metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­­{5-[4-(imidazol-1-yl-κN3)phen­yl]tetra­zolido}manganese(II)

aFaculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, People's Republic of China
*Correspondence e-mail: shxycheng@163.com

(Received 4 November 2011; accepted 9 November 2011; online 12 November 2011)

In the title complex, [Mn(C10H7N6)2(H2O)4], the Mn2+ cation is located on a twofold rotation axis and is coordinated by two N atoms from two 5-[4-(imidazol-1-yl)phen­yl]tetra­zolide ligands and four O atoms from four water mol­ecules, displaying a distorted MnN2O4 octa­hedral geometry. The crystal structure is stabilized by intermolecular O—H⋯N hydrogen bonds involving the coordinated water mol­ecules and the N atoms of the tetra­zolide group.

Related literature

For related structures, see: Huang et al. (2009[Huang, R.-Y., Zhu, K., Chen, H., Liu, G.-X. & Ren, X.-M. (2009). Wuji Huaxue Xuebao, 25, 162-165.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H7N6)2(H2O)4]

  • Mr = 549.44

  • Triclinic, [P \overline 1]

  • a = 8.415 (3) Å

  • b = 8.458 (3) Å

  • c = 8.722 (3) Å

  • α = 80.758 (5)°

  • β = 75.880 (4)°

  • γ = 88.791 (5)°

  • V = 594.1 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.888, Tmax = 0.888

  • 3143 measured reflections

  • 2198 independent reflections

  • 2027 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.07

  • 2198 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2W⋯N5i 0.85 2.00 2.796 (2) 155
O2—H2WA⋯N6ii 0.82 2.05 2.844 (2) 161
O1—H1W⋯N4i 0.92 1.93 2.819 (2) 163
O1—H1WA⋯N3iii 0.85 1.92 2.769 (2) 175
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y-1, z; (iii) x, y-1, z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Multidentate ligand, 1-(5-tetrazolyl)-4-(imidazol-1-yl)benzene, may be used to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of the title complex wherein the Mn ion is located on a two fold rotation axis and is coordinated by two N atoms from two ligand molecules and four O atoms from four coordinated water molecules, displaying a distorted MnN2O4 octahedral geometry (Fig. 1). The ligand displays a monodentate coordinating mode and acts as counteranion due to the deprotonation of tetrazolyl group. In the crystal structure, there exist O—H···N hydrogen bonds (Table 1). Coordinated water molecules and N atoms of tetrazolyl group as donor or acceptor play very important role in the formation of these hydrogen bonds and stabilize the crystal structure.

Related literature top

For related structures, see: Huang et al. (2009).

Experimental top

Reaction mixture of manganese perchlorate hexahydrate (72.3 mg, 0.2 mmol), 1-(5-tetrazolyl)-4-(imidazol-1-yl)benzene (21.2 mg, 0.1 mmol), and potassium hydroxide (5.61 mg, 0.1 mmol) in 12 ml H2O was sealed in a 16 ml Teflon-lined stainless steel container and heated to 393 K for 3 days. After cooling the stainless steel container to the room temperature, colorless block crystals of the title complex were obtained.

Refinement top

The hydrogen atoms in all C atoms were located in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The hydrogen atoms of water molecules were found from a difference Fourier map and fixed at those positions with Uiso(H) = 1.2Ueq(O).

Structure description top

Multidentate ligand, 1-(5-tetrazolyl)-4-(imidazol-1-yl)benzene, may be used to synthesize complexes for its variable coordination modes. Herein, we report the crystal structure of the title complex wherein the Mn ion is located on a two fold rotation axis and is coordinated by two N atoms from two ligand molecules and four O atoms from four coordinated water molecules, displaying a distorted MnN2O4 octahedral geometry (Fig. 1). The ligand displays a monodentate coordinating mode and acts as counteranion due to the deprotonation of tetrazolyl group. In the crystal structure, there exist O—H···N hydrogen bonds (Table 1). Coordinated water molecules and N atoms of tetrazolyl group as donor or acceptor play very important role in the formation of these hydrogen bonds and stabilize the crystal structure.

For related structures, see: Huang et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The coordination environment of manganese ion in the title complex with the ellipsoids drawn at the 30% probability level. The hydrogen atoms have been omitted for clarity. Symmetry code: A = -x + 2, -y, -z+2.
Tetraaquabis{5-[4-(imidazol-1-yl-κN3)phenyl]tetrazolido}manganese(II) top
Crystal data top
[Mn(C10H7N6)2(H2O)4]Z = 1
Mr = 549.44F(000) = 283
Triclinic, P1Dx = 1.536 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.415 (3) ÅCell parameters from 2041 reflections
b = 8.458 (3) Åθ = 2.4–28.3°
c = 8.722 (3) ŵ = 0.61 mm1
α = 80.758 (5)°T = 293 K
β = 75.880 (4)°Block, colorless
γ = 88.791 (5)°0.20 × 0.20 × 0.20 mm
V = 594.1 (4) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2198 independent reflections
Radiation source: fine-focus sealed tube2027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
φ and ω scansθmax = 25.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 910
Tmin = 0.888, Tmax = 0.888k = 510
3143 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0442P)2 + 0.2267P]
where P = (Fo2 + 2Fc2)/3
2198 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Mn(C10H7N6)2(H2O)4]γ = 88.791 (5)°
Mr = 549.44V = 594.1 (4) Å3
Triclinic, P1Z = 1
a = 8.415 (3) ÅMo Kα radiation
b = 8.458 (3) ŵ = 0.61 mm1
c = 8.722 (3) ÅT = 293 K
α = 80.758 (5)°0.20 × 0.20 × 0.20 mm
β = 75.880 (4)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2198 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2027 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.888Rint = 0.014
3143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
2198 reflectionsΔρmin = 0.30 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7451 (2)0.5606 (2)0.7075 (2)0.0361 (4)
C20.8080 (3)0.6654 (3)0.5691 (3)0.0486 (5)
H20.92080.67940.53040.058*
C30.7036 (2)0.7498 (3)0.4877 (3)0.0443 (5)
H30.74720.81960.39340.053*
C40.5364 (2)0.7327 (2)0.5431 (2)0.0324 (4)
C50.4748 (3)0.6291 (3)0.6838 (3)0.0557 (6)
H50.36200.61690.72390.067*
C60.5787 (3)0.5430 (3)0.7659 (3)0.0550 (6)
H60.53570.47340.86050.066*
C70.4287 (2)0.8208 (2)0.4509 (2)0.0310 (4)
C80.8260 (3)0.3192 (2)0.8712 (2)0.0396 (4)
H80.72570.26510.89540.048*
C91.0742 (3)0.3767 (3)0.8576 (3)0.0541 (6)
H91.18040.36910.87130.065*
C101.0145 (3)0.5054 (3)0.7786 (3)0.0583 (7)
H101.07070.60040.72800.070*
Mn11.00000.00001.00000.02857 (14)
N10.9560 (2)0.25905 (19)0.9145 (2)0.0393 (4)
N20.8541 (2)0.46819 (19)0.7876 (2)0.0382 (4)
N30.48043 (19)0.8941 (2)0.29971 (18)0.0366 (4)
N40.3458 (2)0.9572 (2)0.25971 (18)0.0392 (4)
N50.21984 (19)0.9230 (2)0.38155 (19)0.0413 (4)
N60.26763 (19)0.8368 (2)0.50521 (18)0.0386 (4)
O10.74178 (16)0.05589 (19)1.03254 (16)0.0461 (4)
H1WA0.66350.06651.11680.055*
H1W0.69960.04100.94380.055*
O21.03428 (16)0.04640 (18)0.75458 (15)0.0415 (3)
H2W0.98010.00740.68720.050*
H2WA1.11080.09000.69960.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0377 (10)0.0331 (10)0.0391 (11)0.0082 (8)0.0168 (8)0.0006 (8)
C20.0297 (10)0.0528 (13)0.0558 (14)0.0005 (9)0.0126 (9)0.0164 (10)
C30.0347 (10)0.0464 (12)0.0438 (12)0.0013 (9)0.0098 (9)0.0166 (9)
C40.0314 (9)0.0353 (9)0.0294 (9)0.0071 (7)0.0086 (7)0.0006 (7)
C50.0304 (11)0.0787 (17)0.0436 (12)0.0086 (10)0.0024 (9)0.0214 (11)
C60.0427 (12)0.0678 (15)0.0411 (12)0.0094 (11)0.0057 (10)0.0229 (11)
C70.0281 (9)0.0377 (9)0.0259 (9)0.0050 (7)0.0064 (7)0.0018 (7)
C80.0394 (10)0.0348 (10)0.0434 (11)0.0055 (8)0.0155 (9)0.0049 (8)
C90.0471 (13)0.0433 (12)0.0767 (17)0.0004 (10)0.0358 (12)0.0085 (11)
C100.0505 (13)0.0410 (12)0.0866 (19)0.0056 (10)0.0392 (13)0.0158 (12)
Mn10.0232 (2)0.0344 (2)0.0247 (2)0.00559 (15)0.00588 (15)0.00465 (15)
N10.0427 (9)0.0342 (8)0.0419 (9)0.0069 (7)0.0179 (8)0.0015 (7)
N20.0398 (9)0.0337 (8)0.0434 (9)0.0063 (7)0.0202 (8)0.0022 (7)
N30.0278 (8)0.0523 (10)0.0270 (8)0.0062 (7)0.0069 (6)0.0015 (7)
N40.0318 (8)0.0579 (11)0.0259 (8)0.0081 (7)0.0097 (7)0.0019 (7)
N50.0303 (8)0.0630 (11)0.0277 (8)0.0126 (8)0.0077 (7)0.0008 (8)
N60.0294 (8)0.0560 (10)0.0268 (8)0.0117 (7)0.0060 (6)0.0015 (7)
O10.0231 (6)0.0790 (11)0.0296 (7)0.0009 (6)0.0052 (5)0.0090 (7)
O20.0329 (7)0.0649 (9)0.0247 (7)0.0167 (6)0.0066 (5)0.0037 (6)
Geometric parameters (Å, º) top
C1—C61.371 (3)C9—N11.367 (3)
C1—C21.374 (3)C9—H90.9300
C1—N21.431 (2)C10—N21.373 (3)
C2—C31.379 (3)C10—H100.9300
C2—H20.9300Mn1—O12.1737 (15)
C3—C41.374 (3)Mn1—O1i2.1737 (15)
C3—H30.9300Mn1—O22.1870 (15)
C4—C51.381 (3)Mn1—O2i2.1870 (15)
C4—C71.469 (2)Mn1—N12.2514 (17)
C5—C61.385 (3)Mn1—N1i2.2514 (17)
C5—H50.9300N3—N41.340 (2)
C6—H60.9300N4—N51.305 (2)
C7—N61.334 (2)N5—N61.343 (2)
C7—N31.334 (2)O1—H1WA0.8528
C8—N11.310 (2)O1—H1W0.9171
C8—N21.345 (3)O2—H2W0.8511
C8—H80.9300O2—H2WA0.8226
C9—C101.348 (3)
C6—C1—C2119.82 (18)O1—Mn1—O286.80 (5)
C6—C1—N2120.54 (18)O1i—Mn1—O293.20 (5)
C2—C1—N2119.62 (18)O1—Mn1—O2i93.20 (5)
C1—C2—C3119.91 (19)O1i—Mn1—O2i86.80 (5)
C1—C2—H2120.0O2—Mn1—O2i180.0
C3—C2—H2120.0O1—Mn1—N190.17 (6)
C4—C3—C2121.27 (19)O1i—Mn1—N189.83 (6)
C4—C3—H3119.4O2—Mn1—N189.07 (6)
C2—C3—H3119.4O2i—Mn1—N190.93 (6)
C3—C4—C5118.23 (18)O1—Mn1—N1i89.83 (6)
C3—C4—C7119.87 (17)O1i—Mn1—N1i90.17 (6)
C5—C4—C7121.88 (17)O2—Mn1—N1i90.93 (6)
C4—C5—C6120.9 (2)O2i—Mn1—N1i89.07 (6)
C4—C5—H5119.5N1—Mn1—N1i180.0
C6—C5—H5119.5C8—N1—C9105.09 (17)
C1—C6—C5119.8 (2)C8—N1—Mn1127.28 (14)
C1—C6—H6120.1C9—N1—Mn1125.60 (14)
C5—C6—H6120.1C8—N2—C10106.15 (16)
N6—C7—N3111.17 (16)C8—N2—C1126.58 (17)
N6—C7—C4125.02 (17)C10—N2—C1126.85 (17)
N3—C7—C4123.81 (16)C7—N3—N4105.15 (15)
N1—C8—N2112.29 (19)N5—N4—N3109.18 (15)
N1—C8—H8123.9N4—N5—N6109.87 (15)
N2—C8—H8123.9C7—N6—N5104.64 (15)
C10—C9—N1110.2 (2)Mn1—O1—H1WA130.2
C10—C9—H9124.9Mn1—O1—H1W118.1
N1—C9—H9124.9H1WA—O1—H1W109.5
C9—C10—N2106.3 (2)Mn1—O2—H2W127.1
C9—C10—H10126.8Mn1—O2—H2WA129.2
N2—C10—H10126.8H2W—O2—H2WA102.8
O1—Mn1—O1i180.0
C6—C1—C2—C31.4 (4)O2i—Mn1—N1—C8107.15 (18)
N2—C1—C2—C3177.3 (2)N1i—Mn1—N1—C8144 (100)
C1—C2—C3—C40.7 (4)O1—Mn1—N1—C9175.28 (19)
C2—C3—C4—C50.4 (3)O1i—Mn1—N1—C94.72 (19)
C2—C3—C4—C7178.2 (2)O2—Mn1—N1—C988.48 (19)
C3—C4—C5—C60.8 (4)O2i—Mn1—N1—C991.52 (19)
C7—C4—C5—C6177.7 (2)N1i—Mn1—N1—C917 (100)
C2—C1—C6—C51.0 (4)N1—C8—N2—C100.5 (3)
N2—C1—C6—C5177.7 (2)N1—C8—N2—C1172.43 (18)
C4—C5—C6—C10.1 (4)C9—C10—N2—C80.1 (3)
C3—C4—C7—N6167.3 (2)C9—C10—N2—C1173.0 (2)
C5—C4—C7—N614.2 (3)C6—C1—N2—C831.4 (3)
C3—C4—C7—N313.6 (3)C2—C1—N2—C8147.2 (2)
C5—C4—C7—N3164.9 (2)C6—C1—N2—C10157.1 (2)
N1—C9—C10—N20.6 (3)C2—C1—N2—C1024.2 (3)
N2—C8—N1—C90.8 (3)N6—C7—N3—N40.1 (2)
N2—C8—N1—Mn1163.53 (14)C4—C7—N3—N4179.14 (17)
C10—C9—N1—C80.9 (3)C7—N3—N4—N50.0 (2)
C10—C9—N1—Mn1163.81 (18)N3—N4—N5—N60.1 (2)
O1—Mn1—N1—C813.94 (18)N3—C7—N6—N50.2 (2)
O1i—Mn1—N1—C8166.06 (18)C4—C7—N6—N5179.05 (18)
O2—Mn1—N1—C872.85 (18)N4—N5—N6—C70.2 (2)
Symmetry code: (i) x+2, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2W···N5ii0.852.002.796 (2)155
O2—H2WA···N6iii0.822.052.844 (2)161
O1—H1W···N4ii0.921.932.819 (2)163
O1—H1WA···N3iv0.851.922.769 (2)175
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y1, z; (iv) x, y1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C10H7N6)2(H2O)4]
Mr549.44
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.415 (3), 8.458 (3), 8.722 (3)
α, β, γ (°)80.758 (5), 75.880 (4), 88.791 (5)
V3)594.1 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.888, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
3143, 2198, 2027
Rint0.014
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.07
No. of reflections2198
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2W···N5i0.852.002.796 (2)155.2
O2—H2WA···N6ii0.822.052.844 (2)161.4
O1—H1W···N4i0.921.932.819 (2)163.4
O1—H1WA···N3iii0.851.922.769 (2)174.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y1, z; (iii) x, y1, z+1.
 

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, R.-Y., Zhu, K., Chen, H., Liu, G.-X. & Ren, X.-M. (2009). Wuji Huaxue Xuebao, 25, 162–165.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds