organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-4-chloro-6-(cyclo­hexyl­imino­meth­yl)phenol

aHebei Key Laboratory of Bioinorganic Chemistry, College of Sciences, Agricultural University of Hebei, Baoding 071001, People's Republic of China
*Correspondence e-mail: majingjun71@yahoo.cn

(Received 24 October 2011; accepted 27 October 2011; online 2 November 2011)

The title compound, C13H15BrClNO, was prepared by the condensation of equimolar quanti­ties of 3-bromo-5-chloro­salicyl­aldehyde with cyclo­hexyl­amine in methanol. There is an intra­molecular O—H⋯N hydrogen bond in the mol­ecule. The cyclo­hexyl ring adopts a chair conformation.

Related literature

For the coordination chemistry of Schiff base compounds, see: Xu et al. (2011[Xu, M., Wei, Y.-J. & Wang, F.-W. (2011). Acta Cryst. E67, m245.]); Suleiman Gwaram et al. (2011[Suleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m251.]); Assey et al. (2011[Assey, G. E., Butcher, R. J. & Gultneh, Y. (2011). Acta Cryst. E67, m303-m304.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For similar structures, see: Miura et al. (2009[Miura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.]); Damous et al. (2011[Damous, M., Hamlaoui, M., Bouacida, S., Merazig, H. & Daran, J.-C. (2011). Acta Cryst. E67, o1123-o1124.]); Şahin et al. (2009[Şahin, Z. S., Gūmūş, S., Macit, M. & Işık, Ş. (2009). Acta Cryst. E65, o3022.]); Orona et al. (2011[Orona, G., Molinar, V., Fronczek, F. R. & Isovitsch, R. (2011). Acta Cryst. E67, o2505-o2506.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15BrClNO

  • Mr = 316.62

  • Monoclinic, P 21 /c

  • a = 12.296 (2) Å

  • b = 16.359 (3) Å

  • c = 6.969 (1) Å

  • β = 101.634 (2)°

  • V = 1373.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.17 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.27 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.450, Tmax = 0.481

  • 10912 measured reflections

  • 2982 independent reflections

  • 1705 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.227

  • S = 1.04

  • 2982 reflections

  • 157 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.40 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.90 (1) 1.71 (2) 2.564 (6) 159 (6)

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are versatile ligands in coordination chemistry (Xu et al., 2011; Suleiman Gwaram et al., 2011; Assey et al., 2011). As a contribution to a structural study on Schiff base compounds, we present here the crystal structure of the title compound, that was obtained as the product of the reaction of 3-bromo-5-chlorosalicylaldehyde with cyclohexylamine in methanol.

In the title compound, Fig. 1, there in an intramolecular O1—H1···N1 hydrogen bond (Table 1). The C1—C6 benzene ring is approximately perpendicular to the C8—C13 cyclohexyl ring. As expected, the cyclohexyl ring adopts a chair conformation. The bond distances and angles are within normal ranges (Allen et al., 1987), and agree well with the corresponding bond distances and angles reported in closely related compounds (Miura et al., 2009; Damous et al., 2011; Şahin et al., 2009; Orona et al., 2011).

Related literature top

For the coordination chemistry of Schiff base compounds, see: Xu et al. (2011); Suleiman Gwaram et al. (2011); Assey et al. (2011). For standard bond lengths, see: Allen et al. (1987). For similar structures, see: Miura et al. (2009); Damous et al. (2011); Şahin et al. (2009); Orona et al. (2011).

Experimental top

To a methanol solution (10 ml) of 3-bromo-5-chlorosalicylaldehyde (0.1 mmol, 23.5 mg) and cyclohexylamine (0.1 mmol, 9.9 mg), a few drops of acetic acid were added. The mixture was refluxed for 1 h and then cooled to room temperature. The yellow crystalline solid was collected by filtration, washed with cold methanol and dried in air. Single crystals, suitable for X-ray diffraction, were obtained by slow evaporation of a methanol solution of the product in air.

Refinement top

The OH H-atom was located in a difference Fourier map and was refined with a distance restraint, O—H = 0.90 (1) Å, and Uiso(H) = 0.08 Å2. The C-bound H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å, with Uiso(H) = 1.2Ueq(C).

Structure description top

Schiff bases are versatile ligands in coordination chemistry (Xu et al., 2011; Suleiman Gwaram et al., 2011; Assey et al., 2011). As a contribution to a structural study on Schiff base compounds, we present here the crystal structure of the title compound, that was obtained as the product of the reaction of 3-bromo-5-chlorosalicylaldehyde with cyclohexylamine in methanol.

In the title compound, Fig. 1, there in an intramolecular O1—H1···N1 hydrogen bond (Table 1). The C1—C6 benzene ring is approximately perpendicular to the C8—C13 cyclohexyl ring. As expected, the cyclohexyl ring adopts a chair conformation. The bond distances and angles are within normal ranges (Allen et al., 1987), and agree well with the corresponding bond distances and angles reported in closely related compounds (Miura et al., 2009; Damous et al., 2011; Şahin et al., 2009; Orona et al., 2011).

For the coordination chemistry of Schiff base compounds, see: Xu et al. (2011); Suleiman Gwaram et al. (2011); Assey et al. (2011). For standard bond lengths, see: Allen et al. (1987). For similar structures, see: Miura et al. (2009); Damous et al. (2011); Şahin et al. (2009); Orona et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the numbering scheme and displacement ellipsoids drawn at the 30% probability level. The intramolecular O—H···N hydrogen bond is drawn as a dashed line.
2-Bromo-4-chloro-6-(cyclohexyliminomethyl)phenol top
Crystal data top
C13H15BrClNOF(000) = 640
Mr = 316.62Dx = 1.532 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.296 (2) ÅCell parameters from 2374 reflections
b = 16.359 (3) Åθ = 2.5–24.1°
c = 6.969 (1) ŵ = 3.17 mm1
β = 101.634 (2)°T = 298 K
V = 1373.0 (4) Å3Block, yellow
Z = 40.30 × 0.30 × 0.27 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2982 independent reflections
Radiation source: fine-focus sealed tube1705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scanθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.450, Tmax = 0.481k = 2019
10912 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.227H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.1329P)2 + 0.243P]
where P = (Fo2 + 2Fc2)/3
2982 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 1.40 e Å3
1 restraintΔρmin = 0.42 e Å3
Crystal data top
C13H15BrClNOV = 1373.0 (4) Å3
Mr = 316.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.296 (2) ŵ = 3.17 mm1
b = 16.359 (3) ÅT = 298 K
c = 6.969 (1) Å0.30 × 0.30 × 0.27 mm
β = 101.634 (2)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
2982 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1705 reflections with I > 2σ(I)
Tmin = 0.450, Tmax = 0.481Rint = 0.042
10912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0731 restraint
wR(F2) = 0.227H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 1.40 e Å3
2982 reflectionsΔρmin = 0.42 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36373 (6)0.05122 (4)0.11130 (11)0.0888 (4)
Cl10.09344 (12)0.31936 (13)0.2918 (3)0.0948 (6)
N10.6092 (4)0.3288 (3)0.0492 (7)0.0594 (11)
O10.5335 (3)0.1823 (2)0.0130 (6)0.0619 (9)
C10.4189 (4)0.3005 (3)0.0749 (6)0.0479 (11)
C20.4337 (4)0.2154 (3)0.0606 (6)0.0490 (11)
C30.3424 (4)0.1648 (3)0.1214 (7)0.0550 (12)
C40.2398 (4)0.1959 (4)0.1955 (7)0.0624 (14)
H40.18010.16120.24020.075*
C50.2255 (4)0.2799 (4)0.2032 (7)0.0616 (14)
C60.3129 (4)0.3316 (3)0.1472 (7)0.0576 (13)
H60.30200.38780.15720.069*
C70.5119 (4)0.3548 (3)0.0185 (7)0.0564 (12)
H70.50030.41090.03220.068*
C80.7014 (4)0.3862 (3)0.0990 (8)0.0601 (13)
H80.67190.44190.07850.072*
C90.7837 (5)0.3731 (4)0.0324 (9)0.0809 (18)
H9A0.74780.38370.16720.097*
H9B0.80830.31670.02310.097*
C100.8835 (6)0.4293 (5)0.0252 (12)0.095 (2)
H10A0.93670.41790.05690.114*
H10B0.85980.48570.00360.114*
C110.9385 (5)0.4176 (4)0.2383 (11)0.089 (2)
H11A0.96770.36250.25790.107*
H11B1.00000.45550.27300.107*
C120.8578 (5)0.4318 (5)0.3658 (9)0.0772 (18)
H12A0.83430.48850.35500.093*
H12B0.89370.42180.50100.093*
C130.7562 (5)0.3768 (4)0.3122 (8)0.0674 (14)
H13A0.77820.32030.33810.081*
H13B0.70330.39070.39340.081*
H10.576 (4)0.227 (2)0.035 (9)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0837 (6)0.0650 (5)0.1181 (7)0.0128 (3)0.0212 (4)0.0034 (3)
Cl10.0463 (8)0.1216 (15)0.1084 (13)0.0132 (8)0.0034 (8)0.0139 (11)
N10.050 (2)0.062 (3)0.063 (3)0.004 (2)0.0047 (19)0.006 (2)
O10.0451 (19)0.063 (2)0.076 (2)0.0007 (16)0.0071 (17)0.0017 (18)
C10.045 (2)0.059 (3)0.039 (2)0.003 (2)0.0040 (19)0.003 (2)
C20.039 (2)0.071 (3)0.038 (2)0.004 (2)0.0115 (18)0.002 (2)
C30.054 (3)0.064 (3)0.050 (3)0.009 (2)0.016 (2)0.004 (2)
C40.042 (3)0.089 (4)0.054 (3)0.015 (3)0.005 (2)0.002 (3)
C50.042 (3)0.091 (4)0.052 (3)0.007 (3)0.007 (2)0.006 (3)
C60.051 (3)0.066 (3)0.054 (3)0.011 (3)0.009 (2)0.006 (2)
C70.055 (3)0.056 (3)0.057 (3)0.000 (2)0.010 (2)0.002 (2)
C80.050 (3)0.048 (3)0.076 (4)0.006 (2)0.001 (2)0.001 (2)
C90.082 (4)0.088 (4)0.075 (4)0.025 (3)0.022 (3)0.019 (3)
C100.082 (5)0.108 (5)0.104 (6)0.033 (4)0.039 (4)0.026 (4)
C110.048 (3)0.088 (4)0.127 (6)0.008 (3)0.009 (4)0.006 (4)
C120.064 (4)0.086 (4)0.077 (4)0.020 (3)0.003 (3)0.011 (3)
C130.062 (3)0.073 (4)0.067 (3)0.016 (3)0.015 (3)0.008 (3)
Geometric parameters (Å, º) top
Br1—C31.875 (5)C8—C131.510 (7)
Cl1—C51.741 (5)C8—H80.9800
N1—C71.268 (6)C9—C101.521 (8)
N1—C81.460 (6)C9—H9A0.9700
O1—C21.344 (5)C9—H9B0.9700
O1—H10.900 (10)C10—C111.515 (10)
C1—C61.395 (7)C10—H10A0.9700
C1—C21.405 (7)C10—H10B0.9700
C1—C71.440 (7)C11—C121.478 (9)
C2—C31.391 (7)C11—H11A0.9700
C3—C41.363 (7)C11—H11B0.9700
C4—C51.384 (8)C12—C131.524 (7)
C4—H40.9300C12—H12A0.9700
C5—C61.362 (7)C12—H12B0.9700
C6—H60.9300C13—H13A0.9700
C7—H70.9300C13—H13B0.9700
C8—C91.510 (8)
C7—N1—C8120.1 (5)C8—C9—H9A109.4
C2—O1—H1101 (4)C10—C9—H9A109.4
C6—C1—C2119.1 (4)C8—C9—H9B109.4
C6—C1—C7120.4 (5)C10—C9—H9B109.4
C2—C1—C7120.5 (4)H9A—C9—H9B108.0
O1—C2—C3119.7 (5)C11—C10—C9111.0 (6)
O1—C2—C1121.4 (4)C11—C10—H10A109.4
C3—C2—C1118.9 (4)C9—C10—H10A109.4
C4—C3—C2121.5 (5)C11—C10—H10B109.4
C4—C3—Br1119.7 (4)C9—C10—H10B109.4
C2—C3—Br1118.7 (4)H10A—C10—H10B108.0
C3—C4—C5119.1 (5)C12—C11—C10110.4 (5)
C3—C4—H4120.5C12—C11—H11A109.6
C5—C4—H4120.5C10—C11—H11A109.6
C6—C5—C4121.3 (4)C12—C11—H11B109.6
C6—C5—Cl1119.8 (5)C10—C11—H11B109.6
C4—C5—Cl1118.9 (4)H11A—C11—H11B108.1
C5—C6—C1120.1 (5)C11—C12—C13112.2 (5)
C5—C6—H6119.9C11—C12—H12A109.2
C1—C6—H6119.9C13—C12—H12A109.2
N1—C7—C1122.2 (5)C11—C12—H12B109.2
N1—C7—H7118.9C13—C12—H12B109.2
C1—C7—H7118.9H12A—C12—H12B107.9
N1—C8—C9110.4 (4)C8—C13—C12111.2 (5)
N1—C8—C13109.8 (4)C8—C13—H13A109.4
C9—C8—C13111.2 (5)C12—C13—H13A109.4
N1—C8—H8108.4C8—C13—H13B109.4
C9—C8—H8108.4C12—C13—H13B109.4
C13—C8—H8108.4H13A—C13—H13B108.0
C8—C9—C10111.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.90 (1)1.71 (2)2.564 (6)159 (6)

Experimental details

Crystal data
Chemical formulaC13H15BrClNO
Mr316.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.296 (2), 16.359 (3), 6.969 (1)
β (°) 101.634 (2)
V3)1373.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.17
Crystal size (mm)0.30 × 0.30 × 0.27
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.450, 0.481
No. of measured, independent and
observed [I > 2σ(I)] reflections
10912, 2982, 1705
Rint0.042
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.227, 1.04
No. of reflections2982
No. of parameters157
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.40, 0.42

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.900 (10)1.71 (2)2.564 (6)159 (6)
 

Acknowledgements

This project was sponsored by the Natural Development Foundation of Hebei Province (B2011204051), the Development Foundation of the Department of Education of Hebei Province (2010137) and the Research Development Foundation of the Agricultural University of Hebei.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orphen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAssey, G. E., Butcher, R. J. & Gultneh, Y. (2011). Acta Cryst. E67, m303–m304.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDamous, M., Hamlaoui, M., Bouacida, S., Merazig, H. & Daran, J.-C. (2011). Acta Cryst. E67, o1123–o1124.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSuleiman Gwaram, N., Ikmal Hisham, N. A., Khaledi, H. & Mohd Ali, H. (2011). Acta Cryst. E67, m251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOrona, G., Molinar, V., Fronczek, F. R. & Isovitsch, R. (2011). Acta Cryst. E67, o2505–o2506.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationŞahin, Z. S., Gūmūş, S., Macit, M. & Işık, Ş. (2009). Acta Cryst. E65, o3022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, M., Wei, Y.-J. & Wang, F.-W. (2011). Acta Cryst. E67, m245.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds