metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(tetra­hydro­furan-κO)tris­­[tris­­(thio­phen-2-yl)methano­lato-κO]terbium(III) tetra­hydro­furan monosolvate

aInstitut für Anorganische Chemie, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany, and Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
*Correspondence e-mail: veith@mx.uni-saarland.de

(Received 11 October 2011; accepted 2 November 2011; online 9 November 2011)

In the mononuclear title compound, [Tb(C13H9OS3)3(C4H8O)3]·C4H8O, the lanthanide cation is located on a threefold rotation axis and is surrounded by electron-rich ligands in an approximately octa­hedral geometry. One of the thienyl groups and the bound THF are disordered with 0.5:0.5 occupancy. The free THF is disordered around the threefold axis.

Related literature

For the preparation of some other lanthanide alkoxides containing thienyl substituents, see: Veith et al. (2008[Veith, M., Belot, C., Guyard, L., Huch, V., Knorr, M. & Zimmer, M. (2008). Eur. J. Inorg. Chem. pp. 2397-2406.]); Veith, Belot, Huch, Cui et al. (2010[Veith, M., Belot, C., Huch, V., Cui, H. L., Guyard, L., Knorr, M. & Wickleder, C. (2010). Eur. J. Inorg. Chem. pp. 879-889.]). For lanthanide alkoxides, see: Barnhart et al. (1993)[Barnhart, D. M., Clark, D. L., Huffman, J. C., Vincent, R. L. &Watkin, J. G. (1993). Inorg. Chem. 32, 4077-4083.]; Evans et al. (1997[Evans, W. J., Greci, M. A. & Ziller, J. W. (1997). J. Chem. Soc. Dalton Trans. pp. 3035-3039.], 1999[Evans, W. J., Greci, M. A. & Ziller, J. W. (1999). Inorg. Chem. Commun. 2, 530-532.]). For the electrochemical and luminescence properties of 4f complexes containing thienyl substituents, see: Teotonio et al. (2004[Teotonio, E. E. S., Claacuteudia, M., Felinto, F. C., Brito, H. F., Malta, O. L., Trindade, A. C., Najjar, R. & Strek, W. (2004). Inorg. Chim. Acta, 357, 451-460.]); Viswanathan & de Bettencourt-Dias (2006[Viswanathan, S. & de Bettencourt-Dias, A. (2006). Inorg. Chem. 45, 10138-10146.]); Sultan et al. (2006[Sultan, R., Gadamsetti, K. & Swavey, S. (2006). Inorg. Chim. Acta, 359, 1233-1238.]); Veith, Belot, Huch, Guyard et al. (2010[Veith, M., Belot, C., Huch, V., Guyard, L., Knorr, M., Khatyr, A. & Wickleder, C. (2010). Z. Anorg. Allg. Chem. 636, 2262-2275.]).

[Scheme 1]

Experimental

Crystal data
  • [Tb(C13H9OS3)3(C4H8O)3]·C4H8O

  • Mr = 1279.48

  • Trigonal, R 3

  • a = 13.9131 (4) Å

  • c = 24.6789 (7) Å

  • V = 4137.2 (2) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 132 K

  • 0.35 × 0.27 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS, Karlsruhe, Germany.]) Tmin = 0.593, Tmax = 0.693

  • 28927 measured reflections

  • 6212 independent reflections

  • 6197 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.085

  • S = 1.04

  • 6212 reflections

  • 260 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.63 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 3011 Friedel pairs

  • Flack parameter: 0.089 (8)

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS, Karlsruhe, Germany.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS, Karlsruhe, Germany.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title compound was obtained at the work in synthesizing lanthanide complexes containing thiophene derivatives. The asymmetric unit consists of one third of the complex which is located on a threefold axis (2/3,1/3,z) and one third of an additional thf molecule, which is disordered around the threefold axis. The molecular structure reveals a mononuclear compound with an approximately octahedral geometry around the metal centre (Fig. 1 and 2). It is surrounded by three tris(2-thienyl)methoxido ligands and by three tetrahydrofurane molecules in a facial arrangement. This facial coordination geometry around the metal is similar to those described in our previous paper (Veith et al., 2008; Veith, Belot, Huch, Cui et al., 2010; Veith, Belot, Huch, Guyard et al., 2010). The aditional THF molecule also present in the crystal lattice has no interaction with the molecule.

Related literature top

For the preparation of some other lanthanide alkoxides containing thienyl substituents, see: Veith et al. (2008); Veith, Belot, Huch, Cui et al. (2010) [please check this is the correct reference]. For lanthanide alkoxides, see: Barnhart et al. (1993); Evans et al. (1997, 1999). For the electrochemical and luminescence properties of 4f complexes containing thienyl substituents, see: Teotonio et al. (2004); Viswanathan & de Bettencourt-Dias (2006); Sultan et al. (2006); Veith, Belot, Huch, Guyard et al. (2010) [please check this is the correct reference]. For related literature [on what subject?], see: Deacon et al. (2004).

Experimental top

The title compound was obtained by the reaction between one equivalent (1.12 mmol, 0.719 g) of Tb[N(SiMe3)2]3 in 25 ml thf and three equivalents (3.37 mmol, 0.939 g) of the carbinol tris(2-thienyl)methanol in 25 ml tetrahydrofuran as solvent. The mixture was stirred at room temperature two days, concentrated and placed at 5°C. Few days later crystals were grown.

Refinement top

One of the thienyl rings shows a 180° rotational disorder. S(3) and C(11) were refined with split atom positions. Restraints were used to fulfil the thienyl ring geometry of the disordered positions in the refinement. The free thf-molecule is disordered on the threefold axis. The crystal is racemically twinned and therefore, a twin refinement was performed (BASF parameter: 0.08931). H atoms were positioned geometrically and refined with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 times Ueq(C).

Structure description top

The title compound was obtained at the work in synthesizing lanthanide complexes containing thiophene derivatives. The asymmetric unit consists of one third of the complex which is located on a threefold axis (2/3,1/3,z) and one third of an additional thf molecule, which is disordered around the threefold axis. The molecular structure reveals a mononuclear compound with an approximately octahedral geometry around the metal centre (Fig. 1 and 2). It is surrounded by three tris(2-thienyl)methoxido ligands and by three tetrahydrofurane molecules in a facial arrangement. This facial coordination geometry around the metal is similar to those described in our previous paper (Veith et al., 2008; Veith, Belot, Huch, Cui et al., 2010; Veith, Belot, Huch, Guyard et al., 2010). The aditional THF molecule also present in the crystal lattice has no interaction with the molecule.

For the preparation of some other lanthanide alkoxides containing thienyl substituents, see: Veith et al. (2008); Veith, Belot, Huch, Cui et al. (2010) [please check this is the correct reference]. For lanthanide alkoxides, see: Barnhart et al. (1993); Evans et al. (1997, 1999). For the electrochemical and luminescence properties of 4f complexes containing thienyl substituents, see: Teotonio et al. (2004); Viswanathan & de Bettencourt-Dias (2006); Sultan et al. (2006); Veith, Belot, Huch, Guyard et al. (2010) [please check this is the correct reference]. For related literature [on what subject?], see: Deacon et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids for non-H atoms. Symmetry codes: i = 1 - y,x-y,z ii = 1 - x + y,1 - x,z
[Figure 2] Fig. 2. Wire frame model of the title compound. H atoms the free thf molecule have been omitted for clarity and split positions are indicated by dashed lines. Symmetry codes: i = 1- y,x-y,z ii = 1 - x + y,1 - x,z
Tris(tetrahydrofuran-κO)tris[tris(thiophen-2-yl)methanolato- κO]terbium(III) tetrahydrofuran monosolvate top
Crystal data top
[Tb(C13H9OS3)3(C4H8O)3]·C4H8ODx = 1.541 Mg m3
Mr = 1279.48Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 9799 reflections
a = 13.9131 (4) Åθ = 2.9–32.0°
c = 24.6789 (7) ŵ = 1.67 mm1
V = 4137.2 (2) Å3T = 132 K
Z = 3Block, colourless
F(000) = 19620.35 × 0.27 × 0.24 mm
Data collection top
Bruker APEXII CCD
diffractometer
6212 independent reflections
Radiation source: fine-focus sealed tube6197 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
φ and ω scansθmax = 32.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 2020
Tmin = 0.593, Tmax = 0.693k = 2020
28927 measured reflectionsl = 3634
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0501P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6212 reflectionsΔρmax = 1.03 e Å3
260 parametersΔρmin = 0.63 e Å3
16 restraintsAbsolute structure: Flack (1983), 3011 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.089 (8)
Crystal data top
[Tb(C13H9OS3)3(C4H8O)3]·C4H8OZ = 3
Mr = 1279.48Mo Kα radiation
Trigonal, R3µ = 1.67 mm1
a = 13.9131 (4) ÅT = 132 K
c = 24.6789 (7) Å0.35 × 0.27 × 0.24 mm
V = 4137.2 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6212 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
6197 reflections with I > 2σ(I)
Tmin = 0.593, Tmax = 0.693Rint = 0.092
28927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.085Δρmax = 1.03 e Å3
S = 1.04Δρmin = 0.63 e Å3
6212 reflectionsAbsolute structure: Flack (1983), 3011 Friedel pairs
260 parametersAbsolute structure parameter: 0.089 (8)
16 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tb0.66670.33330.04130.01172 (5)
O10.79633 (18)0.47581 (17)0.08025 (10)0.0197 (4)
C10.8664 (2)0.5704 (2)0.10997 (12)0.0167 (4)
C20.9868 (2)0.6079 (2)0.09631 (12)0.0190 (5)
C31.0824 (2)0.6674 (3)0.12849 (16)0.0288 (7)
H31.08220.69060.16470.035*
C41.1800 (3)0.6882 (3)0.0992 (2)0.0363 (8)
H41.25270.72750.11400.044*
C51.1588 (3)0.6466 (4)0.0488 (2)0.0375 (9)
H51.21430.65380.02410.045*
S11.02039 (8)0.57944 (10)0.03432 (4)0.0351 (2)
C60.8418 (2)0.6629 (2)0.09634 (12)0.0187 (5)
C70.9090 (3)0.7650 (2)0.07317 (15)0.0253 (6)
H70.98520.79330.06490.030*
C80.8506 (4)0.8236 (3)0.0629 (2)0.0325 (8)
H80.88380.89460.04630.039*
C90.7454 (4)0.7689 (3)0.07891 (19)0.0356 (8)
H90.69570.79670.07570.043*
S20.71026 (8)0.64206 (9)0.10600 (6)0.0457 (3)
C100.8529 (3)0.5479 (3)0.17053 (15)0.0199 (5)
C11A0.8283 (16)0.4490 (13)0.1987 (6)0.030 (3)0.56
H11A0.81000.38080.18160.036*0.56
C120.8348 (4)0.4655 (4)0.25796 (17)0.0389 (9)
H120.82680.41230.28440.047*
C130.8540 (4)0.5678 (4)0.26810 (18)0.0424 (10)
H130.85230.59170.30400.051*
S3A0.8801 (5)0.6495 (4)0.21652 (15)0.0368 (10)0.56
C11B0.8561 (19)0.6242 (19)0.2149 (5)0.032 (4)0.44
H11B0.85890.69340.21050.038*0.44
S3B0.8378 (5)0.4296 (4)0.19555 (18)0.0260 (7)0.44
O20.54323 (18)0.20269 (19)0.03269 (10)0.0211 (4)
C140.4229 (3)0.1518 (4)0.0337 (2)0.0463 (12)
H14A0.40090.19960.05350.056*
H14B0.39330.14090.00370.056*
C150.3793 (4)0.0435 (4)0.0614 (2)0.0401 (9)
H15A0.30160.01240.07360.048*
H15B0.38700.01180.03940.048*
C16A0.4628 (7)0.0895 (11)0.1084 (4)0.041 (3)0.50
H16A0.44820.13780.13240.049*0.50
H16B0.46160.02910.13010.049*0.50
C16B0.4724 (8)0.0512 (9)0.0970 (6)0.045 (3)0.50
H16C0.45750.05680.13580.054*0.50
H16D0.48180.01410.09180.054*0.50
C170.5743 (3)0.1570 (3)0.07751 (15)0.0311 (7)
H17A0.60260.10830.06460.037*
H17B0.63130.21640.10060.037*
O31.33330.66670.0517 (2)0.0472 (13)
C18A1.3679 (16)0.7658 (11)0.0835 (5)0.044 (3)0.33
H18A1.44460.81790.07630.053*0.33
H18B1.32470.79990.07420.053*0.33
C18B1.281 (2)0.704 (3)0.0866 (7)0.075 (8)0.33
H18C1.28500.76960.07150.090*0.33
H18D1.20450.64910.09270.090*0.33
C191.3533 (12)0.7336 (10)0.1395 (4)0.074 (3)0.67
H19A1.42010.74090.15460.089*0.33
H19B1.33210.77870.15990.089*0.33
H19C1.41880.80550.13790.089*0.33
H19D1.31080.72960.17090.089*0.33
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb0.01092 (5)0.01092 (5)0.01332 (7)0.00546 (3)0.0000.000
O10.0189 (9)0.0130 (8)0.0235 (11)0.0052 (7)0.0053 (8)0.0044 (7)
C10.0138 (10)0.0137 (10)0.0216 (12)0.0061 (9)0.0011 (9)0.0025 (9)
C20.0156 (11)0.0169 (11)0.0252 (13)0.0086 (9)0.0015 (9)0.0004 (9)
C30.0110 (11)0.0334 (16)0.0367 (17)0.0071 (11)0.0005 (11)0.0034 (13)
C40.0178 (14)0.0357 (18)0.053 (2)0.0119 (13)0.0017 (14)0.0001 (17)
C50.0255 (16)0.040 (2)0.053 (3)0.0207 (16)0.0101 (18)0.006 (2)
S10.0271 (4)0.0457 (5)0.0319 (4)0.0179 (4)0.0020 (3)0.0092 (4)
C60.0164 (11)0.0191 (11)0.0215 (12)0.0095 (10)0.0008 (9)0.0019 (9)
C70.0245 (13)0.0151 (11)0.0383 (17)0.0115 (11)0.0079 (12)0.0043 (11)
C80.040 (2)0.0223 (15)0.041 (2)0.0198 (15)0.0095 (17)0.0079 (15)
C90.0390 (19)0.0344 (18)0.046 (2)0.0281 (17)0.0047 (16)0.0049 (16)
S20.0235 (4)0.0370 (5)0.0825 (9)0.0196 (4)0.0158 (5)0.0256 (5)
C100.0178 (12)0.0154 (12)0.0230 (14)0.0056 (10)0.0037 (11)0.0016 (10)
C11A0.024 (4)0.032 (7)0.030 (4)0.011 (4)0.002 (3)0.005 (4)
C120.037 (2)0.049 (2)0.0327 (18)0.0232 (18)0.0070 (15)0.0148 (17)
C130.041 (2)0.048 (2)0.0301 (18)0.0158 (19)0.0044 (16)0.0073 (17)
S3A0.044 (3)0.0330 (17)0.0282 (12)0.0154 (16)0.0046 (10)0.0027 (9)
C11B0.026 (9)0.045 (12)0.028 (7)0.020 (9)0.019 (5)0.016 (6)
S3B0.0308 (16)0.0257 (14)0.0248 (12)0.0165 (10)0.0004 (9)0.0016 (10)
O20.0186 (9)0.0222 (10)0.0196 (11)0.0079 (8)0.0026 (7)0.0064 (8)
C140.0178 (14)0.040 (2)0.065 (3)0.0025 (14)0.0038 (16)0.029 (2)
C150.0283 (17)0.0326 (18)0.051 (2)0.0087 (15)0.0061 (16)0.0159 (17)
C16A0.021 (4)0.049 (6)0.042 (6)0.010 (4)0.006 (3)0.028 (5)
C16B0.026 (4)0.039 (5)0.062 (8)0.009 (4)0.002 (4)0.028 (5)
C170.0254 (15)0.0307 (16)0.0292 (16)0.0080 (13)0.0025 (12)0.0137 (13)
O30.057 (2)0.057 (2)0.028 (2)0.0283 (11)0.0000.000
C18A0.064 (10)0.046 (7)0.036 (6)0.038 (8)0.004 (6)0.003 (5)
C18B0.104 (18)0.15 (2)0.039 (8)0.11 (2)0.021 (10)0.035 (12)
C190.104 (9)0.090 (8)0.034 (4)0.054 (8)0.007 (6)0.026 (5)
Geometric parameters (Å, º) top
Tb—O1i2.129 (2)O2—C141.456 (4)
Tb—O12.129 (2)C14—C151.481 (6)
Tb—O1ii2.129 (2)C14—H14A0.9900
Tb—O2i2.543 (2)C14—H14B0.9900
Tb—O2ii2.543 (2)C15—C16B1.522 (11)
Tb—O22.543 (2)C15—C16A1.536 (11)
O1—C11.392 (3)C15—H15A0.9900
C1—C101.519 (5)C15—H15B0.9900
C1—C21.522 (4)C16A—C171.553 (10)
C1—C61.526 (4)C16A—H16A0.9900
C2—C31.409 (4)C16A—H16B0.9900
C2—S11.703 (3)C16B—C171.524 (10)
C3—C41.435 (5)C16B—H16C0.9900
C3—H30.9500C16B—H16D0.9900
C4—C51.340 (7)C17—H17A0.9900
C4—H40.9500C17—H17B0.9900
C5—S11.706 (4)O3—C18Biii1.387 (12)
C5—H50.9500O3—C18Biv1.387 (12)
C6—C71.375 (4)O3—C18B1.387 (12)
C6—S21.720 (3)O3—C18Aiii1.444 (13)
C7—C81.432 (5)O3—C18Aiv1.444 (13)
C7—H70.9500O3—C18A1.444 (13)
C8—C91.327 (6)C18A—C191.435 (17)
C8—H80.9500C18A—H18A0.9599
C9—S21.713 (4)C18A—H18B0.9599
C9—H90.9500C18A—H18C1.2167
C10—C11A1.423 (13)C18B—C191.57 (2)
C10—C11B1.510 (19)C18B—C19iii1.70 (3)
C10—S3B1.670 (5)C18B—C18Biv1.89 (2)
C10—S3A1.701 (6)C18B—C18Biii1.89 (2)
C11A—C121.475 (14)C18B—H18B1.1962
C11A—H11A0.9500C18B—H18C0.9600
C12—C131.334 (6)C18B—H18D0.9600
C12—S3B1.626 (6)C19—C19iii1.434 (19)
C12—H120.9500C19—C19iv1.435 (19)
C13—C11B1.523 (19)C19—C18Biv1.70 (3)
C13—S3A1.622 (7)C19—H19A0.9600
C13—H130.9500C19—H19B0.9599
C11B—H11B0.9500C19—H19C0.9600
O2—C171.445 (4)C19—H19D0.9598
O1i—Tb—O1101.20 (8)C17—C16B—H16D111.1
O1i—Tb—O1ii101.20 (8)H16C—C16B—H16D109.0
O1—Tb—O1ii101.20 (8)O2—C17—C16B109.2 (5)
O1i—Tb—O2i160.88 (8)O2—C17—C16A102.3 (5)
O1—Tb—O2i91.79 (8)C16B—C17—C16A25.2 (6)
O1ii—Tb—O2i89.80 (8)O2—C17—H17A111.3
O1i—Tb—O2ii91.79 (8)C16B—C17—H17A86.4
O1—Tb—O2ii89.80 (8)C16A—C17—H17A111.3
O1ii—Tb—O2ii160.88 (8)O2—C17—H17B111.3
O2i—Tb—O2ii74.13 (8)C16B—C17—H17B126.5
O1i—Tb—O289.80 (8)C16A—C17—H17B111.3
O1—Tb—O2160.89 (8)H17A—C17—H17B109.2
O1ii—Tb—O291.79 (8)C18Biii—O3—C18Biv85.6 (12)
O2i—Tb—O274.13 (8)C18Biii—O3—C18B85.6 (12)
O2ii—Tb—O274.13 (8)C18Biv—O3—C18B85.6 (12)
C1—O1—Tb170.14 (19)C18Biii—O3—C18Aiii44.9 (12)
O1—C1—C10111.6 (2)C18Biv—O3—C18Aiii108.7 (10)
O1—C1—C2109.8 (2)C18B—O3—C18Aiii51.6 (13)
C10—C1—C2106.9 (2)C18Biii—O3—C18Aiv51.6 (13)
O1—C1—C6109.5 (2)C18Biv—O3—C18Aiv44.9 (12)
C10—C1—C6109.5 (2)C18B—O3—C18Aiv108.7 (10)
C2—C1—C6109.6 (2)C18Aiii—O3—C18Aiv93.4 (8)
C3—C2—C1129.1 (3)C18Biii—O3—C18A108.7 (10)
C3—C2—S1110.8 (2)C18Biv—O3—C18A51.6 (13)
C1—C2—S1120.1 (2)C18B—O3—C18A44.9 (12)
C2—C3—C4110.7 (3)C18Aiii—O3—C18A93.4 (8)
C2—C3—H3124.6C18Aiv—O3—C18A93.4 (8)
C4—C3—H3124.6C19—C18A—O3107.2 (10)
C5—C4—C3113.5 (3)C19—C18A—H18A110.0
C5—C4—H4123.3O3—C18A—H18A109.6
C3—C4—H4123.3C19—C18A—H18B110.9
C4—C5—S1112.1 (3)O3—C18A—H18B110.6
C4—C5—H5124.0H18A—C18A—H18B108.5
S1—C5—H5124.0C19—C18A—H18C104.9
C2—S1—C592.9 (2)O3—C18A—H18C92.3
C7—C6—C1129.7 (3)H18A—C18A—H18C130.0
C7—C6—S2110.4 (2)H18B—C18A—H18C23.2
C1—C6—S2119.7 (2)C19—C18A—H19C38.3
C6—C7—C8112.0 (3)O3—C18A—H19C135.4
C6—C7—H7124.0H18A—C18A—H19C75.0
C8—C7—H7124.0H18B—C18A—H19C109.3
C9—C8—C7113.4 (3)H18C—C18A—H19C119.2
C9—C8—H8123.3O3—C18B—C19102.9 (11)
C7—C8—H8123.3O3—C18B—C19iii96.9 (12)
C8—C9—S2111.8 (3)C19—C18B—C19iii51.9 (10)
C8—C9—H9124.1O3—C18B—C18Biv47.2 (6)
S2—C9—H9124.1C19—C18B—C18Biv58.0 (10)
C9—S2—C692.31 (17)C19iii—C18B—C18Biv80.3 (7)
C11A—C10—C11B103.5 (10)O3—C18B—C18Biii47.2 (6)
C11A—C10—C1128.7 (6)C19—C18B—C18Biii83.5 (6)
C11B—C10—C1127.7 (9)C19iii—C18B—C18Biii51.7 (8)
C11A—C10—S3B9.9 (7)C18Biv—C18B—C18Biii60.000 (3)
C11B—C10—S3B111.7 (9)O3—C18B—H18B100.8
C1—C10—S3B120.5 (3)C19—C18B—H18B90.9
C11A—C10—S3A108.9 (6)C19iii—C18B—H18B141.7
C11B—C10—S3A10.3 (9)C18Biv—C18B—H18B87.3
C1—C10—S3A122.2 (3)C18Biii—C18B—H18B144.3
S3B—C10—S3A116.0 (3)O3—C18B—H18C108.8
C10—C11A—C12111.6 (9)C19—C18B—H18C110.2
C10—C11A—H11A124.2C19iii—C18B—H18C152.2
C12—C11A—H11A124.2C18Biv—C18B—H18C109.4
C13—C12—C11A108.4 (6)C18Biii—C18B—H18C155.6
C13—C12—S3B118.9 (4)H18B—C18B—H18C24.0
C11A—C12—S3B12.2 (5)O3—C18B—H18D112.3
C13—C12—H12125.8C19—C18B—H18D112.8
C11A—C12—H12125.8C19iii—C18B—H18D68.2
S3B—C12—H12115.0C18Biv—C18B—H18D140.5
C12—C13—C11B109.3 (9)C18Biii—C18B—H18D81.4
C12—C13—S3A117.1 (4)H18B—C18B—H18D132.3
C11B—C13—S3A12.1 (8)H18C—C18B—H18D109.6
C12—C13—H13121.4C19iii—C19—C19iv59.998 (1)
C11B—C13—H13128.3C19iii—C19—C18A104.8 (8)
S3A—C13—H13121.4C19iv—C19—C18A102.0 (8)
C13—S3A—C1093.6 (3)C19iii—C19—C18B68.6 (14)
C10—C11B—C13106.0 (16)C19iv—C19—C18B100.6 (9)
C10—C11B—H11B127.0C18A—C19—C18B41.9 (12)
C13—C11B—H11B127.0C19iii—C19—C18Biv94.9 (9)
C12—S3B—C1093.3 (3)C19iv—C19—C18Biv59.6 (11)
C17—O2—C14107.3 (3)C18A—C19—C18Biv45.4 (9)
C17—O2—Tb128.35 (19)C18B—C19—C18Biv70.3 (9)
C14—O2—Tb124.1 (2)C19iii—C19—H19A110.7
O2—C14—C15106.8 (3)C19iv—C19—H19A56.0
O2—C14—H14A110.4C18A—C19—H19A111.3
C15—C14—H14A110.4C18B—C19—H19A144.3
O2—C14—H14B110.4C18Biv—C19—H19A74.3
C15—C14—H14B110.4C19iii—C19—H19B111.0
H14A—C14—H14B108.6C19iv—C19—H19B147.9
C14—C15—C16B107.1 (5)C18A—C19—H19B110.1
C14—C15—C16A94.9 (5)C18B—C19—H19B103.9
C16B—C15—C16A25.4 (6)C18Biv—C19—H19B149.6
C14—C15—H15A112.8H19A—C19—H19B108.9
C16B—C15—H15A124.1C19iii—C19—H19C171.1
C16A—C15—H15A112.8C19iv—C19—H19C111.4
C14—C15—H15B112.8C18A—C19—H19C74.0
C16B—C15—H15B87.4C18B—C19—H19C113.0
C16A—C15—H15B112.8C18Biv—C19—H19C77.9
H15A—C15—H15B110.2H19A—C19—H19C62.6
C15—C16A—C17101.5 (7)H19B—C19—H19C77.4
C15—C16A—H16A111.5C19iii—C19—H19D77.4
C17—C16A—H16A111.5C19iv—C19—H19D111.4
C15—C16A—H16B111.5C18A—C19—H19D141.5
C17—C16A—H16B111.5C18B—C19—H19D111.1
H16A—C16A—H16B109.3C18Biv—C19—H19D170.6
C15—C16B—C17103.5 (6)H19A—C19—H19D103.1
C15—C16B—H16C111.1H19B—C19—H19D39.8
C17—C16B—H16C111.1H19C—C19—H19D109.3
C15—C16B—H16D111.1
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) y+2, xy, z; (iv) x+y+2, x+2, z.

Experimental details

Crystal data
Chemical formula[Tb(C13H9OS3)3(C4H8O)3]·C4H8O
Mr1279.48
Crystal system, space groupTrigonal, R3
Temperature (K)132
a, c (Å)13.9131 (4), 24.6789 (7)
V3)4137.2 (2)
Z3
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.35 × 0.27 × 0.24
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2010)
Tmin, Tmax0.593, 0.693
No. of measured, independent and
observed [I > 2σ(I)] reflections
28927, 6212, 6197
Rint0.092
(sin θ/λ)max1)0.746
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.085, 1.04
No. of reflections6212
No. of parameters260
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.63
Absolute structureFlack (1983), 3011 Friedel pairs
Absolute structure parameter0.089 (8)

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We gratefully acknowledge financial support by the DFG in the framework of the SPP1166 (Lanthanoidspezifische Funktionalitäten in Molekül und Material), Saarland University and the Fonds der Chemischen Industrie.

References

First citationBarnhart, D. M., Clark, D. L., Huffman, J. C., Vincent, R. L. &Watkin, J. G. (1993). Inorg. Chem. 32, 4077–4083.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS, Karlsruhe, Germany.  Google Scholar
First citationEvans, W. J., Greci, M. A. & Ziller, J. W. (1997). J. Chem. Soc. Dalton Trans. pp. 3035–3039.  CSD CrossRef Web of Science Google Scholar
First citationEvans, W. J., Greci, M. A. & Ziller, J. W. (1999). Inorg. Chem. Commun. 2, 530–532.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSultan, R., Gadamsetti, K. & Swavey, S. (2006). Inorg. Chim. Acta, 359, 1233–1238.  Web of Science CrossRef CAS Google Scholar
First citationTeotonio, E. E. S., Claacuteudia, M., Felinto, F. C., Brito, H. F., Malta, O. L., Trindade, A. C., Najjar, R. & Strek, W. (2004). Inorg. Chim. Acta, 357, 451–460.  Web of Science CSD CrossRef CAS Google Scholar
First citationVeith, M., Belot, C., Guyard, L., Huch, V., Knorr, M. & Zimmer, M. (2008). Eur. J. Inorg. Chem. pp. 2397–2406.  Web of Science CSD CrossRef Google Scholar
First citationVeith, M., Belot, C., Huch, V., Cui, H. L., Guyard, L., Knorr, M. & Wickleder, C. (2010). Eur. J. Inorg. Chem. pp. 879–889.  Web of Science CSD CrossRef Google Scholar
First citationVeith, M., Belot, C., Huch, V., Guyard, L., Knorr, M., Khatyr, A. & Wickleder, C. (2010). Z. Anorg. Allg. Chem. 636, 2262–2275.  Web of Science CSD CrossRef CAS Google Scholar
First citationViswanathan, S. & de Bettencourt-Dias, A. (2006). Inorg. Chem. 45, 10138–10146.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds