metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tris(ethyl­enedi­amine-κ2N,N′)nickel(II) naphthalene-2,7-di­sulfonate

aKey Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080, People's Republic of China, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: seikweng@um.edu.my

(Received 3 November 2011; accepted 17 November 2011; online 25 November 2011)

The NiII atom in the title salt, [Ni(C2H8N2)3](C10H6O6S2), is chelated by three ethyl­enediamine ligands in an octa­hedral geometry. The cation and anion are linked by N—H⋯O hydrogen bonds into a three-dimensional network. One of the two –SO3 groups is disordered over two positions in a 1:1 ratio.

Related literature

For the structure of tris­(ethyl­enediamine)­nickel(II) 2,6-naph­thalene­disulfonate monohydrate, see: Huo et al. (2004[Huo, L.-H., Gao, S., Lu, Z.-Z., Xu, S.-X. & Zhao, H. (2004). Acta Cryst. E60, m1205-m1207.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H8N2)3](C10H6O6S2)

  • Mr = 525.59

  • Monoclinic, C 2/c

  • a = 23.624 (8) Å

  • b = 14.203 (6) Å

  • c = 14.715 (4) Å

  • β = 115.152 (12)°

  • V = 4469 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.10 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.13 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.810, Tmax = 0.870

  • 21605 measured reflections

  • 5107 independent reflections

  • 4533 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.084

  • S = 1.05

  • 5107 reflections

  • 337 parameters

  • 36 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O1 0.88 (1) 2.09 (2) 2.866 (7) 146 (2)
N1—H12⋯O2i 0.87 (1) 2.21 (2) 3.040 (5) 160 (3)
N1—H12⋯O2′i 0.87 (1) 2.21 (2) 3.009 (5) 152 (3)
N2—H21⋯O5ii 0.88 (1) 2.26 (1) 3.075 (2) 155 (2)
N2—H22⋯O6iii 0.88 (1) 2.22 (2) 3.035 (2) 154 (2)
N3—H31⋯O4iv 0.88 (1) 2.28 (1) 3.140 (2) 166 (2)
N3—H32⋯O4iii 0.88 (1) 2.34 (1) 3.210 (2) 169 (2)
N5—H51⋯O4iv 0.88 (1) 2.25 (1) 3.093 (3) 159 (2)
N5—H52⋯O3v 0.88 (1) 2.10 (2) 2.860 (6) 144 (2)
N5—H52⋯O3′v 0.88 (1) 2.20 (2) 3.016 (6) 155 (2)
N6—H61⋯O1 0.88 (1) 2.02 (2) 2.88 (1) 168 (2)
N6—H62⋯O6iii 0.88 (1) 2.26 (2) 3.055 (2) 151 (2)
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) [-x+1, y+1, -z+{\script{3\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A previous study reported the crystal structure of tris(ethylenediamine)nickel(II) 2,6-naphthalenedisulfonate, which exists as a monohydrated salt (Huo et al., 2004). The present 2,7-napthalenedisulfonate is an anhydrous salt (Scheme I). The NiII atom in Ni(en)3]2+ (C10H6O6S2)2- is chelated by the en ligands in an octahedral geometry (Fig. 1). The cation and anion are linked by N–H···O hydrogen bonds into a hydrogen-bonded three-dimensional network (Table 1). One of the two –SO3 groups is disordered over two positions in a 1:1 ratio.

Related literature top

For the structure of tris(ethylenediamine)nickel 2,6-naphthalenedisulfonate monohydrate, see: Huo et al. (2004).

Experimental top

Nickel nitrate (1 mmol) and sodium 2,7-naphthalenedisulfonate (1 mmol) were dissolved in water (10 mol); the pH was adjusted to ca 6 by the dropwise addition of ethylenediamine. The solution was filtered; the solvent was allowed to evaporate for several days. Red crystals were isolated from the filtrate after several days.

Refinement top

C-bound H-atoms were generated geometrically and were included in the riding model approximation [C–H 0.93–0.97 Å, U 1.2Ueq(C)]. The amino H atoms were located in a difference Fourier map, and were refined with a distance restraint of N–H 0.88±0.01 Å; their temperature factors were refined.

One sulfonate –SO3 group is disordered over two positions in respect of the O atoms. Each pair of S–O/S–O' distances were restrained to within 0.01 Å of each other, and the temperature factors of the primed atoms were set to those of the unprimed ones. The anisotropic temperature factors of the disordered atoms were restrained to be nearly isotropic. The occupancy could not be refined, and the disorder was assumed to be a 1:1 type of disorder.

Structure description top

A previous study reported the crystal structure of tris(ethylenediamine)nickel(II) 2,6-naphthalenedisulfonate, which exists as a monohydrated salt (Huo et al., 2004). The present 2,7-napthalenedisulfonate is an anhydrous salt (Scheme I). The NiII atom in Ni(en)3]2+ (C10H6O6S2)2- is chelated by the en ligands in an octahedral geometry (Fig. 1). The cation and anion are linked by N–H···O hydrogen bonds into a hydrogen-bonded three-dimensional network (Table 1). One of the two –SO3 groups is disordered over two positions in a 1:1 ratio.

For the structure of tris(ethylenediamine)nickel 2,6-naphthalenedisulfonate monohydrate, see: Huo et al. (2004).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A displacement ellipsoid plot of [Ni(en)3] (C10H6O6S2) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius; the disorder in the –SO3 is not shown.
Tris(ethylenediamine-κ2N,N')nickel(II) naphthalene-2,7-disulfonate top
Crystal data top
[Ni(C2H8N2)3](C10H6O6S2)F(000) = 2208
Mr = 525.59Dx = 1.561 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 18982 reflections
a = 23.624 (8) Åθ = 3.1–27.5°
b = 14.203 (6) ŵ = 1.10 mm1
c = 14.715 (4) ÅT = 293 K
β = 115.152 (12)°Prism, red
V = 4469 (3) Å30.20 × 0.16 × 0.13 mm
Z = 8
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5107 independent reflections
Radiation source: fine-focus sealed tube4533 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ω scanθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2530
Tmin = 0.810, Tmax = 0.870k = 1818
21605 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0494P)2 + 3.411P]
where P = (Fo2 + 2Fc2)/3
5107 reflections(Δ/σ)max = 0.001
337 parametersΔρmax = 0.57 e Å3
36 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni(C2H8N2)3](C10H6O6S2)V = 4469 (3) Å3
Mr = 525.59Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.624 (8) ŵ = 1.10 mm1
b = 14.203 (6) ÅT = 293 K
c = 14.715 (4) Å0.20 × 0.16 × 0.13 mm
β = 115.152 (12)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
5107 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4533 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.870Rint = 0.015
21605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03136 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.57 e Å3
5107 reflectionsΔρmin = 0.36 e Å3
337 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.323671 (9)0.546855 (14)0.654094 (14)0.02520 (8)
S10.45513 (2)0.33944 (3)0.52210 (3)0.03989 (13)
S20.672875 (18)0.08335 (3)0.81143 (3)0.02922 (10)
O10.4030 (3)0.3752 (9)0.5376 (6)0.0735 (17)0.50
O20.5155 (2)0.3831 (7)0.5842 (5)0.0750 (18)0.50
O30.4427 (3)0.3397 (11)0.4172 (4)0.0563 (13)0.50
O1'0.3896 (2)0.3602 (9)0.5021 (6)0.0735 (17)0.50
O2'0.4995 (3)0.3925 (7)0.6050 (5)0.0750 (18)0.50
O3'0.4620 (3)0.3435 (11)0.4303 (4)0.0563 (13)0.50
O40.66316 (7)0.16194 (11)0.86591 (12)0.0504 (4)
O50.70273 (8)0.11148 (13)0.74792 (12)0.0570 (4)
O60.70517 (7)0.00567 (11)0.87655 (11)0.0523 (4)
N10.38181 (8)0.42594 (13)0.70904 (14)0.0435 (4)
H110.4042 (10)0.4165 (18)0.6747 (16)0.049 (7)*
H120.4088 (11)0.428 (2)0.7715 (9)0.067 (8)*
N20.25305 (7)0.44232 (11)0.59354 (12)0.0337 (3)
H210.2294 (9)0.4393 (16)0.6260 (15)0.041 (6)*
H220.2278 (10)0.4548 (17)0.5311 (9)0.056 (7)*
N30.25470 (7)0.65642 (11)0.60117 (12)0.0332 (3)
H310.2714 (11)0.7125 (10)0.6054 (18)0.047 (6)*
H320.2277 (9)0.6498 (17)0.5379 (9)0.048 (6)*
N40.30898 (9)0.56411 (13)0.78573 (12)0.0409 (4)
H410.2898 (10)0.5151 (11)0.7960 (17)0.045 (6)*
H420.3436 (8)0.5686 (18)0.8409 (13)0.056 (7)*
N50.39861 (8)0.64335 (13)0.70433 (12)0.0390 (4)
H510.3845 (11)0.7013 (9)0.7016 (19)0.053 (7)*
H520.4259 (9)0.6361 (17)0.7672 (9)0.051 (7)*
N60.33957 (7)0.55196 (11)0.52267 (11)0.0327 (3)
H610.3570 (10)0.4988 (10)0.5174 (17)0.044 (6)*
H620.3041 (7)0.5556 (16)0.4689 (12)0.047 (7)*
C10.34060 (12)0.34445 (16)0.6965 (2)0.0574 (6)
H1A0.32760.34290.75080.069*
H1B0.36300.28670.69870.069*
C20.28382 (10)0.35180 (14)0.59713 (17)0.0448 (5)
H2A0.29630.34780.54240.054*
H2B0.25520.30050.59030.054*
C30.22305 (11)0.65778 (16)0.66824 (17)0.0459 (5)
H3A0.19390.60570.65240.055*
H3B0.19980.71600.65940.055*
C40.27174 (12)0.64973 (16)0.77527 (16)0.0515 (6)
H4A0.29880.70460.79270.062*
H4B0.25150.64680.82040.062*
C50.42990 (9)0.63874 (17)0.63685 (16)0.0474 (5)
H5A0.45680.58380.65240.057*
H5B0.45550.69440.64520.057*
C60.38004 (10)0.63295 (17)0.53008 (15)0.0454 (5)
H6A0.35550.69040.51260.054*
H6B0.39930.62520.48400.054*
C70.52052 (9)0.18670 (14)0.62530 (14)0.0380 (4)
H70.55330.22880.65650.046*
C80.46370 (9)0.21874 (14)0.55760 (14)0.0377 (4)
C90.41316 (9)0.15619 (16)0.51095 (16)0.0464 (5)
H90.37450.17910.46600.056*
C100.42092 (9)0.06234 (16)0.53159 (17)0.0479 (5)
H100.38720.02170.50080.057*
C110.47987 (8)0.02544 (14)0.59972 (14)0.0363 (4)
C120.52960 (8)0.08928 (13)0.64802 (13)0.0335 (4)
C130.58896 (8)0.05348 (12)0.71579 (13)0.0328 (4)
H130.62190.09460.74970.039*
C140.59740 (8)0.04064 (12)0.73078 (13)0.0302 (3)
C150.54825 (9)0.10479 (14)0.68024 (15)0.0397 (4)
H150.55520.16920.68990.048*
C160.49068 (9)0.07183 (15)0.61726 (16)0.0431 (5)
H160.45810.11410.58550.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02437 (12)0.02816 (12)0.01999 (12)0.00189 (8)0.00647 (8)0.00058 (7)
S10.0457 (3)0.0396 (3)0.0287 (2)0.0178 (2)0.01033 (19)0.00466 (17)
S20.02485 (19)0.0306 (2)0.0274 (2)0.00450 (16)0.00644 (15)0.00552 (15)
O10.084 (2)0.062 (3)0.098 (5)0.038 (3)0.061 (3)0.016 (4)
O20.098 (3)0.0375 (18)0.045 (3)0.012 (2)0.012 (2)0.0056 (16)
O30.063 (4)0.0654 (16)0.0404 (14)0.001 (4)0.022 (2)0.0078 (18)
O1'0.084 (2)0.062 (3)0.098 (5)0.038 (3)0.061 (3)0.016 (4)
O2'0.098 (3)0.0375 (18)0.045 (3)0.012 (2)0.012 (2)0.0056 (16)
O3'0.063 (4)0.0654 (16)0.0404 (14)0.001 (4)0.022 (2)0.0078 (18)
O40.0445 (8)0.0465 (9)0.0551 (9)0.0062 (6)0.0162 (7)0.0245 (7)
O50.0484 (9)0.0748 (12)0.0563 (10)0.0202 (8)0.0303 (8)0.0078 (8)
O60.0402 (7)0.0441 (8)0.0463 (8)0.0031 (6)0.0068 (6)0.0035 (6)
N10.0370 (9)0.0459 (10)0.0372 (9)0.0073 (7)0.0057 (7)0.0097 (7)
N20.0318 (8)0.0357 (8)0.0309 (8)0.0049 (6)0.0107 (6)0.0023 (6)
N30.0350 (8)0.0330 (8)0.0323 (8)0.0006 (6)0.0149 (6)0.0003 (6)
N40.0529 (10)0.0448 (9)0.0250 (8)0.0103 (8)0.0166 (7)0.0026 (6)
N50.0314 (8)0.0458 (10)0.0324 (8)0.0097 (7)0.0066 (6)0.0051 (7)
N60.0291 (7)0.0410 (9)0.0254 (7)0.0042 (6)0.0091 (6)0.0015 (6)
C10.0611 (14)0.0381 (12)0.0638 (15)0.0082 (10)0.0177 (12)0.0202 (10)
C20.0517 (12)0.0285 (9)0.0530 (12)0.0058 (8)0.0210 (10)0.0038 (8)
C30.0516 (12)0.0439 (11)0.0555 (13)0.0064 (9)0.0356 (10)0.0023 (9)
C40.0795 (16)0.0455 (12)0.0449 (12)0.0080 (11)0.0412 (12)0.0122 (9)
C50.0323 (9)0.0603 (13)0.0495 (12)0.0126 (9)0.0173 (9)0.0034 (10)
C60.0452 (11)0.0566 (13)0.0386 (11)0.0042 (9)0.0219 (9)0.0061 (9)
C70.0341 (9)0.0348 (9)0.0341 (9)0.0053 (7)0.0039 (7)0.0016 (7)
C80.0406 (10)0.0390 (10)0.0307 (9)0.0128 (8)0.0125 (8)0.0041 (7)
C90.0274 (9)0.0583 (13)0.0431 (11)0.0108 (8)0.0050 (8)0.0081 (9)
C100.0254 (9)0.0552 (13)0.0515 (12)0.0008 (8)0.0054 (8)0.0072 (10)
C110.0257 (8)0.0446 (10)0.0350 (9)0.0021 (7)0.0094 (7)0.0048 (7)
C120.0295 (8)0.0356 (9)0.0292 (8)0.0050 (7)0.0065 (7)0.0016 (7)
C130.0271 (8)0.0318 (9)0.0301 (9)0.0009 (6)0.0032 (7)0.0001 (6)
C140.0260 (8)0.0352 (9)0.0260 (8)0.0037 (6)0.0078 (6)0.0033 (6)
C150.0363 (9)0.0325 (9)0.0434 (10)0.0007 (7)0.0104 (8)0.0058 (7)
C160.0316 (9)0.0418 (10)0.0456 (11)0.0076 (8)0.0065 (8)0.0038 (8)
Geometric parameters (Å, º) top
Ni1—N52.1086 (17)N6—H620.876 (10)
Ni1—N62.1222 (16)C1—C21.510 (3)
Ni1—N42.1223 (17)C1—H1A0.9700
Ni1—N22.1255 (16)C1—H1B0.9700
Ni1—N12.1320 (19)C2—H2A0.9700
Ni1—N32.1457 (17)C2—H2B0.9700
S1—O3'1.429 (5)C3—C41.509 (3)
S1—O11.436 (5)C3—H3A0.9700
S1—O2'1.438 (4)C3—H3B0.9700
S1—O31.444 (5)C4—H4A0.9700
S1—O21.465 (5)C4—H4B0.9700
S1—O1'1.477 (5)C5—C61.513 (3)
S1—C81.779 (2)C5—H5A0.9700
S2—O51.4459 (16)C5—H5B0.9700
S2—O61.4478 (16)C6—H6A0.9700
S2—O41.4484 (15)C6—H6B0.9700
S2—C141.7767 (18)C7—C81.365 (3)
N1—C11.473 (3)C7—C121.418 (3)
N1—H110.883 (10)C7—H70.9300
N1—H120.869 (10)C8—C91.410 (3)
N2—C21.467 (3)C9—C101.362 (3)
N2—H210.877 (10)C9—H90.9300
N2—H220.875 (10)C10—C111.426 (3)
N3—C31.470 (2)C10—H100.9300
N3—H310.879 (10)C11—C161.409 (3)
N3—H320.882 (10)C11—C121.413 (3)
N4—C41.470 (3)C12—C131.425 (2)
N4—H410.878 (10)C13—C141.356 (2)
N4—H420.876 (10)C13—H130.9300
N5—C51.470 (3)C14—C151.413 (3)
N5—H510.882 (10)C15—C161.362 (3)
N5—H520.880 (10)C15—H150.9300
N6—C61.470 (3)C16—H160.9300
N6—H610.879 (10)
N5—Ni1—N681.36 (7)H61—N6—H62106 (2)
N5—Ni1—N492.50 (7)N1—C1—C2109.55 (17)
N6—Ni1—N4171.38 (7)N1—C1—H1A109.8
N5—Ni1—N2173.40 (7)C2—C1—H1A109.8
N6—Ni1—N293.05 (6)N1—C1—H1B109.8
N4—Ni1—N293.42 (7)C2—C1—H1B109.8
N5—Ni1—N194.65 (8)H1A—C1—H1B108.2
N6—Ni1—N192.18 (7)N2—C2—C1108.54 (17)
N4—Ni1—N194.35 (7)N2—C2—H2A110.0
N2—Ni1—N181.99 (7)C1—C2—H2A110.0
N5—Ni1—N392.91 (7)N2—C2—H2B110.0
N6—Ni1—N392.62 (6)C1—C2—H2B110.0
N4—Ni1—N381.60 (7)H2A—C2—H2B108.4
N2—Ni1—N390.85 (7)N3—C3—C4108.66 (18)
N1—Ni1—N3171.58 (7)N3—C3—H3A110.0
O3'—S1—O2'116.5 (5)C4—C3—H3A110.0
O1—S1—O3111.7 (4)N3—C3—H3B110.0
O1—S1—O2115.1 (4)C4—C3—H3B110.0
O3—S1—O2111.6 (4)H3A—C3—H3B108.3
O3'—S1—O1'109.5 (4)N4—C4—C3109.20 (16)
O2'—S1—O1'112.9 (4)N4—C4—H4A109.8
O3'—S1—C8105.8 (6)C3—C4—H4A109.8
O1—S1—C8107.0 (5)N4—C4—H4B109.8
O2'—S1—C8107.8 (4)C3—C4—H4B109.8
O3—S1—C8105.2 (6)H4A—C4—H4B108.3
O2—S1—C8105.4 (4)N5—C5—C6108.11 (16)
O1'—S1—C8103.3 (5)N5—C5—H5A110.1
O5—S2—O6111.95 (11)C6—C5—H5A110.1
O5—S2—O4112.36 (11)N5—C5—H5B110.1
O6—S2—O4112.57 (10)C6—C5—H5B110.1
O5—S2—C14106.82 (9)H5A—C5—H5B108.4
O6—S2—C14106.19 (9)N6—C6—C5108.32 (16)
O4—S2—C14106.42 (9)N6—C6—H6A110.0
C1—N1—Ni1107.49 (13)C5—C6—H6A110.0
C1—N1—H11109.5 (17)N6—C6—H6B110.0
Ni1—N1—H11110.6 (17)C5—C6—H6B110.0
C1—N1—H12108 (2)H6A—C6—H6B108.4
Ni1—N1—H12116 (2)C8—C7—C12120.03 (18)
H11—N1—H12105 (2)C8—C7—H7120.0
C2—N2—Ni1107.97 (12)C12—C7—H7120.0
C2—N2—H21111.0 (15)C7—C8—C9120.76 (18)
Ni1—N2—H21111.9 (15)C7—C8—S1119.30 (16)
C2—N2—H22108.7 (17)C9—C8—S1119.81 (14)
Ni1—N2—H22111.2 (17)C10—C9—C8120.13 (18)
H21—N2—H22106 (2)C10—C9—H9119.9
C3—N3—Ni1106.88 (12)C8—C9—H9119.9
C3—N3—H31106.3 (16)C9—C10—C11121.0 (2)
Ni1—N3—H31112.5 (16)C9—C10—H10119.5
C3—N3—H32111.3 (15)C11—C10—H10119.5
Ni1—N3—H32113.8 (16)C16—C11—C12119.33 (17)
H31—N3—H32106 (2)C16—C11—C10122.43 (18)
C4—N4—Ni1108.82 (12)C12—C11—C10118.20 (19)
C4—N4—H41110.1 (16)C11—C12—C7119.82 (16)
Ni1—N4—H41111.3 (15)C11—C12—C13118.91 (17)
C4—N4—H42108.5 (18)C7—C12—C13121.22 (17)
Ni1—N4—H42113.8 (18)C14—C13—C12119.90 (17)
H41—N4—H42104 (2)C14—C13—H13120.0
C5—N5—Ni1108.82 (12)C12—C13—H13120.0
C5—N5—H51107.5 (17)C13—C14—C15121.26 (16)
Ni1—N5—H51110.2 (17)C13—C14—S2118.80 (14)
C5—N5—H52110.6 (16)C15—C14—S2119.88 (14)
Ni1—N5—H52115.0 (16)C16—C15—C14119.72 (18)
H51—N5—H52104 (2)C16—C15—H15120.1
C6—N6—Ni1108.70 (12)C14—C15—H15120.1
C6—N6—H61111.4 (15)C15—C16—C11120.82 (18)
Ni1—N6—H61108.8 (15)C15—C16—H16119.6
C6—N6—H62111.4 (15)C11—C16—H16119.6
Ni1—N6—H62110.6 (16)
N5—Ni1—N1—C1172.34 (16)O2'—S1—C8—C728.5 (3)
N6—Ni1—N1—C1106.15 (16)O3—S1—C8—C7114.1 (3)
N4—Ni1—N1—C179.47 (16)O2—S1—C8—C74.0 (3)
N2—Ni1—N1—C113.37 (15)O1'—S1—C8—C7148.2 (3)
N6—Ni1—N2—C275.95 (13)O3'—S1—C8—C979.1 (3)
N4—Ni1—N2—C2109.74 (13)O1—S1—C8—C957.1 (4)
N1—Ni1—N2—C215.83 (13)O2'—S1—C8—C9155.6 (3)
N3—Ni1—N2—C2168.62 (13)O3—S1—C8—C961.8 (3)
N5—Ni1—N3—C3110.34 (13)O2—S1—C8—C9179.9 (3)
N6—Ni1—N3—C3168.18 (13)O1'—S1—C8—C935.9 (3)
N4—Ni1—N3—C318.25 (13)C7—C8—C9—C101.3 (3)
N2—Ni1—N3—C375.08 (13)S1—C8—C9—C10174.52 (18)
N5—Ni1—N4—C481.54 (15)C8—C9—C10—C110.4 (4)
N2—Ni1—N4—C4101.39 (15)C9—C10—C11—C16175.4 (2)
N1—Ni1—N4—C4176.40 (14)C9—C10—C11—C122.1 (3)
N3—Ni1—N4—C411.03 (14)C16—C11—C12—C7175.37 (19)
N6—Ni1—N5—C515.85 (14)C10—C11—C12—C72.2 (3)
N4—Ni1—N5—C5170.23 (15)C16—C11—C12—C132.0 (3)
N1—Ni1—N5—C575.66 (15)C10—C11—C12—C13179.54 (19)
N3—Ni1—N5—C5108.06 (14)C8—C7—C12—C110.6 (3)
N5—Ni1—N6—C613.86 (13)C8—C7—C12—C13177.86 (18)
N2—Ni1—N6—C6169.68 (13)C11—C12—C13—C141.8 (3)
N1—Ni1—N6—C6108.23 (14)C7—C12—C13—C14175.46 (18)
N3—Ni1—N6—C678.68 (13)C12—C13—C14—C150.1 (3)
Ni1—N1—C1—C240.1 (2)C12—C13—C14—S2177.22 (14)
Ni1—N2—C2—C141.9 (2)O5—S2—C14—C1397.28 (17)
N1—C1—C2—N256.0 (3)O6—S2—C14—C1322.35 (18)
Ni1—N3—C3—C444.09 (18)O4—S2—C14—C13142.50 (16)
Ni1—N4—C4—C338.2 (2)O5—S2—C14—C1579.92 (17)
N3—C3—C4—N456.2 (2)O6—S2—C14—C15160.44 (16)
Ni1—N5—C5—C642.2 (2)O4—S2—C14—C1540.30 (18)
Ni1—N6—C6—C540.48 (19)C13—C14—C15—C161.9 (3)
N5—C5—C6—N655.5 (2)S2—C14—C15—C16179.00 (16)
C12—C7—C8—C91.2 (3)C14—C15—C16—C111.7 (3)
C12—C7—C8—S1174.65 (15)C12—C11—C16—C150.2 (3)
O3'—S1—C8—C796.8 (3)C10—C11—C16—C15177.7 (2)
O1—S1—C8—C7127.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O10.88 (1)2.09 (2)2.866 (7)146 (2)
N1—H12···O2i0.87 (1)2.21 (2)3.040 (5)160 (3)
N1—H12···O2i0.87 (1)2.21 (2)3.009 (5)152 (3)
N2—H21···O5ii0.88 (1)2.26 (1)3.075 (2)155 (2)
N2—H22···O6iii0.88 (1)2.22 (2)3.035 (2)154 (2)
N3—H31···O4iv0.88 (1)2.28 (1)3.140 (2)166 (2)
N3—H32···O4iii0.88 (1)2.34 (1)3.210 (2)169 (2)
N5—H51···O4iv0.88 (1)2.25 (1)3.093 (3)159 (2)
N5—H52···O3v0.88 (1)2.10 (2)2.860 (6)144 (2)
N5—H52···O3v0.88 (1)2.20 (2)3.016 (6)155 (2)
N6—H61···O10.88 (1)2.02 (2)2.88 (1)168 (2)
N6—H62···O6iii0.88 (1)2.26 (2)3.055 (2)151 (2)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x1/2, y+1/2, z; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y+1, z+3/2; (v) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C2H8N2)3](C10H6O6S2)
Mr525.59
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.624 (8), 14.203 (6), 14.715 (4)
β (°) 115.152 (12)
V3)4469 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.20 × 0.16 × 0.13
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.810, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
21605, 5107, 4533
Rint0.015
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.084, 1.05
No. of reflections5107
No. of parameters337
No. of restraints36
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.36

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O10.88 (1)2.09 (2)2.866 (7)146 (2)
N1—H12···O2i0.87 (1)2.21 (2)3.040 (5)160 (3)
N1—H12···O2'i0.87 (1)2.21 (2)3.009 (5)152 (3)
N2—H21···O5ii0.88 (1)2.26 (1)3.075 (2)155 (2)
N2—H22···O6iii0.88 (1)2.22 (2)3.035 (2)154 (2)
N3—H31···O4iv0.88 (1)2.28 (1)3.140 (2)166 (2)
N3—H32···O4iii0.88 (1)2.34 (1)3.210 (2)169 (2)
N5—H51···O4iv0.88 (1)2.25 (1)3.093 (3)159 (2)
N5—H52···O3v0.88 (1)2.10 (2)2.860 (6)144 (2)
N5—H52···O3'v0.88 (1)2.20 (2)3.016 (6)155 (2)
N6—H61···O10.88 (1)2.02 (2)2.88 (1)168 (2)
N6—H62···O6iii0.88 (1)2.26 (2)3.055 (2)151 (2)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x1/2, y+1/2, z; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y+1, z+3/2; (v) x, y+1, z+1/2.
 

Acknowledgements

This work was supported by the Key Project of the Natural Science Foundation of Heilongjiang Province (No. ZD200903), the Key Project of the Education Bureau of Heilongjiang Province (No. 12511z023) and the University of Malaya.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHuo, L.-H., Gao, S., Lu, Z.-Z., Xu, S.-X. & Zhao, H. (2004). Acta Cryst. E60, m1205–m1207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds