] (dppa = C2(PPh2)2), where the corresponding Re1—Re3 and Re2—Re3 distances are 3.290 (1) and 3.290 (1) Å, respectively, and the doubly bridged Re1—Re2 distance is 3.303 (1) Å (Adams et al. 1993). The two Re—P bonds, Re1—P1 and Re2—P2 are very similar, 2.4535 (17) and 2.4592 (16) Å, respectively, and also similar to the corresponding Re—P distances reported for [Re3(µ-H)3(CO)10(µ-dppa)], Re1—P1 and Re2—P2, 2.456 (5) and 2.457 (5) Å, respectively.

For general background to the reaction between rhenium complexes and the bis[(diphenylphosphino)methane] ligand, see: Prest et al. (1982). For related rhenium complexes, see: Adams et al. (1993). For the treatment of the hydride atoms, see: Orpen (1980).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[µ-Bis(diphenylphosphanyl-κP)methane]decacarbonyltri-µ-hydrido- trirhenium(I)(3 ReRe) dichloromethane solvate top
Crystal data top
[Re3H3(C25H22P2)(CO)10]·CH2Cl2F(000) = 2448
Mr = 1311.02Dx = 2.169 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9836 reflections
a = 16.7907 (6) Åθ = 2.5–28.3°
b = 14.5316 (5) ŵ = 9.29 mm1
c = 17.1593 (6) ÅT = 100 K
β = 106.445 (1)°Block, colourless
V = 4015.5 (2) Å30.16 × 0.15 × 0.08 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8540 independent reflections
Radiation source: fine-focus sealed tube7349 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.031
Detector resolution: 16 pixels mm-1θmax = 27.0°, θmin = 1.9°
φ scans and ω scans with κ offseth = 1921
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1818
Tmin = 0.320, Tmax = 0.527l = 2121
35918 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0308P)2 + 45.3016P]
where P = (Fo2 + 2Fc2)/3
8540 reflections(Δ/σ)max = 0.001
472 parametersΔρmax = 3.82 e Å3
42 restraintsΔρmin = 2.54 e Å3
Crystal data top
[Re3H3(C25H22P2)(CO)10]·CH2Cl2V = 4015.5 (2) Å3
Mr = 1311.02Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.7907 (6) ŵ = 9.29 mm1
b = 14.5316 (5) ÅT = 100 K
c = 17.1593 (6) Å0.16 × 0.15 × 0.08 mm
β = 106.445 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
8540 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7349 reflections with I > 2σ(I)
Tmin = 0.320, Tmax = 0.527Rint = 0.031
35918 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03242 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0308P)2 + 45.3016P]
where P = (Fo2 + 2Fc2)/3
8540 reflectionsΔρmax = 3.82 e Å3
472 parametersΔρmin = 2.54 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.351643 (16)0.492337 (18)0.253498 (15)0.01644 (7)
H1H0.30640.39690.18440.025*
Re20.347215 (15)0.278309 (18)0.200401 (15)0.01512 (7)
H2H0.40300.43500.35030.023*
Re30.485711 (16)0.347203 (18)0.367087 (15)0.01646 (7)
H3H0.42440.25830.29950.025*
P10.23187 (10)0.45699 (12)0.30346 (10)0.0171 (3)
P20.24865 (10)0.24363 (12)0.27854 (10)0.0156 (3)
O10.2401 (4)0.6139 (5)0.1200 (4)0.0461 (17)
O20.4131 (4)0.6613 (4)0.3622 (4)0.0428 (15)
O30.4858 (3)0.5337 (4)0.1674 (3)0.0276 (11)
O40.2093 (4)0.2497 (4)0.0421 (3)0.0341 (13)
O50.3835 (3)0.0763 (4)0.1708 (3)0.0317 (12)
O60.4694 (3)0.3388 (4)0.1046 (3)0.0304 (12)
O70.6062 (4)0.1901 (4)0.4430 (4)0.0381 (14)
O80.5898 (3)0.4864 (4)0.4905 (3)0.0275 (12)
O90.6049 (3)0.3830 (4)0.2584 (3)0.0346 (13)
O100.3944 (3)0.3069 (4)0.4985 (3)0.0282 (12)
C10.2817 (5)0.5669 (6)0.1700 (5)0.0308 (18)
C20.3884 (5)0.5988 (5)0.3212 (5)0.0277 (16)
C30.4386 (4)0.5154 (5)0.2015 (4)0.0206 (14)
C40.2602 (4)0.2650 (5)0.1007 (4)0.0229 (15)
C50.3719 (4)0.1514 (5)0.1863 (4)0.0223 (15)
C60.4252 (4)0.3156 (5)0.1403 (4)0.0197 (14)
C70.5611 (5)0.2486 (5)0.4131 (4)0.0270 (16)
C80.5520 (4)0.4352 (5)0.4442 (4)0.0211 (14)
C90.5576 (4)0.3729 (5)0.2943 (4)0.0240 (15)
C100.4252 (4)0.3192 (5)0.4483 (4)0.0209 (14)
C110.2221 (4)0.5281 (5)0.3884 (4)0.0201 (14)
C120.2253 (4)0.6224 (5)0.3785 (4)0.0253 (15)
H120.22650.64690.32750.030*
C130.2270 (5)0.6815 (6)0.4424 (5)0.0304 (17)
H130.22930.74610.43480.036*
C140.2253 (4)0.6475 (6)0.5162 (5)0.0304 (18)
H140.22760.68820.56020.036*
C150.2203 (4)0.5532 (6)0.5264 (4)0.0281 (17)
H150.21820.52930.57730.034*
C160.2182 (4)0.4935 (5)0.4629 (4)0.0227 (15)
H160.21420.42910.47030.027*
C170.1310 (4)0.4679 (5)0.2275 (4)0.0234 (15)
C180.0606 (5)0.4920 (5)0.2507 (5)0.0285 (16)
H180.06580.50970.30520.034*
C190.0172 (5)0.4901 (7)0.1940 (5)0.041 (2)
H190.06510.50620.20990.049*
C200.0250 (5)0.4648 (8)0.1147 (5)0.049 (3)
H200.07840.46330.07640.058*
C210.0444 (5)0.4415 (7)0.0906 (5)0.043 (2)
H210.03900.42430.03590.051*
C220.1219 (5)0.4436 (6)0.1471 (4)0.0302 (17)
H220.16970.42810.13060.036*
C230.2261 (4)0.3387 (4)0.3400 (4)0.0161 (13)
H23A0.26510.33390.39520.019*
H23B0.16950.32910.34530.019*
C240.1478 (4)0.2025 (5)0.2166 (4)0.0202 (14)
C250.0718 (4)0.2421 (6)0.2124 (5)0.0289 (17)
H250.06930.29400.24530.035*
C260.0006 (5)0.2072 (6)0.1609 (5)0.0354 (19)
H260.05210.23580.15850.042*
C270.0007 (5)0.1314 (7)0.1127 (5)0.037 (2)
H270.04940.10820.07710.045*
C280.0762 (5)0.0894 (7)0.1170 (5)0.041 (2)
H280.07810.03690.08460.049*
C290.1488 (5)0.1247 (6)0.1689 (5)0.0316 (18)
H290.20020.09540.17200.038*
C300.2760 (4)0.1528 (5)0.3552 (4)0.0183 (13)
C310.2201 (4)0.1287 (5)0.3989 (4)0.0217 (14)
H310.16770.15830.38740.026*
C320.2409 (5)0.0618 (5)0.4586 (4)0.0253 (15)
H320.20300.04610.48840.030*
C330.3170 (5)0.0177 (6)0.4750 (5)0.036 (2)
H330.33160.02770.51650.043*
C340.3718 (5)0.0397 (7)0.4312 (5)0.041 (2)
H340.42320.00810.44140.049*
C350.3521 (5)0.1075 (6)0.3726 (5)0.0299 (17)
H350.39090.12340.34380.036*
C1S0.0818 (8)0.2204 (10)0.3584 (7)0.199 (3)0.60
H1S10.11010.19450.39690.238*0.60
H1S20.06930.16960.32530.238*0.60
Cl10.0123 (9)0.2785 (10)0.4128 (11)0.199 (3)0.60
Cl20.1495 (9)0.3089 (10)0.2913 (7)0.199 (3)0.60
C1SB0.020 (3)0.244 (3)0.421 (5)0.199 (3)0.40
H1S30.06270.20720.40570.238*0.40
H1S40.02500.23410.47960.238*0.40
Cl1B0.0272 (15)0.3638 (16)0.3988 (11)0.199 (3)0.40
Cl2B0.0818 (8)0.2204 (10)0.3584 (7)0.199 (3)0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.01569 (13)0.02024 (14)0.01461 (13)0.00154 (10)0.00627 (10)0.00231 (10)
Re20.01404 (12)0.02085 (14)0.01086 (12)0.00069 (10)0.00418 (9)0.00074 (9)
Re30.01399 (13)0.02069 (14)0.01367 (13)0.00099 (10)0.00226 (10)0.00083 (10)
P10.0156 (8)0.0220 (9)0.0142 (8)0.0041 (7)0.0053 (6)0.0028 (6)
P20.0126 (8)0.0214 (9)0.0127 (8)0.0003 (6)0.0034 (6)0.0007 (6)
O10.036 (3)0.062 (4)0.047 (4)0.023 (3)0.023 (3)0.036 (3)
O20.052 (4)0.033 (3)0.052 (4)0.013 (3)0.027 (3)0.017 (3)
O30.026 (3)0.034 (3)0.026 (3)0.003 (2)0.012 (2)0.000 (2)
O40.038 (3)0.042 (3)0.018 (3)0.013 (3)0.001 (2)0.003 (2)
O50.040 (3)0.030 (3)0.024 (3)0.004 (2)0.006 (2)0.004 (2)
O60.032 (3)0.040 (3)0.026 (3)0.011 (2)0.020 (2)0.011 (2)
O70.033 (3)0.030 (3)0.043 (3)0.012 (3)0.003 (3)0.001 (3)
O80.019 (3)0.037 (3)0.025 (3)0.003 (2)0.004 (2)0.012 (2)
O90.024 (3)0.048 (4)0.036 (3)0.004 (3)0.016 (2)0.003 (3)
O100.028 (3)0.039 (3)0.018 (3)0.000 (2)0.006 (2)0.006 (2)
C10.028 (4)0.038 (5)0.034 (4)0.008 (3)0.021 (3)0.011 (4)
C20.027 (4)0.031 (4)0.030 (4)0.000 (3)0.016 (3)0.004 (3)
C30.016 (3)0.029 (4)0.017 (3)0.001 (3)0.004 (3)0.001 (3)
C40.024 (4)0.029 (4)0.015 (3)0.006 (3)0.005 (3)0.006 (3)
C50.021 (3)0.032 (4)0.013 (3)0.000 (3)0.003 (3)0.001 (3)
C60.023 (3)0.020 (3)0.016 (3)0.006 (3)0.006 (3)0.006 (3)
C70.026 (4)0.032 (4)0.020 (4)0.003 (3)0.002 (3)0.006 (3)
C80.016 (3)0.025 (4)0.022 (3)0.005 (3)0.005 (3)0.002 (3)
C90.018 (3)0.029 (4)0.021 (3)0.001 (3)0.001 (3)0.004 (3)
C100.016 (3)0.024 (4)0.019 (3)0.000 (3)0.001 (3)0.002 (3)
C110.011 (3)0.031 (4)0.018 (3)0.005 (3)0.004 (3)0.001 (3)
C120.020 (3)0.035 (4)0.021 (3)0.007 (3)0.006 (3)0.001 (3)
C130.027 (4)0.034 (4)0.030 (4)0.003 (3)0.008 (3)0.006 (3)
C140.020 (4)0.046 (5)0.023 (4)0.002 (3)0.003 (3)0.015 (3)
C150.021 (4)0.046 (5)0.017 (3)0.000 (3)0.005 (3)0.003 (3)
C160.019 (3)0.032 (4)0.019 (3)0.003 (3)0.008 (3)0.000 (3)
C170.019 (3)0.030 (4)0.021 (3)0.008 (3)0.004 (3)0.008 (3)
C180.023 (4)0.032 (4)0.031 (4)0.008 (3)0.007 (3)0.003 (3)
C190.020 (4)0.063 (6)0.037 (5)0.014 (4)0.004 (3)0.006 (4)
C200.023 (4)0.085 (8)0.027 (5)0.012 (4)0.009 (3)0.012 (5)
C210.032 (4)0.072 (7)0.019 (4)0.010 (4)0.003 (3)0.006 (4)
C220.024 (4)0.048 (5)0.018 (4)0.003 (3)0.006 (3)0.004 (3)
C230.013 (3)0.020 (3)0.013 (3)0.000 (2)0.000 (2)0.003 (2)
C240.020 (3)0.025 (4)0.015 (3)0.005 (3)0.003 (3)0.004 (3)
C250.018 (4)0.033 (4)0.035 (4)0.002 (3)0.006 (3)0.008 (3)
C260.018 (4)0.042 (5)0.044 (5)0.001 (3)0.005 (3)0.012 (4)
C270.020 (4)0.064 (6)0.027 (4)0.020 (4)0.003 (3)0.003 (4)
C280.033 (5)0.061 (6)0.031 (4)0.018 (4)0.013 (4)0.014 (4)
C290.020 (4)0.044 (5)0.031 (4)0.007 (3)0.008 (3)0.013 (4)
C300.018 (3)0.022 (3)0.012 (3)0.001 (3)0.000 (3)0.000 (2)
C310.020 (3)0.027 (4)0.017 (3)0.001 (3)0.003 (3)0.002 (3)
C320.027 (4)0.031 (4)0.021 (3)0.001 (3)0.011 (3)0.004 (3)
C330.042 (5)0.042 (5)0.028 (4)0.020 (4)0.016 (4)0.020 (4)
C340.032 (4)0.054 (6)0.041 (5)0.023 (4)0.016 (4)0.029 (4)
C350.022 (4)0.043 (5)0.027 (4)0.008 (3)0.011 (3)0.010 (3)
C1S0.246 (8)0.210 (8)0.128 (5)0.019 (7)0.033 (5)0.037 (5)
Cl10.246 (8)0.210 (8)0.128 (5)0.019 (7)0.033 (5)0.037 (5)
Cl20.246 (8)0.210 (8)0.128 (5)0.019 (7)0.033 (5)0.037 (5)
C1SB0.246 (8)0.210 (8)0.128 (5)0.019 (7)0.033 (5)0.037 (5)
Cl1B0.246 (8)0.210 (8)0.128 (5)0.019 (7)0.033 (5)0.037 (5)
Cl2B0.246 (8)0.210 (8)0.128 (5)0.019 (7)0.033 (5)0.037 (5)
Geometric parameters (Å, º) top
Re1—C11.911 (8)C15—C161.385 (10)
Re1—C21.928 (8)C15—H150.9500
Re1—C31.945 (7)C16—H160.9500
Re1—P12.4535 (17)C17—C221.390 (10)
Re1—Re23.2358 (4)C17—C181.393 (10)
Re1—Re33.2909 (4)C18—C191.391 (11)
Re1—H1H1.8430C18—H180.9500
Re1—H2H1.8410C19—C201.379 (13)
Re2—C41.919 (7)C19—H190.9500
Re2—C51.920 (8)C20—C211.385 (12)
Re2—C61.959 (7)C20—H200.9500
Re2—P22.4592 (16)C21—C221.385 (11)
Re2—Re33.2901 (4)C21—H210.9500
Re2—H1H1.8465C22—H220.9500
Re2—H3H1.8461C23—H23A0.9900
Re3—C71.927 (8)C23—H23B0.9900
Re3—C81.947 (7)C24—C251.383 (10)
Re3—C101.985 (7)C24—C291.400 (10)
Re3—C92.002 (7)C25—C261.381 (11)
Re3—H2H1.8464C25—H250.9500
Re3—H3H1.8431C26—C271.382 (13)
P1—C171.829 (7)C26—H260.9500
P1—C111.831 (7)C27—C281.390 (13)
P1—C231.842 (7)C27—H270.9500
P2—C241.826 (7)C28—C291.387 (11)
P2—C301.827 (7)C28—H280.9500
P2—C231.841 (7)C29—H290.9500
O1—C11.162 (9)C30—C351.392 (10)
O2—C21.153 (9)C30—C311.402 (9)
O3—C31.141 (8)C31—C321.384 (10)
O4—C41.142 (9)C31—H310.9500
O5—C51.153 (9)C32—C331.386 (11)
O6—C61.138 (8)C32—H320.9500
O7—C71.157 (9)C33—C341.380 (11)
O8—C81.142 (8)C33—H330.9500
O9—C91.145 (9)C34—C351.378 (11)
O10—C101.137 (8)C34—H340.9500
C11—C121.384 (11)C35—H350.9500
C11—C161.393 (9)C1S—Cl11.801 (13)
C12—C131.386 (10)C1S—Cl21.879 (12)
C12—H120.9500C1S—H1S10.9900
C13—C141.368 (11)C1S—H1S20.9900
C13—H130.9500C1SB—Cl1B1.790 (16)
C14—C151.388 (12)C1SB—H1S30.9900
C14—H140.9500C1SB—H1S40.9900
C1—Re1—C291.2 (4)O2—C2—Re1177.7 (7)
C1—Re1—C386.6 (3)O3—C3—Re1174.9 (6)
C2—Re1—C389.1 (3)O4—C4—Re2174.5 (7)
C1—Re1—P189.4 (2)O5—C5—Re2174.1 (6)
C2—Re1—P196.4 (2)O6—C6—Re2178.6 (7)
C3—Re1—P1173.3 (2)O7—C7—Re3177.9 (7)
C1—Re1—Re2111.9 (3)O8—C8—Re3178.5 (6)
C2—Re1—Re2156.8 (2)O9—C9—Re3173.1 (6)
C3—Re1—Re289.8 (2)O10—C10—Re3175.3 (6)
P1—Re1—Re286.64 (4)C12—C11—C16118.8 (7)
C1—Re1—Re3168.3 (2)C12—C11—P1116.5 (5)
C2—Re1—Re396.3 (2)C16—C11—P1124.4 (6)
C3—Re1—Re384.6 (2)C11—C12—C13120.7 (7)
P1—Re1—Re398.61 (4)C11—C12—H12119.6
Re2—Re1—Re360.536 (8)C13—C12—H12119.6
C1—Re1—H1H83.7C14—C13—C12120.5 (8)
C2—Re1—H1H174.1C14—C13—H13119.8
C3—Re1—H1H93.5C12—C13—H13119.8
P1—Re1—H1H80.7C13—C14—C15119.4 (7)
Re2—Re1—H1H28.7C13—C14—H14120.3
Re3—Re1—H1H89.3C15—C14—H14120.3
C1—Re1—H2H164.8C16—C15—C14120.6 (7)
C2—Re1—H2H80.3C16—C15—H15119.7
C3—Re1—H2H105.7C14—C15—H15119.7
P1—Re1—H2H79.1C15—C16—C11119.9 (7)
Re2—Re1—H2H77.7C15—C16—H16120.0
Re3—Re1—H2H26.9C11—C16—H16120.0
H1H—Re1—H2H104.0C22—C17—C18118.9 (7)
C4—Re2—C585.9 (3)C22—C17—P1120.3 (5)
C4—Re2—C690.7 (3)C18—C17—P1120.5 (6)
C5—Re2—C689.9 (3)C19—C18—C17119.9 (7)
C4—Re2—P290.3 (2)C19—C18—H18120.0
C5—Re2—P294.3 (2)C17—C18—H18120.0
C6—Re2—P2175.7 (2)C20—C19—C18120.3 (8)
C4—Re2—Re1107.4 (2)C20—C19—H19119.8
C5—Re2—Re1165.9 (2)C18—C19—H19119.8
C6—Re2—Re185.2 (2)C19—C20—C21120.4 (8)
P2—Re2—Re190.51 (4)C19—C20—H20119.8
C4—Re2—Re3167.9 (2)C21—C20—H20119.8
C5—Re2—Re3106.1 (2)C20—C21—C22119.3 (8)
C6—Re2—Re387.73 (19)C20—C21—H21120.4
P2—Re2—Re390.43 (4)C22—C21—H21120.4
Re1—Re2—Re360.561 (8)C21—C22—C17121.1 (7)
C4—Re2—H1H78.7C21—C22—H22119.4
C5—Re2—H1H164.1C17—C22—H22119.4
C6—Re2—H1H86.5P2—C23—P1117.8 (3)
P2—Re2—H1H89.6P2—C23—H23A107.9
Re1—Re2—H1H28.7P1—C23—H23A107.9
Re3—Re2—H1H89.2P2—C23—H23B107.9
C4—Re2—H3H164.6P1—C23—H23B107.9
C5—Re2—H3H81.1H23A—C23—H23B107.2
C6—Re2—H3H97.4C25—C24—C29118.0 (7)
P2—Re2—H3H82.6C25—C24—P2125.8 (6)
Re1—Re2—H3H86.4C29—C24—P2116.2 (5)
Re3—Re2—H3H26.9C26—C25—C24120.8 (8)
H1H—Re2—H3H114.7C26—C25—H25119.6
C7—Re3—C891.6 (3)C24—C25—H25119.6
C7—Re3—C1088.2 (3)C25—C26—C27121.1 (8)
C8—Re3—C1088.0 (3)C25—C26—H26119.5
C7—Re3—C987.2 (3)C27—C26—H26119.5
C8—Re3—C988.4 (3)C26—C27—C28119.1 (7)
C10—Re3—C9174.1 (3)C26—C27—H27120.5
C7—Re3—Re2110.5 (2)C28—C27—H27120.5
C8—Re3—Re2156.6 (2)C29—C28—C27119.7 (8)
C10—Re3—Re299.9 (2)C29—C28—H28120.2
C9—Re3—Re285.2 (2)C27—C28—H28120.2
C7—Re3—Re1168.3 (2)C28—C29—C24121.3 (8)
C8—Re3—Re198.3 (2)C28—C29—H29119.3
C10—Re3—Re198.4 (2)C24—C29—H29119.3
C9—Re3—Re186.7 (2)C35—C30—C31118.6 (6)
Re2—Re3—Re158.903 (8)C35—C30—P2121.7 (5)
C7—Re3—H2H162.8C31—C30—P2119.7 (5)
C8—Re3—H2H85.0C32—C31—C30120.4 (6)
C10—Re3—H2H74.9C32—C31—H31119.8
C9—Re3—H2H109.5C30—C31—H31119.8
Re2—Re3—H2H76.1C31—C32—C33120.0 (7)
Re1—Re3—H2H26.8C31—C32—H32120.0
C7—Re3—H3H85.5C33—C32—H32120.0
C8—Re3—H3H176.3C34—C33—C32120.0 (7)
C10—Re3—H3H89.6C34—C33—H33120.0
C9—Re3—H3H93.8C32—C33—H33120.0
Re2—Re3—H3H26.9C35—C34—C33120.3 (7)
Re1—Re3—H3H84.8C35—C34—H34119.9
H2H—Re3—H3H97.2C33—C34—H34119.9
C17—P1—C11104.1 (3)C34—C35—C30120.7 (7)
C17—P1—C23101.3 (3)C34—C35—H35119.6
C11—P1—C23103.3 (3)C30—C35—H35119.6
C17—P1—Re1114.7 (2)Cl1—C1S—Cl2106.6 (10)
C11—P1—Re1115.3 (2)Cl1—C1S—H1S1110.4
C23—P1—Re1116.2 (2)Cl2—C1S—H1S1110.4
C24—P2—C30100.7 (3)Cl1—C1S—H1S2110.4
C24—P2—C23105.7 (3)Cl2—C1S—H1S2110.4
C30—P2—C23100.4 (3)H1S1—C1S—H1S2108.6
C24—P2—Re2114.0 (2)Cl1B—C1SB—H1S3111.8
C30—P2—Re2118.0 (2)Cl1B—C1SB—H1S4111.8
C23—P2—Re2116.0 (2)H1S3—C1SB—H1S4109.6
O1—C1—Re1178.6 (9)

Experimental details

Crystal data
Chemical formula[Re3H3(C25H22P2)(CO)10]·CH2Cl2
Mr1311.02
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.7907 (6), 14.5316 (5), 17.1593 (6)
β (°) 106.445 (1)
V3)4015.5 (2)
Z4
Radiation typeMo Kα
µ (mm1)9.29
Crystal size (mm)0.16 × 0.15 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.320, 0.527
No. of measured, independent and
observed [I > 2σ(I)] reflections
35918, 8540, 7349
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.06
No. of reflections8540
No. of parameters472
No. of restraints42
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0308P)2 + 45.3016P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.82, 2.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

 

Acknowledgements

The authors gratefully acknowledge the financial support of the Swedish Research Council (VR). AFA thanks the EU Erasmus Mundus program, FFEEBB1 office, for a scholarship. AKS thanks the Carl Trygger Foundation for a postdoctoral fellowship.

References

First citationAdams, J., Bruce, I., Skelton, W. & White, H. (1993). J. Organomet. Chem. 447, 91–101.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOrpen, A. G. (1980). J. Chem. Soc. Dalton Trans. pp. 2509–2516.  CrossRef Web of Science Google Scholar
First citationPrest, W., Mays, J. & Raithby, R. (1982). J. Chem. Soc. Dalton Trans. pp. 737–745.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds