metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tri­phenyl­tin(IV)]-μ-3-methyl­phenyl­seleninato-κ2O:O′]

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: macl@lcu.edu.cn.

(Received 30 October 2011; accepted 18 November 2011; online 23 November 2011)

In the polymeric title coordination compound, [Sn(C6H5)3(C7H7O2Se)]n, the SnIV atom has a distorted trigonal–bipyramidal geometry, with two O atoms from two symmetry-related bridging seleninate ligands in axial positions and three phenyl groups in the equatorial plane. In the crystal, the complex exhibits a zigzag chain structure running parallel to the c axis. An intra­chain C—H⋯O hydrogen bond is observed.

Related literature

For the biological activity of organotin compounds, see: Dubey & Roy (2003[Dubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3-8.]). For related structures, see: Chandrasekhar et al. (1992[Chandrasekhar, V., Muralidhara, M. G., Thomas, K. R. J. & Tiekink, E. R. T. (1992). Inorg. Chem. 31, 4707-4708.]); Guo et al. (2011[Guo, M., Ru, J. & Zhang, R. (2011). Acta Cryst. E67, m152.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C7H7O2Se)]

  • Mr = 552.08

  • Monoclinic, P 21 /c

  • a = 12.3293 (11) Å

  • b = 14.3519 (16) Å

  • c = 12.2865 (13) Å

  • β = 94.324 (1)°

  • V = 2167.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.88 mm−1

  • T = 298 K

  • 0.35 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.433, Tmax = 0.762

  • 10632 measured reflections

  • 3821 independent reflections

  • 2802 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.097

  • S = 1.09

  • 3821 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1 0.93 2.57 3.487 (7) 169

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Organotin compounds have been attracting more and more attention due to their wide range of industrial applications and biological activities (Dubey & Roy, 2003). As a part of our ongoing investigations in this field (Guo et al., 2011), we have synthesized the title compound and present its crystal structure herein.

The asymmetric unit of the title compound is shown in Fig. 1. An extended one-dimensional zigzag chain structure running parallel to the c axis is formed by the bridging role of the 3-methylphenylseleninate anions (Fig. 2). The Se—O bond distances in the compound (Se1—O1 = 1.674 (4) Å; Se1—O2 = 1.698 (3) Å) are comparable to those found in a related polymeric organotin complex (Chandrasekhar et al., 1992). The Sn atom is five-coordinate in a slightly distorted trigonal-bipyramidal coordination geometry, provided by the phenyl groups in the equatorial positions and two O atoms of symmetry related 3-methylphenylseleninate groups in the axial positions. An intrachain C—H···O hydrogen bond is observed (Table 1).

Related literature top

For the biological activity of organotin compounds, see: Dubey & Roy (2003). For related structures, see: Chandrasekhar et al. (1992); Guo et al. (2011).

Experimental top

The reaction was carried out under a nitrogen atmosphere. 3-Tolueneseleninic acid (1 mmol) and sodium ethoxide (1 mmol) were added to a stirred solution of methanol (30 ml) in a Schlenk flask and stirred for 30 min. Triphenyltin chloride (1 mmol) was then added to the reactor and the reaction mixture was stirred for 10 h at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from a solution of ether to yield colourless blocks of the title compound (yield 60%). Anal. Calcd (%) for C25H22O2Sn1Se1 (Mr = 552.08): C,54.39; H, 4.02. Found (%): C, 54.25; H, 4.28.

Refinement top

The H atoms were positioned geometrically, with methyl C—H distances of 0.96 Å and aromatic C—H distances of 0.93 Å, and refined as riding on their parent atoms, with Uiso(H) = 1.5Ueq(C) for the methyl group or Uiso(H) = 1.2Ueq(C) for the phenyl groups.

Structure description top

Organotin compounds have been attracting more and more attention due to their wide range of industrial applications and biological activities (Dubey & Roy, 2003). As a part of our ongoing investigations in this field (Guo et al., 2011), we have synthesized the title compound and present its crystal structure herein.

The asymmetric unit of the title compound is shown in Fig. 1. An extended one-dimensional zigzag chain structure running parallel to the c axis is formed by the bridging role of the 3-methylphenylseleninate anions (Fig. 2). The Se—O bond distances in the compound (Se1—O1 = 1.674 (4) Å; Se1—O2 = 1.698 (3) Å) are comparable to those found in a related polymeric organotin complex (Chandrasekhar et al., 1992). The Sn atom is five-coordinate in a slightly distorted trigonal-bipyramidal coordination geometry, provided by the phenyl groups in the equatorial positions and two O atoms of symmetry related 3-methylphenylseleninate groups in the axial positions. An intrachain C—H···O hydrogen bond is observed (Table 1).

For the biological activity of organotin compounds, see: Dubey & Roy (2003). For related structures, see: Chandrasekhar et al. (1992); Guo et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. View of the one-dimensional zigzag chain structure running parallel to the c axis in the title compound. H atoms have been omitted for clarity.
catena-Poly[[triphenyltin(IV)]-µ-3-methylphenylseleninato- κ2O:O'] top
Crystal data top
[Sn(C6H5)3(C7H7O2Se)]F(000) = 1088
Mr = 552.08Dx = 1.691 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3292 reflections
a = 12.3293 (11) Åθ = 2.7–27.0°
b = 14.3519 (16) ŵ = 2.88 mm1
c = 12.2865 (13) ÅT = 298 K
β = 94.324 (1)°Block, colourless
V = 2167.9 (4) Å30.35 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3821 independent reflections
Radiation source: fine-focus sealed tube2802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
phi and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1414
Tmin = 0.433, Tmax = 0.762k = 1717
10632 measured reflectionsl = 1412
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0361P)2 + 1.7781P]
where P = (Fo2 + 2Fc2)/3
3821 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Sn(C6H5)3(C7H7O2Se)]V = 2167.9 (4) Å3
Mr = 552.08Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3293 (11) ŵ = 2.88 mm1
b = 14.3519 (16) ÅT = 298 K
c = 12.2865 (13) Å0.35 × 0.14 × 0.10 mm
β = 94.324 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3821 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2802 reflections with I > 2σ(I)
Tmin = 0.433, Tmax = 0.762Rint = 0.061
10632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.09Δρmax = 1.11 e Å3
3821 reflectionsΔρmin = 0.71 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.70340 (3)0.19810 (3)0.84922 (3)0.02761 (13)
Se10.77442 (5)0.15274 (4)0.58249 (4)0.03037 (17)
O10.7026 (3)0.2382 (3)0.5185 (3)0.0369 (10)
O20.7000 (3)0.1284 (3)0.6898 (3)0.0358 (10)
C10.7357 (5)0.0477 (4)0.4897 (4)0.0301 (13)
C20.8174 (5)0.0095 (4)0.4585 (5)0.0391 (15)
H20.88870.00160.48550.047*
C30.7952 (6)0.0832 (5)0.3876 (5)0.0516 (18)
C40.6892 (6)0.0984 (5)0.3507 (5)0.0537 (19)
H40.67250.14820.30410.064*
C50.6067 (6)0.0415 (5)0.3812 (5)0.0542 (18)
H50.53540.05300.35450.065*
C60.6288 (5)0.0312 (4)0.4498 (5)0.0382 (15)
H60.57310.06970.46990.046*
C70.8869 (7)0.1441 (6)0.3487 (7)0.089 (3)
H7A0.86240.20750.34180.133*
H7B0.94880.14090.40080.133*
H7C0.90680.12200.27920.133*
C80.5467 (4)0.2559 (4)0.8132 (4)0.0289 (12)
C90.5205 (5)0.2946 (5)0.7122 (5)0.0475 (17)
H90.56760.28780.65700.057*
C100.4236 (6)0.3440 (6)0.6922 (6)0.066 (2)
H100.40700.37060.62390.080*
C110.3525 (6)0.3539 (5)0.7720 (7)0.061 (2)
H110.28860.38780.75860.073*
C120.3767 (5)0.3133 (5)0.8715 (6)0.0499 (18)
H120.32780.31800.92530.060*
C130.4728 (5)0.2655 (4)0.8929 (5)0.0394 (15)
H130.48870.23920.96140.047*
C140.8439 (5)0.2784 (4)0.8187 (4)0.0299 (13)
C150.8425 (5)0.3467 (4)0.7412 (5)0.0439 (16)
H150.77860.35740.69770.053*
C160.9327 (6)0.4001 (5)0.7254 (6)0.0566 (19)
H160.92880.44710.67310.068*
C171.0270 (6)0.3841 (5)0.7861 (6)0.058 (2)
H171.08830.41960.77500.070*
C181.0322 (5)0.3148 (5)0.8646 (6)0.0540 (19)
H181.09690.30390.90660.065*
C190.9419 (5)0.2624 (4)0.8804 (5)0.0394 (15)
H190.94600.21550.93290.047*
C200.7300 (5)0.0694 (4)0.9337 (4)0.0312 (13)
C210.6583 (5)0.0405 (4)1.0097 (5)0.0430 (16)
H210.59690.07571.02140.052*
C220.6796 (7)0.0412 (5)1.0677 (5)0.057 (2)
H220.63190.06071.11820.069*
C230.7689 (8)0.0929 (5)1.0516 (6)0.066 (2)
H230.78180.14771.09080.079*
C240.8394 (7)0.0651 (5)0.9787 (7)0.065 (2)
H240.90130.10030.96900.077*
C250.8198 (5)0.0154 (4)0.9186 (5)0.0472 (17)
H250.86780.03320.86750.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0338 (2)0.0285 (2)0.0204 (2)0.00111 (18)0.00173 (15)0.00267 (18)
Se10.0344 (3)0.0338 (3)0.0231 (3)0.0015 (3)0.0036 (2)0.0007 (3)
O10.053 (3)0.039 (2)0.018 (2)0.009 (2)0.0011 (18)0.0015 (18)
O20.053 (3)0.038 (2)0.016 (2)0.007 (2)0.0051 (17)0.0003 (18)
C10.050 (4)0.026 (3)0.015 (3)0.003 (3)0.007 (2)0.000 (2)
C20.045 (4)0.041 (3)0.032 (3)0.010 (3)0.004 (3)0.002 (3)
C30.077 (5)0.047 (4)0.032 (4)0.021 (4)0.014 (4)0.004 (3)
C40.086 (6)0.043 (4)0.033 (4)0.009 (4)0.005 (4)0.004 (3)
C50.059 (5)0.059 (4)0.045 (4)0.003 (4)0.000 (3)0.000 (4)
C60.038 (4)0.035 (3)0.042 (4)0.001 (3)0.005 (3)0.002 (3)
C70.106 (7)0.092 (7)0.070 (6)0.040 (6)0.017 (5)0.030 (5)
C80.034 (3)0.023 (3)0.029 (3)0.001 (3)0.000 (2)0.001 (3)
C90.047 (4)0.065 (4)0.032 (4)0.012 (3)0.009 (3)0.010 (3)
C100.058 (5)0.091 (6)0.050 (5)0.022 (4)0.003 (4)0.030 (4)
C110.042 (4)0.070 (5)0.070 (5)0.022 (4)0.003 (4)0.003 (4)
C120.036 (4)0.066 (5)0.050 (4)0.001 (3)0.014 (3)0.015 (4)
C130.038 (4)0.050 (4)0.031 (3)0.002 (3)0.008 (3)0.001 (3)
C140.037 (3)0.030 (3)0.024 (3)0.001 (2)0.009 (2)0.004 (3)
C150.051 (4)0.049 (4)0.031 (4)0.000 (3)0.005 (3)0.008 (3)
C160.064 (5)0.057 (4)0.051 (5)0.011 (4)0.017 (4)0.012 (4)
C170.048 (4)0.067 (5)0.063 (5)0.018 (4)0.018 (4)0.005 (4)
C180.030 (4)0.066 (5)0.065 (5)0.001 (3)0.003 (3)0.009 (4)
C190.038 (4)0.039 (3)0.041 (4)0.006 (3)0.002 (3)0.003 (3)
C200.046 (4)0.028 (3)0.018 (3)0.003 (3)0.003 (2)0.000 (2)
C210.056 (4)0.039 (4)0.034 (4)0.009 (3)0.007 (3)0.000 (3)
C220.089 (6)0.053 (4)0.030 (4)0.025 (4)0.001 (4)0.011 (3)
C230.103 (7)0.040 (4)0.051 (5)0.002 (4)0.015 (5)0.018 (4)
C240.081 (6)0.042 (4)0.069 (5)0.022 (4)0.008 (4)0.005 (4)
C250.056 (4)0.040 (4)0.046 (4)0.010 (3)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
Sn1—C82.119 (5)C10—H100.9300
Sn1—C202.132 (5)C11—C121.367 (10)
Sn1—C142.136 (5)C11—H110.9300
Sn1—O22.197 (4)C12—C131.378 (9)
Sn1—O1i2.273 (4)C12—H120.9300
Se1—O11.674 (4)C13—H130.9300
Se1—O21.698 (3)C14—C151.367 (8)
Se1—C11.928 (5)C14—C191.397 (8)
O1—Sn1ii2.273 (4)C15—C161.376 (9)
C1—C21.376 (7)C15—H150.9300
C1—C61.391 (8)C16—C171.354 (10)
C2—C31.384 (9)C16—H160.9300
C2—H20.9300C17—C181.383 (10)
C3—C41.368 (10)C17—H170.9300
C3—C71.533 (9)C18—C191.369 (9)
C4—C51.378 (9)C18—H180.9300
C4—H40.9300C19—H190.9300
C5—C61.356 (9)C20—C251.376 (8)
C5—H50.9300C20—C211.396 (8)
C6—H60.9300C21—C221.386 (9)
C7—H7A0.9600C21—H210.9300
C7—H7B0.9600C22—C231.354 (10)
C7—H7C0.9600C22—H220.9300
C8—C91.376 (8)C23—C241.356 (10)
C8—C131.393 (8)C23—H230.9300
C9—C101.395 (9)C24—C251.382 (9)
C9—H90.9300C24—H240.9300
C10—C111.371 (10)C25—H250.9300
C8—Sn1—C20123.1 (2)C9—C10—H10119.6
C8—Sn1—C14119.4 (2)C12—C11—C10119.2 (6)
C20—Sn1—C14117.1 (2)C12—C11—H11120.4
C8—Sn1—O292.10 (18)C10—C11—H11120.4
C20—Sn1—O291.81 (17)C11—C12—C13120.6 (6)
C14—Sn1—O292.88 (17)C11—C12—H12119.7
C8—Sn1—O1i88.08 (18)C13—C12—H12119.7
C20—Sn1—O1i85.07 (17)C12—C13—C8120.9 (6)
C14—Sn1—O1i90.18 (17)C12—C13—H13119.5
O2—Sn1—O1i176.38 (13)C8—C13—H13119.5
O1—Se1—O2102.58 (19)C15—C14—C19117.5 (5)
O1—Se1—C1101.3 (2)C15—C14—Sn1122.8 (4)
O2—Se1—C1100.0 (2)C19—C14—Sn1119.8 (4)
Se1—O1—Sn1ii133.3 (2)C14—C15—C16122.0 (6)
Se1—O2—Sn1128.6 (2)C14—C15—H15119.0
C2—C1—C6119.6 (5)C16—C15—H15119.0
C2—C1—Se1118.5 (5)C17—C16—C15119.8 (7)
C6—C1—Se1121.8 (4)C17—C16—H16120.1
C1—C2—C3121.1 (6)C15—C16—H16120.1
C1—C2—H2119.4C16—C17—C18119.9 (6)
C3—C2—H2119.4C16—C17—H17120.0
C4—C3—C2117.9 (6)C18—C17—H17120.0
C4—C3—C7120.9 (7)C19—C18—C17120.0 (6)
C2—C3—C7121.1 (7)C19—C18—H18120.0
C3—C4—C5121.5 (7)C17—C18—H18120.0
C3—C4—H4119.3C18—C19—C14120.8 (6)
C5—C4—H4119.3C18—C19—H19119.6
C6—C5—C4120.4 (7)C14—C19—H19119.6
C6—C5—H5119.8C25—C20—C21118.7 (6)
C4—C5—H5119.8C25—C20—Sn1121.2 (4)
C5—C6—C1119.4 (6)C21—C20—Sn1120.1 (4)
C5—C6—H6120.3C22—C21—C20119.3 (6)
C1—C6—H6120.3C22—C21—H21120.3
C3—C7—H7A109.5C20—C21—H21120.3
C3—C7—H7B109.5C23—C22—C21120.9 (7)
H7A—C7—H7B109.5C23—C22—H22119.5
C3—C7—H7C109.5C21—C22—H22119.5
H7A—C7—H7C109.5C22—C23—C24120.2 (7)
H7B—C7—H7C109.5C22—C23—H23119.9
C9—C8—C13118.2 (5)C24—C23—H23119.9
C9—C8—Sn1119.6 (4)C23—C24—C25120.3 (7)
C13—C8—Sn1121.7 (4)C23—C24—H24119.9
C8—C9—C10120.2 (6)C25—C24—H24119.9
C8—C9—H9119.9C20—C25—C24120.6 (7)
C10—C9—H9119.9C20—C25—H25119.7
C11—C10—C9120.8 (7)C24—C25—H25119.7
C11—C10—H10119.6
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.932.573.487 (7)169

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C7H7O2Se)]
Mr552.08
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.3293 (11), 14.3519 (16), 12.2865 (13)
β (°) 94.324 (1)
V3)2167.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)2.88
Crystal size (mm)0.35 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.433, 0.762
No. of measured, independent and
observed [I > 2σ(I)] reflections
10632, 3821, 2802
Rint0.061
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.09
No. of reflections3821
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.71

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O10.932.573.487 (7)169.3
 

Acknowledgements

We thank the National Natural Science Foundation of Shandong Province (ZR2010BL019) for financial support.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChandrasekhar, V., Muralidhara, M. G., Thomas, K. R. J. & Tiekink, E. R. T. (1992). Inorg. Chem. 31, 4707–4708.  CSD CrossRef CAS Web of Science Google Scholar
First citationDubey, S. K. & Roy, U. (2003). Appl. Organomet. Chem. 17, 3–8.  Web of Science CrossRef CAS Google Scholar
First citationGuo, M., Ru, J. & Zhang, R. (2011). Acta Cryst. E67, m152.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds