organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(2,5-Di­chloro­benz­yl­oxy)-2-phenyl­eth­yl]-1H-benzotriazole

aDepartment of Chemistry, Zonguldak Karaelmas University, 67100 Zonguldak, Turkey, bDepartment of Chemistry, Southampton University, Southampton SO17 1BJ, England, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 21 October 2011; accepted 26 October 2011; online 5 November 2011)

In the title mol­ecule, C21H17Cl2N3O, the benzotriazole ring is oriented at dihedral angles of 48.72 (6) and 62.94 (5)°, respectively, to the phenyl and benzene rings and the dihedral angle between the phenyl and benzene rings is 88.95 (6)°. In the crystal, weak C—H⋯N hydrogen bonds link the mol­ecules into chains. ππ contacts between the triazole and benzene rings [centroid–centroid distance = 3.678 (1) Å] and a weak C—H⋯π inter­action are also observed.

Related literature

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998[Hirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 1973-1978.]); Yu et al. (2003[Yu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141-2144.]); Kopanska et al. (2004[Kopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617-2624.]). For related structures, see: Katritzky et al. (2001[Katritzky, A. R., Zhang, S. M., Kurz, T., Wang, M. Y. & Steel, P. J. (2001). Org. Lett. 3, 2807-2809.]); Özel Güven et al. (2007a[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233-2236.],b[Özel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731-734.], 2010a[Özel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010a). Acta Cryst. E66, o959.],b[Özel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010b). Acta Cryst. E66, o1246-o1247.], 2011[Özel Güven, Ö., Çapanlar, S., Coles, S. J. & Hökelek, T. (2011). Acta Cryst. E67, o2510.]); Swamy et al. (2006[Swamy, S. N., Basappa, Sarala G., Priya, B. S., Gaonkar, S. L., Prasad, J. S. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999-1004.]).

[Scheme 1]

Experimental

Crystal data
  • C21H17Cl2N3O

  • Mr = 398.28

  • Triclinic, [P \overline 1]

  • a = 8.6970 (3) Å

  • b = 8.8385 (3) Å

  • c = 13.3918 (4) Å

  • α = 105.840 (3)°

  • β = 104.453 (3)°

  • γ = 99.713 (2)°

  • V = 927.47 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 120 K

  • 0.20 × 0.13 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.930, Tmax = 0.971

  • 21356 measured reflections

  • 4271 independent reflections

  • 3391 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.120

  • S = 1.12

  • 4271 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯N3i 0.93 2.62 3.549 (2) 174
C18—H18⋯Cg1ii 0.93 2.69 3.605 (2) 168
Symmetry codes: (i) x+1, y, z+1; (ii) -x, -y, -z.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Clotrimazole, miconazole, econazole, ketoconazole, itraconazole and fluconazole have been developed for clinical uses as antifungal agents. Lately, similar structures containing benzimidazole ring have been reported as antibacterial agents (Özel Güven et al., 2007a,b). Benzotriazole derivatives also exhibit a good degree of analgesic, anti-inflammatory, diuretic, antiviral and antihypertensive activities (Hirokawa et al., 1998; Yu et al., 2003; Kopanska et al., 2004). Crystal structures of benzotriazole ring possesing compounds have been reported before (Katritzky et al., 2001; Swamy et al., 2006; Özel Güven et al., 2010a,b; Özel Güven et al., 2011). Now, we report herein the crystal structure of the title benzotriazole derivative, (I).

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. The planar benzotriazole ring [B (N1-N3/C9-C14)] is oriented with respect to the phenyl [A (C2-C7)] and benzene [C (C16-C21)] rings at dihedral angles of A/B = 48.72 (6) and B/C = 62.94 (5) °. The dihedral angle between phenyl and benzene rings is A/C = 88.95 (6)°. Atom C8 is -0.017 (2) Å away from the plane of the benzotriazole ring and atom C1 is 0.069 (2) Å away from the plane of the phenyl ring, while atoms O1 and C15 are -0.052 (1) and 0.010 (2) Å away from the plane of the benzene ring.

In the crystal, weak C—H···N hydrogen bonds (table 1) link the molecules into chains (Fig. 2). There also exists a ππ contact between the triazole and benzene rings, Cg4—Cg5i, may further stabilize the structure [centroid-centroid distance = 3.678 (1) Å; symmetry code: (i) 2 - x, 1 - y, 1 - z; Cg4 and Cg5 are the centroids of the rings D (N1—N3/C9/C14) and E (C9—C14)]. A weak C—H···π interaction (Table 1) may stabilize the structure.

Related literature top

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998); Yu et al. (2003); Kopanska et al. (2004). For related structures, see: Katritzky et al. (2001); Özel Güven et al. (2007a,b, 2010a,b, 2011); Swamy et al. (2006).

Experimental top

The title compound was synthesized by the reaction of 2-(1H-benzotriazol-1-yl)-1-phenylethanol (Özel Güven et al., 2010a) with aryl halide using NaH.2-(1H-benzotriazol-1-yl)-1- phenylethanol (200 mg, 0.84 mmol) was dissolved in DMF (3-4 ml). NaH (33 mg, 0.84 mmol) was added to the solution portionwise. After stirring the mixture a few minutes, 2,5-dichlorobenzyl bromide (200 mg, 0.84 mmol) was added dropwise. Then, the reaction mixture was stirred additional 3 h at room temperature. Adding methanol (5 ml) reaction was stopped. After evaporation of the solvent, dichloromethane was added to the reaction mixture and extracted with water. Then, the organic phase was separated, dried, filtered and evaporated. The precipitate formed was purified by column chromatography using chloroform and crystallized from iso-propanol to obtain colorless crystals suitable for X-ray analysis (yield; 231 mg, 69%).

Refinement top

H atoms were positioned geometrically with C—H = 0.98, 0.93 and 0.97 Å for methine, aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Clotrimazole, miconazole, econazole, ketoconazole, itraconazole and fluconazole have been developed for clinical uses as antifungal agents. Lately, similar structures containing benzimidazole ring have been reported as antibacterial agents (Özel Güven et al., 2007a,b). Benzotriazole derivatives also exhibit a good degree of analgesic, anti-inflammatory, diuretic, antiviral and antihypertensive activities (Hirokawa et al., 1998; Yu et al., 2003; Kopanska et al., 2004). Crystal structures of benzotriazole ring possesing compounds have been reported before (Katritzky et al., 2001; Swamy et al., 2006; Özel Güven et al., 2010a,b; Özel Güven et al., 2011). Now, we report herein the crystal structure of the title benzotriazole derivative, (I).

In the molecule of the title compound (Fig. 1), the bond lengths and angles are generally within normal ranges. The planar benzotriazole ring [B (N1-N3/C9-C14)] is oriented with respect to the phenyl [A (C2-C7)] and benzene [C (C16-C21)] rings at dihedral angles of A/B = 48.72 (6) and B/C = 62.94 (5) °. The dihedral angle between phenyl and benzene rings is A/C = 88.95 (6)°. Atom C8 is -0.017 (2) Å away from the plane of the benzotriazole ring and atom C1 is 0.069 (2) Å away from the plane of the phenyl ring, while atoms O1 and C15 are -0.052 (1) and 0.010 (2) Å away from the plane of the benzene ring.

In the crystal, weak C—H···N hydrogen bonds (table 1) link the molecules into chains (Fig. 2). There also exists a ππ contact between the triazole and benzene rings, Cg4—Cg5i, may further stabilize the structure [centroid-centroid distance = 3.678 (1) Å; symmetry code: (i) 2 - x, 1 - y, 1 - z; Cg4 and Cg5 are the centroids of the rings D (N1—N3/C9/C14) and E (C9—C14)]. A weak C—H···π interaction (Table 1) may stabilize the structure.

For general background to the biological activity of benzotriazole derivatives, see: Hirokawa et al. (1998); Yu et al. (2003); Kopanska et al. (2004). For related structures, see: Katritzky et al. (2001); Özel Güven et al. (2007a,b, 2010a,b, 2011); Swamy et al. (2006).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
1-[2-(2,5-Dichlorobenzyloxy)-2-phenylethyl]-1H-benzotriazole top
Crystal data top
C21H17Cl2N3OZ = 2
Mr = 398.28F(000) = 412
Triclinic, P1Dx = 1.426 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6970 (3) ÅCell parameters from 14295 reflections
b = 8.8385 (3) Åθ = 2.9–27.5°
c = 13.3918 (4) ŵ = 0.37 mm1
α = 105.840 (3)°T = 120 K
β = 104.453 (3)°Block, colorless
γ = 99.713 (2)°0.20 × 0.13 × 0.08 mm
V = 927.47 (6) Å3
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4271 independent reflections
Radiation source: fine-focus sealed tube3391 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
φ and ω scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1111
Tmin = 0.930, Tmax = 0.971k = 1111
21356 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.2097P]
where P = (Fo2 + 2Fc2)/3
4271 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C21H17Cl2N3Oγ = 99.713 (2)°
Mr = 398.28V = 927.47 (6) Å3
Triclinic, P1Z = 2
a = 8.6970 (3) ÅMo Kα radiation
b = 8.8385 (3) ŵ = 0.37 mm1
c = 13.3918 (4) ÅT = 120 K
α = 105.840 (3)°0.20 × 0.13 × 0.08 mm
β = 104.453 (3)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
4271 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3391 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.971Rint = 0.055
21356 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.12Δρmax = 0.47 e Å3
4271 reflectionsΔρmin = 0.50 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.14499 (5)0.89780 (6)0.93114 (4)0.02094 (14)
Cl20.71261 (6)0.46919 (6)1.10951 (4)0.02373 (14)
O10.61227 (15)0.66913 (16)0.77690 (10)0.0196 (3)
N10.25973 (19)0.61345 (19)0.54291 (12)0.0178 (3)
N20.2767 (2)0.5667 (2)0.44128 (12)0.0224 (4)
N30.1660 (2)0.6091 (2)0.37527 (12)0.0229 (4)
C10.5343 (2)0.7104 (2)0.68405 (14)0.0164 (4)
H10.59810.69650.63290.020*
C20.5167 (2)0.8836 (2)0.71551 (14)0.0171 (4)
C30.5459 (2)0.9801 (2)0.65228 (15)0.0224 (4)
H30.58030.93940.59220.027*
C40.5241 (3)1.1372 (3)0.67827 (18)0.0297 (5)
H40.54511.20160.63620.036*
C50.4709 (2)1.1970 (3)0.76725 (18)0.0307 (5)
H50.45401.30090.78410.037*
C60.4431 (2)1.1023 (3)0.83084 (17)0.0304 (5)
H60.40841.14320.89080.036*
C70.4665 (2)0.9469 (2)0.80589 (15)0.0230 (4)
H70.44860.88440.84960.028*
C80.3692 (2)0.5830 (2)0.63280 (14)0.0200 (4)
H8A0.38840.47650.60630.024*
H8B0.31640.58210.68850.024*
C90.1356 (2)0.6899 (2)0.54283 (14)0.0172 (4)
C100.0700 (2)0.7613 (2)0.62427 (15)0.0214 (4)
H100.10980.76260.69580.026*
C110.0566 (2)0.8293 (3)0.59197 (16)0.0244 (4)
H110.10250.87950.64360.029*
C120.1196 (2)0.8254 (2)0.48260 (16)0.0238 (4)
H120.20640.87170.46430.029*
C130.0554 (2)0.7549 (2)0.40323 (15)0.0220 (4)
H130.09680.75270.33160.026*
C140.0754 (2)0.6861 (2)0.43453 (14)0.0179 (4)
C150.7840 (2)0.7424 (2)0.81794 (14)0.0184 (4)
H15A0.80370.85850.83090.022*
H15B0.83600.69710.76460.022*
C160.8562 (2)0.7120 (2)0.92259 (14)0.0157 (4)
C171.0225 (2)0.7779 (2)0.98111 (14)0.0159 (4)
C181.0947 (2)0.7531 (2)1.07830 (14)0.0190 (4)
H181.20570.79981.11570.023*
C191.0001 (2)0.6582 (2)1.11903 (14)0.0197 (4)
H191.04640.63881.18340.024*
C200.8346 (2)0.5930 (2)1.06155 (14)0.0176 (4)
C210.7616 (2)0.6186 (2)0.96475 (14)0.0173 (4)
H210.65010.57350.92840.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0188 (2)0.0214 (3)0.0219 (2)0.00319 (19)0.00663 (19)0.00705 (19)
Cl20.0264 (3)0.0283 (3)0.0226 (2)0.0087 (2)0.0116 (2)0.0132 (2)
O10.0155 (7)0.0245 (7)0.0166 (6)0.0027 (5)0.0012 (5)0.0103 (5)
N10.0169 (8)0.0191 (8)0.0136 (7)0.0020 (6)0.0000 (6)0.0053 (6)
N20.0253 (9)0.0251 (9)0.0137 (7)0.0057 (7)0.0029 (7)0.0050 (7)
N30.0253 (9)0.0257 (9)0.0157 (7)0.0075 (7)0.0026 (7)0.0066 (7)
C10.0153 (9)0.0209 (9)0.0124 (8)0.0048 (7)0.0015 (7)0.0070 (7)
C20.0088 (8)0.0200 (9)0.0168 (8)0.0013 (7)0.0019 (7)0.0042 (7)
C30.0172 (10)0.0272 (11)0.0205 (9)0.0043 (8)0.0015 (8)0.0094 (8)
C40.0226 (11)0.0273 (11)0.0355 (12)0.0043 (9)0.0021 (9)0.0160 (9)
C50.0179 (10)0.0170 (10)0.0434 (12)0.0060 (8)0.0049 (9)0.0007 (9)
C60.0184 (10)0.0312 (12)0.0318 (11)0.0041 (9)0.0057 (9)0.0014 (9)
C70.0178 (10)0.0261 (11)0.0200 (9)0.0016 (8)0.0044 (8)0.0033 (8)
C80.0198 (10)0.0202 (10)0.0157 (8)0.0025 (8)0.0020 (7)0.0074 (7)
C90.0144 (9)0.0175 (9)0.0155 (8)0.0013 (7)0.0001 (7)0.0065 (7)
C100.0186 (10)0.0256 (10)0.0177 (9)0.0013 (8)0.0046 (8)0.0074 (8)
C110.0214 (10)0.0270 (11)0.0240 (10)0.0037 (8)0.0086 (8)0.0072 (8)
C120.0165 (10)0.0230 (10)0.0291 (10)0.0025 (8)0.0026 (8)0.0101 (8)
C130.0218 (10)0.0204 (10)0.0194 (9)0.0005 (8)0.0000 (8)0.0086 (8)
C140.0180 (9)0.0166 (9)0.0143 (8)0.0011 (7)0.0005 (7)0.0049 (7)
C150.0169 (9)0.0193 (10)0.0159 (8)0.0033 (8)0.0010 (7)0.0055 (7)
C160.0169 (9)0.0148 (9)0.0132 (8)0.0068 (7)0.0029 (7)0.0013 (7)
C170.0157 (9)0.0156 (9)0.0184 (8)0.0064 (7)0.0070 (7)0.0056 (7)
C180.0132 (9)0.0241 (10)0.0155 (8)0.0065 (8)0.0003 (7)0.0024 (7)
C190.0210 (10)0.0270 (10)0.0135 (8)0.0124 (8)0.0050 (7)0.0072 (8)
C200.0188 (9)0.0200 (9)0.0162 (8)0.0069 (8)0.0079 (7)0.0060 (7)
C210.0142 (9)0.0188 (9)0.0158 (8)0.0052 (7)0.0018 (7)0.0032 (7)
Geometric parameters (Å, º) top
Cl1—C171.7518 (19)C8—H8B0.9700
Cl2—C201.7514 (19)C9—C101.404 (3)
O1—C11.432 (2)C10—C111.374 (3)
O1—C151.422 (2)C10—H100.9300
N1—N21.363 (2)C11—H110.9300
N1—C81.456 (2)C12—C111.418 (3)
N1—C91.366 (2)C12—H120.9300
N3—N21.314 (2)C13—C121.372 (3)
N3—C141.383 (2)C13—C141.405 (3)
C1—C81.530 (3)C13—H130.9300
C1—H10.9800C14—C91.403 (2)
C2—C11.517 (3)C15—H15A0.9700
C2—C31.392 (3)C15—H15B0.9700
C2—C71.395 (3)C16—C151.501 (2)
C3—C41.395 (3)C16—C171.395 (3)
C3—H30.9300C18—C171.390 (3)
C4—H40.9300C18—H180.9300
C5—C41.388 (3)C19—C181.385 (3)
C5—H50.9300C19—C201.386 (3)
C6—C51.381 (3)C19—H190.9300
C6—H60.9300C21—C161.391 (3)
C7—C61.385 (3)C21—C201.390 (2)
C7—H70.9300C21—H210.9300
C8—H8A0.9700
C15—O1—C1111.82 (13)C9—C10—H10122.0
N2—N1—C8120.18 (15)C11—C10—C9115.98 (17)
N2—N1—C9110.27 (14)C11—C10—H10122.0
C9—N1—C8129.53 (15)C10—C11—C12122.25 (19)
N3—N2—N1108.69 (15)C10—C11—H11118.9
N2—N3—C14108.37 (15)C12—C11—H11118.9
O1—C1—C2112.30 (14)C11—C12—H12119.2
O1—C1—C8103.20 (14)C13—C12—C11121.54 (19)
O1—C1—H1109.3C13—C12—H12119.2
C2—C1—C8113.11 (15)C12—C13—C14117.29 (17)
C2—C1—H1109.3C12—C13—H13121.4
C8—C1—H1109.3C14—C13—H13121.4
C3—C2—C1120.21 (16)N3—C14—C9108.34 (16)
C3—C2—C7119.01 (18)N3—C14—C13131.14 (17)
C7—C2—C1120.75 (16)C9—C14—C13120.51 (17)
C2—C3—C4120.57 (19)O1—C15—C16109.65 (14)
C2—C3—H3119.7O1—C15—H15A109.7
C4—C3—H3119.7O1—C15—H15B109.7
C3—C4—H4120.2C16—C15—H15A109.7
C5—C4—C3119.61 (19)C16—C15—H15B109.7
C5—C4—H4120.2H15A—C15—H15B108.2
C4—C5—H5120.0C17—C16—C15120.42 (16)
C6—C5—C4120.05 (19)C21—C16—C15121.89 (16)
C6—C5—H5120.0C21—C16—C17117.70 (16)
C5—C6—C7120.41 (19)C16—C17—Cl1118.97 (14)
C5—C6—H6119.8C18—C17—Cl1118.58 (14)
C7—C6—H6119.8C18—C17—C16122.45 (17)
C2—C7—H7119.8C17—C18—H18120.3
C6—C7—C2120.33 (19)C19—C18—C17119.48 (17)
C6—C7—H7119.8C19—C18—H18120.3
N1—C8—C1112.73 (15)C18—C19—C20118.36 (16)
N1—C8—H8A109.0C18—C19—H19120.8
N1—C8—H8B109.0C20—C19—H19120.8
C1—C8—H8A109.0C19—C20—Cl2119.43 (14)
C1—C8—H8B109.0C19—C20—C21122.33 (17)
H8A—C8—H8B107.8C21—C20—Cl2118.22 (14)
N1—C9—C10133.25 (16)C16—C21—H21120.2
N1—C9—C14104.33 (16)C20—C21—C16119.67 (17)
C14—C9—C10122.42 (18)C20—C21—H21120.2
C15—O1—C1—C274.67 (18)C2—C7—C6—C50.7 (3)
C15—O1—C1—C8163.19 (14)N1—C9—C10—C11179.31 (19)
C1—O1—C15—C16173.24 (14)C14—C9—C10—C110.6 (3)
C8—N1—N2—N3179.18 (16)C9—C10—C11—C121.1 (3)
C9—N1—N2—N30.7 (2)C13—C12—C11—C100.9 (3)
N2—N1—C8—C181.4 (2)C14—C13—C12—C110.1 (3)
C9—N1—C8—C196.7 (2)C12—C13—C14—N3179.28 (19)
N2—N1—C9—C10179.3 (2)C12—C13—C14—C90.4 (3)
N2—N1—C9—C140.61 (19)N3—C14—C9—N10.3 (2)
C8—N1—C9—C101.0 (3)N3—C14—C9—C10179.59 (17)
C8—N1—C9—C14178.92 (17)C13—C14—C9—N1179.96 (17)
C14—N3—N2—N10.5 (2)C13—C14—C9—C100.1 (3)
N2—N3—C14—C90.1 (2)C17—C16—C15—O1177.33 (15)
N2—N3—C14—C13179.59 (19)C21—C16—C15—O12.6 (2)
O1—C1—C8—N1173.19 (14)C15—C16—C17—Cl10.5 (2)
C2—C1—C8—N151.6 (2)C15—C16—C17—C18179.99 (17)
C3—C2—C1—O1139.00 (17)C21—C16—C17—Cl1179.40 (13)
C3—C2—C1—C8104.68 (19)C21—C16—C17—C180.1 (3)
C7—C2—C1—O143.0 (2)C19—C18—C17—Cl1179.81 (14)
C7—C2—C1—C873.4 (2)C19—C18—C17—C160.7 (3)
C1—C2—C3—C4177.58 (17)C20—C19—C18—C171.0 (3)
C7—C2—C3—C40.5 (3)C18—C19—C20—Cl2178.73 (14)
C1—C2—C7—C6176.83 (17)C18—C19—C20—C210.5 (3)
C3—C2—C7—C61.2 (3)C20—C21—C16—C15179.49 (16)
C2—C3—C4—C50.8 (3)C20—C21—C16—C170.6 (3)
C6—C5—C4—C31.3 (3)C16—C21—C20—Cl2177.96 (13)
C7—C6—C5—C40.6 (3)C16—C21—C20—C190.3 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···N3i0.932.623.549 (2)174
C18—H18···Cg1ii0.932.693.605 (2)168
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formulaC21H17Cl2N3O
Mr398.28
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.6970 (3), 8.8385 (3), 13.3918 (4)
α, β, γ (°)105.840 (3), 104.453 (3), 99.713 (2)
V3)927.47 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.20 × 0.13 × 0.08
Data collection
DiffractometerBruker–Nonius KappaCCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.930, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
21356, 4271, 3391
Rint0.055
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.120, 1.12
No. of reflections4271
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.50

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19···N3i0.932.623.549 (2)174
C18—H18···Cg1ii0.932.693.605 (2)168
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z.
 

Acknowledgements

The authors acknowledge the Zonguldak Karaelmas University Research Fund (project No: 2010-13-02-05).

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHirokawa, Y., Yamazaki, H., Yoshida, N. & Kato, S. (1998). Bioorg. Med. Chem. Lett. 8, 1973–1978.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKatritzky, A. R., Zhang, S. M., Kurz, T., Wang, M. Y. & Steel, P. J. (2001). Org. Lett. 3, 2807–2809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKopanska, K., Najda, A., Zebrowska, J., Chomicz, L., Piekarczyk, J., Myjak, P. & Bretner, M. (2004). Bioorg. Med. Chem. 12, 2617–2624.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationÖzel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010a). Acta Cryst. E66, o959.  Web of Science CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Bayraktar, M., Coles, S. J. & Hökelek, T. (2010b). Acta Cryst. E66, o1246–o1247.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Çapanlar, S., Coles, S. J. & Hökelek, T. (2011). Acta Cryst. E67, o2510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007a). Bioorg. Med. Chem. Lett. 17, 2233–2236.  Web of Science PubMed Google Scholar
First citationÖzel Güven, Ö., Erdoğan, T., Göker, H. & Yıldız, S. (2007b). J. Heterocycl. Chem. 44, 731–734.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, S. N., Basappa, Sarala G., Priya, B. S., Gaonkar, S. L., Prasad, J. S. & Rangappa, K. S. (2006). Bioorg. Med. Chem. Lett. 16, 999–1004.  Google Scholar
First citationYu, K. L., Zhang, Y., Civiello, R. L., Kadow, K. F., Cianci, C., Krystal, M. & Meanwell, N. A. (2003). Bioorg. Med. Chem. Lett. 13, 2141–2144.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds