organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Prop-2-yn-1-yl 4,6-di-O-acetyl-2,3-dide­­oxy-α-D-erythro-hex-2-eno­pyran­o­side

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: hhkinfe@uj.ac.za, mullera@uj.ac.za

(Received 28 October 2011; accepted 8 November 2011; online 16 November 2011)

The absolute structure of the title compound, C13H16O6, was determined. The pyranosyl ring adopting an envelope conformation. The acetyl groups are located in equatorial positions. The crystal structure features weak C—H⋯O inter­actions.

Related literature

For details of the Ferrier arrangement, see: Ferrier & Prasad (1969[Ferrier, R. J. & Prasad, N. J. (1969). J. Chem. Soc. pp. 570-575.]) and for the synthesis of pseudoglycals utilizing the Ferrier arrangement, see: López et al. (1995[López, J. C., Gómez, A. M., Valverde, S. & Fraser-Reid, B. (1995). J. Org. Chem. 60, 3851-3858.]); Yadav et al. (2001[Yadav, J. S., Reddy, B. V. S. & Chand, P. K. (2001). Tetrahedron Lett. 42, 4057-4059.]). For background to the synthetic methodology of glycosides, see: Kinfe et al. (2011[Kinfe, H. H., Mebrahtu, F. M. & Sithole, K. (2011). Carbohydr. Res. 346, 2528-2532.]); Breton (1997[Breton, G. W. (1997). J. Org. Chem. 62, 8952-8954.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16O6

  • Mr = 268.26

  • Orthorhombic, P 21 21 21

  • a = 5.2277 (2) Å

  • b = 14.8549 (5) Å

  • c = 17.0509 (5) Å

  • V = 1324.12 (8) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.91 mm−1

  • T = 100 K

  • 0.28 × 0.06 × 0.06 mm

Data collection
  • Bruker APEX DUO 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.785, Tmax = 0.948

  • 12479 measured reflections

  • 2184 independent reflections

  • 2113 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 1.06

  • 2184 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.1 e Å−3

  • Δρmin = −0.12 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 872 Friedel pairs

  • Flack parameter: −0.05 (14)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O4i 0.95 2.37 3.2139 (17) 149
C11—H11B⋯O6ii 0.98 2.58 3.4869 (16) 154
C13—H13C⋯O6iii 0.98 2.38 3.3152 (19) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (iii) x+1, y, z.

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2008[Bruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Treatment of 3,4,6-tri-O-acetyl-D-glucal with a Lewis acid catalyst in the presence of alcohols and other C and S nucleophiles results to allylic rearrangement of the glucal and the reaction is called Ferrier rearrangement (Ferrier & Prasad, 1969; López et al., 1995; Yadav et al., 2001; Kinfe et al., 2011). Recently, we reported the synthesis of the title compound by treating a glucal with NaHSO4 supported on silica gel in the presence of propargyl alcohol (Kinfe et al., 2011). Herein, we report the crystal structure of the pure diastereomer obtained by crystallization from the mixture of products.

In the crystal structure of the title compound the acetyl groups are in equatorial positions (see Fig. 1). The pyran ring adopts an envelope conformation with ring puckering parameters of q2 = 0.4180 (14) Å, q3 = 0.3070 (14) Å, Q = 0.5186 (13) Å and φ2 = 324.1 (2)° (see Cremer & Pople, 1975). Several weak C—H···O interactions are noted and listed in Table 1.

Related literature top

For details of the Ferrier arrangement, see: Ferrier & Prasad (1969) and for the synthesis of pseudoglycals utilizing the Ferrier arrangement, see: López et al. (1995); Yadav et al. (2001). For background to the synthetic methodology of glycosides, see: Kinfe et al. (2011); Breton (1997). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

To a solution of a tri-O-acetyl-D-glucal (100 mg, 0.36 mmol) and propargyl alcohol (0.042 ml, 0.72 mmol) in CH3CN (1 ml) NaHSO4-SiO2 (2.5 mg, 3.0 mmol NaHSO4/g) was added (see Breton, 1997). The resulting mixture was stirred at 80 °C for 5 min. After adding silica gel to the reaction mixture at room temperature, the solvent was evaporated in vacuo without heating until a free-flowing solid was obtained. The resulting solid was column chromatographed using 1:9 ethyl acetate:hexane eluent to afford α:β (6:1) mixture of 2,3-unsaturated glycosides in 90% yield as a white solid. Recrystalization from a mixture of DCM and hexane afforded the title compound in 50% yield as colorless crystals.

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C—H = 1.00 Å (methine), 0.99 Å (methylene), 0.98 Å (methyl) and 0.95 Å (aromatic and acetylenic). All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for the methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as fixed rotor. The D enantiomer was determined on the basis of 872 Friedel pairs with the final Flack parameter refined to -0.05 (14). The highest residual electron density of 0.10 e.Å-3 is 0.63 Å from H6A representing no physical meaning.

Structure description top

Treatment of 3,4,6-tri-O-acetyl-D-glucal with a Lewis acid catalyst in the presence of alcohols and other C and S nucleophiles results to allylic rearrangement of the glucal and the reaction is called Ferrier rearrangement (Ferrier & Prasad, 1969; López et al., 1995; Yadav et al., 2001; Kinfe et al., 2011). Recently, we reported the synthesis of the title compound by treating a glucal with NaHSO4 supported on silica gel in the presence of propargyl alcohol (Kinfe et al., 2011). Herein, we report the crystal structure of the pure diastereomer obtained by crystallization from the mixture of products.

In the crystal structure of the title compound the acetyl groups are in equatorial positions (see Fig. 1). The pyran ring adopts an envelope conformation with ring puckering parameters of q2 = 0.4180 (14) Å, q3 = 0.3070 (14) Å, Q = 0.5186 (13) Å and φ2 = 324.1 (2)° (see Cremer & Pople, 1975). Several weak C—H···O interactions are noted and listed in Table 1.

For details of the Ferrier arrangement, see: Ferrier & Prasad (1969) and for the synthesis of pseudoglycals utilizing the Ferrier arrangement, see: López et al. (1995); Yadav et al. (2001). For background to the synthetic methodology of glycosides, see: Kinfe et al. (2011); Breton (1997). For ring puckering analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT and XPREP (Bruker, 2008); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 50% probability level.
Prop-2-yn-1-yl 4,6-di-O-acetyl-2,3-dideoxy-α-D-erythro-hex-2- enopyranoside top
Crystal data top
C13H16O6F(000) = 568
Mr = 268.26Dx = 1.346 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 7170 reflections
a = 5.2277 (2) Åθ = 6.0–64.2°
b = 14.8549 (5) ŵ = 0.91 mm1
c = 17.0509 (5) ÅT = 100 K
V = 1324.12 (8) Å3Needle, colourless
Z = 40.28 × 0.06 × 0.06 mm
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
2184 independent reflections
Radiation source: Incoatec IµS microfocus X-ray source2113 reflections with I > 2σ(I)
Incoatec Quazar Multilayer Mirror monochromatorRint = 0.039
Detector resolution: 8.4 pixels mm-1θmax = 64.6°, θmin = 6.0°
φ and ω scansh = 65
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1717
Tmin = 0.785, Tmax = 0.948l = 1917
12479 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0281P)2 + 0.1772P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2184 reflectionsΔρmax = 0.1 e Å3
174 parametersΔρmin = 0.12 e Å3
0 restraintsAbsolute structure: Flack (1983), 872 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (14)
Crystal data top
C13H16O6V = 1324.12 (8) Å3
Mr = 268.26Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.2277 (2) ŵ = 0.91 mm1
b = 14.8549 (5) ÅT = 100 K
c = 17.0509 (5) Å0.28 × 0.06 × 0.06 mm
Data collection top
Bruker APEX DUO 4K CCD
diffractometer
2184 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2113 reflections with I > 2σ(I)
Tmin = 0.785, Tmax = 0.948Rint = 0.039
12479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.058Δρmax = 0.1 e Å3
S = 1.06Δρmin = 0.12 e Å3
2184 reflectionsAbsolute structure: Flack (1983), 872 Friedel pairs
174 parametersAbsolute structure parameter: 0.05 (14)
0 restraints
Special details top

Experimental. The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 5 s/frame. A total of 2276 frames were collected with a frame width of 1° covering up to θ = 64.63° with 98.1% completeness accomplished.

Analytical data: 1H NMR (CDCl3, 300 MHz): δ 5.90 (d, J = 10.4 Hz, 1H), 5.82 (td, J = 2.4 and 10.0 Hz, 1H), 5.32 (dd, J = 1.2 and 9.6 Hz, 1H), 5.21 (s, 1H), 4.40–4.03 (m, 5H), 2.44 (t, J = 2.4 Hz, 1H), 2.08 (s, 3H), 2.07 (s, 3H); 13C NMR (CDCl3, 75 MHz): δ 170.8, 170.2, 129.8, 127.2, 92.8, 79.0, 74.8, 67.2, 65.1, 62.7, 55.0, 20.9, 20.8

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1501 (2)0.08128 (8)0.42326 (7)0.0220 (3)
H10.29820.05770.39240.026*
C20.2436 (3)0.15417 (9)0.47693 (8)0.0249 (3)
H20.34730.2010.45620.03*
C30.1854 (3)0.15485 (9)0.55205 (8)0.0255 (3)
H30.25940.19940.5850.031*
C40.0052 (2)0.08713 (9)0.58703 (7)0.0229 (3)
H40.10160.04240.61940.028*
C50.1419 (3)0.03970 (8)0.52242 (7)0.0204 (3)
H50.26350.0830.49740.024*
C60.1114 (3)0.05767 (9)0.31257 (7)0.0268 (3)
H6A0.03530.03930.27950.032*
H6B0.18140.00320.33830.032*
C70.3070 (3)0.09936 (8)0.26419 (7)0.0256 (3)
C80.4705 (3)0.12937 (9)0.22357 (8)0.0312 (3)
H80.60140.15340.19110.037*
C90.2870 (3)0.04105 (9)0.55155 (7)0.0229 (3)
H9A0.41020.02290.59270.028*
H9B0.16740.08570.57420.028*
C100.6141 (2)0.13598 (8)0.50283 (7)0.0201 (3)
C110.7222 (3)0.17820 (9)0.43096 (8)0.0269 (3)
H11A0.90740.18540.43710.04*
H11B0.68710.13970.38560.04*
H11C0.64320.23730.42290.04*
C120.1406 (3)0.13903 (8)0.71258 (7)0.0235 (3)
C130.3572 (3)0.18527 (9)0.75213 (8)0.0292 (3)
H13A0.31490.1950.80750.044*
H13B0.38850.24340.72670.044*
H13C0.51110.14790.74830.044*
O10.03843 (18)0.00939 (5)0.46538 (5)0.0208 (2)
O20.02791 (19)0.12087 (6)0.37098 (5)0.0234 (2)
O30.42076 (17)0.07942 (6)0.48563 (5)0.0217 (2)
O40.68222 (18)0.15169 (6)0.56925 (5)0.0254 (2)
O50.18437 (19)0.13295 (6)0.63443 (5)0.0272 (2)
O60.0477 (2)0.10886 (6)0.74305 (5)0.0322 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0193 (7)0.0225 (6)0.0240 (6)0.0010 (6)0.0010 (5)0.0055 (5)
C20.0188 (7)0.0219 (6)0.0339 (7)0.0009 (5)0.0051 (6)0.0042 (6)
C30.0203 (7)0.0245 (7)0.0318 (7)0.0026 (6)0.0075 (6)0.0021 (5)
C40.0200 (7)0.0265 (7)0.0223 (6)0.0051 (6)0.0034 (5)0.0019 (5)
C50.0194 (7)0.0227 (6)0.0191 (6)0.0035 (5)0.0003 (5)0.0003 (5)
C60.0343 (8)0.0235 (7)0.0226 (6)0.0009 (6)0.0030 (6)0.0016 (5)
C70.0319 (8)0.0258 (7)0.0191 (6)0.0024 (6)0.0035 (6)0.0030 (5)
C80.0379 (9)0.0341 (7)0.0217 (6)0.0062 (7)0.0024 (6)0.0026 (6)
C90.0220 (7)0.0276 (7)0.0192 (6)0.0005 (5)0.0015 (5)0.0016 (5)
C100.0183 (7)0.0172 (6)0.0248 (7)0.0032 (5)0.0028 (5)0.0028 (5)
C110.0307 (8)0.0226 (6)0.0273 (7)0.0037 (6)0.0025 (6)0.0012 (5)
C120.0249 (8)0.0231 (6)0.0225 (6)0.0075 (5)0.0029 (6)0.0013 (5)
C130.0300 (9)0.0310 (7)0.0266 (7)0.0057 (6)0.0026 (6)0.0050 (5)
O10.0210 (5)0.0191 (4)0.0223 (4)0.0017 (4)0.0029 (4)0.0018 (3)
O20.0266 (5)0.0209 (4)0.0227 (4)0.0002 (4)0.0046 (4)0.0021 (3)
O30.0220 (5)0.0246 (4)0.0184 (4)0.0029 (4)0.0016 (4)0.0003 (3)
O40.0262 (5)0.0279 (5)0.0221 (5)0.0007 (4)0.0051 (4)0.0053 (4)
O50.0267 (5)0.0342 (5)0.0207 (4)0.0084 (4)0.0034 (4)0.0048 (4)
O60.0293 (6)0.0422 (6)0.0252 (5)0.0008 (5)0.0070 (4)0.0011 (4)
Geometric parameters (Å, º) top
C1—O11.4130 (14)C7—C81.187 (2)
C1—O21.4165 (15)C8—H80.95
C1—C21.4996 (18)C9—O31.4412 (15)
C1—H11C9—H9A0.99
C2—C31.3164 (19)C9—H9B0.99
C2—H20.95C10—O41.2100 (15)
C3—C41.5018 (18)C10—O31.3465 (15)
C3—H30.95C10—C111.4881 (18)
C4—O51.4487 (15)C11—H11A0.98
C4—C51.5170 (17)C11—H11B0.98
C4—H41C11—H11C0.98
C5—O11.4272 (15)C12—O61.1999 (17)
C5—C91.5038 (18)C12—O51.3550 (15)
C5—H51C12—C131.486 (2)
C6—O21.4366 (15)C13—H13A0.98
C6—C71.453 (2)C13—H13B0.98
C6—H6A0.99C13—H13C0.98
C6—H6B0.99
O1—C1—O2111.24 (10)C8—C7—C6176.82 (14)
O1—C1—C2111.73 (10)C7—C8—H8180
O2—C1—C2107.36 (10)O3—C9—C5107.62 (10)
O1—C1—H1108.8O3—C9—H9A110.2
O2—C1—H1108.8C5—C9—H9A110.2
C2—C1—H1108.8O3—C9—H9B110.2
C3—C2—C1121.60 (12)C5—C9—H9B110.2
C3—C2—H2119.2H9A—C9—H9B108.5
C1—C2—H2119.2O4—C10—O3123.03 (11)
C2—C3—C4121.74 (12)O4—C10—C11125.29 (12)
C2—C3—H3119.1O3—C10—C11111.64 (10)
C4—C3—H3119.1C10—C11—H11A109.5
O5—C4—C3109.64 (10)C10—C11—H11B109.5
O5—C4—C5106.06 (10)H11A—C11—H11B109.5
C3—C4—C5109.91 (10)C10—C11—H11C109.5
O5—C4—H4110.4H11A—C11—H11C109.5
C3—C4—H4110.4H11B—C11—H11C109.5
C5—C4—H4110.4O6—C12—O5122.65 (12)
O1—C5—C9107.86 (10)O6—C12—C13126.95 (12)
O1—C5—C4107.87 (10)O5—C12—C13110.39 (12)
C9—C5—C4112.72 (10)C12—C13—H13A109.5
O1—C5—H5109.4C12—C13—H13B109.5
C9—C5—H5109.4H13A—C13—H13B109.5
C4—C5—H5109.4C12—C13—H13C109.5
O2—C6—C7109.20 (11)H13A—C13—H13C109.5
O2—C6—H6A109.8H13B—C13—H13C109.5
C7—C6—H6A109.8C1—O1—C5112.37 (9)
O2—C6—H6B109.8C1—O2—C6111.37 (10)
C7—C6—H6B109.8C10—O3—C9116.18 (9)
H6A—C6—H6B108.3C12—O5—C4117.67 (10)
O1—C1—C2—C310.49 (18)C9—C5—O1—C1168.46 (10)
O2—C1—C2—C3111.74 (14)C4—C5—O1—C169.51 (12)
C1—C2—C3—C45.0 (2)O1—C1—O2—C662.63 (13)
C2—C3—C4—O5131.20 (13)C2—C1—O2—C6174.84 (10)
C2—C3—C4—C514.99 (17)C7—C6—O2—C1175.81 (11)
O5—C4—C5—O1168.20 (9)O4—C10—O3—C93.13 (16)
C3—C4—C5—O149.76 (13)C11—C10—O3—C9174.60 (11)
O5—C4—C5—C972.84 (13)C5—C9—O3—C10162.29 (10)
C3—C4—C5—C9168.72 (11)O6—C12—O5—C40.61 (17)
O1—C5—C9—O361.81 (13)C13—C12—O5—C4178.21 (10)
C4—C5—C9—O3179.22 (10)C3—C4—O5—C1295.77 (13)
O2—C1—O1—C571.48 (13)C5—C4—O5—C12145.60 (10)
C2—C1—O1—C548.49 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i0.952.373.2139 (17)149
C11—H11B···O6ii0.982.583.4869 (16)154
C13—H13C···O6iii0.982.383.3152 (19)159
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1/2, y, z1/2; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H16O6
Mr268.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.2277 (2), 14.8549 (5), 17.0509 (5)
V3)1324.12 (8)
Z4
Radiation typeCu Kα
µ (mm1)0.91
Crystal size (mm)0.28 × 0.06 × 0.06
Data collection
DiffractometerBruker APEX DUO 4K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.785, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
12479, 2184, 2113
Rint0.039
(sin θ/λ)max1)0.586
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 1.06
No. of reflections2184
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.1, 0.12
Absolute structureFlack (1983), 872 Friedel pairs
Absolute structure parameter0.05 (14)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT and XPREP (Bruker, 2008), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O4i0.952.373.2139 (17)148.5
C11—H11B···O6ii0.982.583.4869 (16)154.3
C13—H13C···O6iii0.982.383.3152 (19)159.4
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+1/2, y, z1/2; (iii) x+1, y, z.
 

Acknowledgements

Research funds of the University of Johannesburg and the Research Center for Synthesis and Catalysis are gratefully acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBreton, G. W. (1997). J. Org. Chem. 62, 8952–8954.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerrier, R. J. & Prasad, N. J. (1969). J. Chem. Soc. pp. 570–575.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKinfe, H. H., Mebrahtu, F. M. & Sithole, K. (2011). Carbohydr. Res. 346, 2528–2532.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLópez, J. C., Gómez, A. M., Valverde, S. & Fraser-Reid, B. (1995). J. Org. Chem. 60, 3851–3858.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYadav, J. S., Reddy, B. V. S. & Chand, P. K. (2001). Tetrahedron Lett. 42, 4057–4059.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds