metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ-Oxido-bis­­[chlorido(4,4′-di-tert-butyl-2,2′-bi­pyridine-κ2N,N′)dioxido­molybdenum(VI)] 0.2-hydrate

aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, and bEscola Superior de Tecnologia, Instituto Politécnico de Setúbal, 2910-761 Setúbal, Portugal
*Correspondence e-mail: filipe.paz@ua.pt

(Received 4 November 2011; accepted 7 November 2011; online 12 November 2011)

The title hydrate, [Mo2Cl2O5(C18H24N2)2]·0.2H2O, has been isolated as the oxidation product of [Mo(η3-C3H5)Cl(CO)2(di-t-Bu-bipy)] (where di-t-Bu-bipy is 4,4′-di-tert-butyl-2,2′-bipyridine). A μ-oxide ligand bridges two similar MoCl(di-t-Bu-bipy)O2 units, having the terminal oxide ligands mutually cis, and the chloride and μ-oxide trans to each other. In the binuclear complex, the coordination geometries of the metal atoms can be described as highly distorted octa­hedra. Individual complexes co-crystallize with a partially occupied water mol­ecule of crystallization (occupancy factor = 0.20; H atoms not located), with the crystal packing being mediated by the need to effectively fill the available space. A number of weak C—H⋯O and C—H⋯Cl inter­actions are present.

Related literature

For general background to dioxidomolybdenum(VI) com­plexes, see: Arzoumanian et al. (2006[Arzoumanian, H., Bakhtchadjian, R., Agrifoglio, G., Atencio, R. & Briceno, A. (2006). Transition Met. Chem. 31, 681-689.]); Jeyakumar & Chand (2009[Jeyakumar, K. & Chand, D. K. (2009). J. Chem. Sci. 121, 111-123.]); Kühn et al. (2002[Kühn, F. E., Groarke, M., Bencze, E., Herdtweck, E., Prazeres, A., Santos, A. M., Calhorda, M. J., Romão, C. C., Gonçalves, I. S., Lopes, A. D. & Pillinger, M. (2002). Chem. Eur. J. 8, 2370-2383.]); Rodrigues et al. (2004[Rodrigues, C. W., Limberg, C. & Pritzkow, H. (2004). Chem. Commun. pp. 2734-2735.]). For studies on molybdenum complexes from our research groups, see: Coelho et al. (2011[Coelho, A. C., Nolasco, M., Balula, S. S., Antunes, M. M., Pereira, C. C. L., Paz, F. A. A., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Klinowski, J. & Gonçalves, I. S. (2011). Inorg. Chem. 50, 525-538.]); Fernandes et al. (2011a[Fernandes, J. A., Gomes, A. C., Figueiredo, S., Gago, S., Lopes, A. D., Pillinger, M., Ribeiro-Claro, P. J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2010a). Acta Cryst. E66, m1005-m1006.],b[Fernandes, J. A., Gomes, A. C., Figueiredo, S., Gago, S., Ribeiro-Claro, P. J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2010b). Acta Cryst. E66, m862-m863.], 2011[Fernandes, J. A., Almeida Paz, F. A. & Romão, C. C. (2011). Acta Cryst. E67, m288-m289.]); Gago et al. (2009[Gago, S., Neves, P., Monteiro, B., Pessêgo, M., Lopes, A. D., Valente, A. A., Paz, F. A. A., Pillinger, M., Moreira, J., Silva, C. M. & Gonçalves, I. S. (2009). Eur. J. Inorg. Chem. pp. 4528-4537.]); Nunes et al. (2003[Nunes, C. D., Valente, A. A., Pillinger, M., Rocha, J. & Gonçalves, I. S. (2003). Chem. Eur. J. 9, 4380-4390.]); Pereira et al. (2007[Pereira, C. C. L., Balula, S. S., Paz, F. A. A., Valente, A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2007). Inorg. Chem. 46, 8508-8510.]).

[Scheme 1]

Experimental

Crystal data
  • [Mo2Cl2O5(C18H24N2)2]·0.2H2O

  • Mr = 883.17

  • Monoclinic, P 21 /n

  • a = 16.9997 (7) Å

  • b = 12.7444 (6) Å

  • c = 18.4609 (8) Å

  • β = 99.582 (2)°

  • V = 3943.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 150 K

  • 0.08 × 0.06 × 0.03 mm

Data collection
  • Bruker X8 KappaCCD APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.938, Tmax = 0.976

  • 54239 measured reflections

  • 10578 independent reflections

  • 7469 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.086

  • S = 1.02

  • 10578 reflections

  • 463 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Selected bond lengths (Å)

Mo1—O1 1.8920 (19)
Mo1—O2 1.6972 (19)
Mo1—O3 1.696 (2)
Mo1—N1 2.330 (2)
Mo1—N2 2.323 (2)
Mo1—Cl1 2.4895 (8)
Mo2—O1 1.9274 (19)
Mo2—O4 1.6975 (19)
Mo2—O5 1.694 (2)
Mo2—N3 2.328 (2)
Mo2—N4 2.304 (2)
Mo2—Cl2 2.4283 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O1i 0.95 2.52 3.341 (3) 145
C34—H34A⋯Cl1ii 0.98 2.77 3.748 (4) 174
C35—H35A⋯O4i 0.98 2.54 3.421 (4) 149
C12—H12C⋯O1W 0.98 2.69 3.641 (16) 163
C18—H18B⋯O1W 0.98 2.10 2.970 (18) 147
O1W⋯Cl2i     3.573 (18)  
O1W⋯O5iii     3.236 (17)  
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2005[Bruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009[Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dioxomolybdenum(VI) complexes are known to be highly active catalysts in the epoxidation of olefins (Kühn et al., 2002; Jeyakumar & Chand, 2009). In these complexes the active metal-oxo functional group may appear with two distinct structural motifs: as a terminal oxo (MoO) or as a bridging µ-oxo (Mo—O—Mo). Compounds with the latter type of bridging group are significantly less studied but have been shown to be intermediates in a handful of interesting catalytic systems (Nunes et al., 2003). Following our on-going interest in the study of this type of family of compounds (Fernandes et al., 2010a,b, 2011) we have recently described the synthesis and structural details of the oxo-µ-oxo complexes [Mo2O4(µ-O)Cl2(DMF)4] (Gago et al., 2009), [Mo2O4(µ-O)Cl2(pyrazole)4] (Pereira et al., 2007), and [Mo2O4(µ-O)Cl2(PzPy)2] (where PzPy stands for 2-(3-pyrazolyl)pyridine) (Coelho et al., 2011). Noteworthy, these complexes were found to be highly active in epoxidation catalysis with tert-butylhydroperoxide. The title compound, a µ-oxo dimer with empirical formula [Mo2O4(µ-O)Cl2(di-t-Bu-bipy)2] (where di-t-Bu-bipy stands for 4,4'-di-tert-butyl-2,2'-bipyridine) which simultaneously contains terminal MoO oxo groups and a bridging µ-oxo one, has been recently synthesized by Arzoumanian et al. (2006) and we now wish to report its crystal structure at the low temperature of 150 K.

The asymmetric unit of the title compound comprises a whole binuclear molecular entity, C36H48Cl2Mo2N4O5, and a partially occupied (20%) water molecule of crystallization. The binuclear complex is formed by two crystallographically independent Mo(VI) centres bridged via a µ-oxo group imposing a Mo···Mo distance of 3.6273 (4) Å. The chemical environment of these metallic centers is very similar, being composed of a pair of cis-positioned terminal oxo ligands, a chlorido and a N,N-chelating 4,4'-di-tert-butyl-2,2'-bipyridine (di-t-Bu-bipy) molecule as depicted in Fig. 1. The coordination environments around the metal centers can be described as highly distorted octahedra due to, on the one hand, the existence of chlorido ligands (trans-positioned with respect to the µ-oxo ligand) and, on the other, to the typical trans effect of the MoO groups: while the Mo—Obridge distances are 1.8920 (19) and 1.9274 (19) Å, the Mo—Oterminal distances range from 1.694 (2) to 1.6975 (19) Å; the Mo—Cl distances are 2.4895 (8) and 2.4283 (8) Å and the Mo—N bonds range from 2.304 (2) to 2.330 (2) Å. The cis and trans octahedral angles are in the ranges of 68.95 (8) to 107.35 (10)° and 157.51 (6) to 160.69 (9)°, respectively. The Mo1—O1—Mo2 kink angle through the µ-oxo bridge is 143.50 (10)° which, to the best of our knowledge, constitutes the smallest reported to date for related binuclear dioxomolybdenum(VI) complexes: the analogous value for [Mo2O4(µ-O)Cl2(DMF)4] is ca 175° and that for [Mo2O4(µ-O)Cl2(pyrazole)4] is ca 151°, and those for the two conformers of [Mo2O4(µ-O)Cl2(PzPy)2] are ca 156 and 180°. We attribute this structural feature to the considerable steric hindrance associated with the di-t-Bu-bipy moieties, mostly due to the pendant —CH3 groups. In this context, the two average planes containing the aromatic rings of the two crystallographically independent di-t-Bu-bipy molecules subtend an angle of ca 34°, which contrasts with the parallel nature observed for the two conformers of [Mo2O4(µ-O)Cl2(PzPy)2]. Noteworthy, the torsion angles N1—Mo1···Mo2—N4 and N2—Mo1···Mo2—N3 are -18.40 (7) and -157.03 (9)°, respectively.

The crystal packing is mainly driven by the need to effectively fill the available space (van de Waals contacts) in conjunction with several weak supramolecular interactions, namely weak C—H···O and C—H···Cl hydrogen bonding interactions (light blue dashed lines in Fig. 2; see Table 2 for geometric details). The water molecule of crystallization (O1W), which is only statistically present in 1/5 of the asymmetric units, accepts the hydrogen donation from adjacent C—H groups and also acts as hydrogen bond donor to Cl2 and O5 of neighboring molecules (violet dashed lines in Figure 2; see Table 2 for geometrical details). Even though the location of the water molecule permits its full site occupancy, we postulate that the absence of suitable hydrogen bonding partners in the binuclear complexes contributes significantly for its partial occupancy in the crystal structure.

Related literature top

For general background to dioxomolybdenum(VI) complexes, see: Arzoumanian et al. (2006); Jeyakumar & Chand (2009); Kühn et al. (2002); Rodrigues et al. (2004). For studies on molybdenum complexes from our research groups, see: Coelho et al. (2011); Fernandes et al. (2010a,b, 2011); Gago et al. (2009); Nunes et al. (2003); Pereira et al. (2007).

Experimental top

Chemicals were purchased from commercial sources and used as received. The compound [Mo(η3-C3H5)Cl(CO)2(di-t-Bu-bipy)] (1) was prepared following a literature method (Rodrigues et al., 2004). Thus, 70% aqueous tert-butylhydroperoxide (TBHP) (0.64 mL, 4.60 mmol) was added dropwise to a stirred solution of 1 (0.23 g, 0.46 mmol) in CH3CN (20 mL). After stirring at ambient temperature for 15 h, the resultant yellow solution was filtered off, concentrated, and a very pale yellow solid precipitated after the addition of n-hexane and diethyl ether. The precipitate was filtered, washed with n-hexane and diethyl ether, and vacuum-dried. Yield: 0.14 g, 69%.

The same product (as confirmed by a comparison of FT–IR and 1H NMR spectra, and microanalysis data) was obtained by using a decane solution of TBHP (5–6 M, 10 equiv.) instead of the aqueous solution, with 1 dissolved in CH2Cl2 under otherwise similar conditions (the excess of TBHP was destroyed with MnO2).

Anal. Calcd. for C36H48N4Cl2Mo2O5.0.2H2O (in %): C, 48.96; H, 5.52; N, 6.34. Found (in %): C, 49.47; H, 5.52; N, 6.28. The FT–IR and 1H NMR spectral data were in agreement with published data (Arzoumanian et al., 2006).

Suitable crystals were obtained by the slow diffusion of diethyl ether into a concentrated solution of the compound in CH2Cl2 with a small layer of n-hexane.

Refinement top

Hydrogen atoms bound to carbon were placed in idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.95 Å (aromatic C—H) and 0.98 Å (—CH3). The isotropic thermal displacement parameters for these atoms were fixed at 1.2×Ueq (aromatic C—H) or 1.5×Ueq (—CH3) of the respective parent carbon atoms.

One water molecule of crystallization was found to be partially occupied and was included in the final structural model with fixed rate of occupancy of 20% (calculated from unrestrained refinement for the site occupancy). Hydrogen atoms associated with this water molecule could not be located from difference Fourier maps and attempts to include these in calculated positions did not lead stable structural refinements. Nevertheless, the hydrogen atoms associated with this chemical entity have been included in the empirical formula of the title compound.

Structure description top

Dioxomolybdenum(VI) complexes are known to be highly active catalysts in the epoxidation of olefins (Kühn et al., 2002; Jeyakumar & Chand, 2009). In these complexes the active metal-oxo functional group may appear with two distinct structural motifs: as a terminal oxo (MoO) or as a bridging µ-oxo (Mo—O—Mo). Compounds with the latter type of bridging group are significantly less studied but have been shown to be intermediates in a handful of interesting catalytic systems (Nunes et al., 2003). Following our on-going interest in the study of this type of family of compounds (Fernandes et al., 2010a,b, 2011) we have recently described the synthesis and structural details of the oxo-µ-oxo complexes [Mo2O4(µ-O)Cl2(DMF)4] (Gago et al., 2009), [Mo2O4(µ-O)Cl2(pyrazole)4] (Pereira et al., 2007), and [Mo2O4(µ-O)Cl2(PzPy)2] (where PzPy stands for 2-(3-pyrazolyl)pyridine) (Coelho et al., 2011). Noteworthy, these complexes were found to be highly active in epoxidation catalysis with tert-butylhydroperoxide. The title compound, a µ-oxo dimer with empirical formula [Mo2O4(µ-O)Cl2(di-t-Bu-bipy)2] (where di-t-Bu-bipy stands for 4,4'-di-tert-butyl-2,2'-bipyridine) which simultaneously contains terminal MoO oxo groups and a bridging µ-oxo one, has been recently synthesized by Arzoumanian et al. (2006) and we now wish to report its crystal structure at the low temperature of 150 K.

The asymmetric unit of the title compound comprises a whole binuclear molecular entity, C36H48Cl2Mo2N4O5, and a partially occupied (20%) water molecule of crystallization. The binuclear complex is formed by two crystallographically independent Mo(VI) centres bridged via a µ-oxo group imposing a Mo···Mo distance of 3.6273 (4) Å. The chemical environment of these metallic centers is very similar, being composed of a pair of cis-positioned terminal oxo ligands, a chlorido and a N,N-chelating 4,4'-di-tert-butyl-2,2'-bipyridine (di-t-Bu-bipy) molecule as depicted in Fig. 1. The coordination environments around the metal centers can be described as highly distorted octahedra due to, on the one hand, the existence of chlorido ligands (trans-positioned with respect to the µ-oxo ligand) and, on the other, to the typical trans effect of the MoO groups: while the Mo—Obridge distances are 1.8920 (19) and 1.9274 (19) Å, the Mo—Oterminal distances range from 1.694 (2) to 1.6975 (19) Å; the Mo—Cl distances are 2.4895 (8) and 2.4283 (8) Å and the Mo—N bonds range from 2.304 (2) to 2.330 (2) Å. The cis and trans octahedral angles are in the ranges of 68.95 (8) to 107.35 (10)° and 157.51 (6) to 160.69 (9)°, respectively. The Mo1—O1—Mo2 kink angle through the µ-oxo bridge is 143.50 (10)° which, to the best of our knowledge, constitutes the smallest reported to date for related binuclear dioxomolybdenum(VI) complexes: the analogous value for [Mo2O4(µ-O)Cl2(DMF)4] is ca 175° and that for [Mo2O4(µ-O)Cl2(pyrazole)4] is ca 151°, and those for the two conformers of [Mo2O4(µ-O)Cl2(PzPy)2] are ca 156 and 180°. We attribute this structural feature to the considerable steric hindrance associated with the di-t-Bu-bipy moieties, mostly due to the pendant —CH3 groups. In this context, the two average planes containing the aromatic rings of the two crystallographically independent di-t-Bu-bipy molecules subtend an angle of ca 34°, which contrasts with the parallel nature observed for the two conformers of [Mo2O4(µ-O)Cl2(PzPy)2]. Noteworthy, the torsion angles N1—Mo1···Mo2—N4 and N2—Mo1···Mo2—N3 are -18.40 (7) and -157.03 (9)°, respectively.

The crystal packing is mainly driven by the need to effectively fill the available space (van de Waals contacts) in conjunction with several weak supramolecular interactions, namely weak C—H···O and C—H···Cl hydrogen bonding interactions (light blue dashed lines in Fig. 2; see Table 2 for geometric details). The water molecule of crystallization (O1W), which is only statistically present in 1/5 of the asymmetric units, accepts the hydrogen donation from adjacent C—H groups and also acts as hydrogen bond donor to Cl2 and O5 of neighboring molecules (violet dashed lines in Figure 2; see Table 2 for geometrical details). Even though the location of the water molecule permits its full site occupancy, we postulate that the absence of suitable hydrogen bonding partners in the binuclear complexes contributes significantly for its partial occupancy in the crystal structure.

For general background to dioxomolybdenum(VI) complexes, see: Arzoumanian et al. (2006); Jeyakumar & Chand (2009); Kühn et al. (2002); Rodrigues et al. (2004). For studies on molybdenum complexes from our research groups, see: Coelho et al. (2011); Fernandes et al. (2010a,b, 2011); Gago et al. (2009); Nunes et al. (2003); Pereira et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound showing all non-hydrogen atoms represented as thermal ellipsoids drawn at the 50% probability level. The water molecule has a site occupancy factor = 0.20. Hydrogen atoms are represented as small spheres with arbitrary radii and the atomic labeling is provided for all non-hydrogen atoms.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed in perspective along [010] direction. The highly distorted {MoCl2N2O2} coordination polyhedra are represented as translucent octahedra for clarity. Supramolecular contacts interconnecting adjacent chemical moieties are represented as dashed lines: C—H···O and C—H···Cl in light blue; Owater···O and Owater···Cl in violet.
µ-Oxido-bis[chlorido(4,4'-di-tert-butyl-2,2'-bipyridine- κ2N,N')dioxidomolybdenum(VI)] 0.2-hydrate top
Crystal data top
[Mo2Cl2O5(C18H24N2)2]·0.2H2OF(000) = 1808
Mr = 883.17Dx = 1.487 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9903 reflections
a = 16.9997 (7) Åθ = 2.8–29.1°
b = 12.7444 (6) ŵ = 0.82 mm1
c = 18.4609 (8) ÅT = 150 K
β = 99.582 (2)°Block, yellow
V = 3943.8 (3) Å30.08 × 0.06 × 0.03 mm
Z = 4
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
10578 independent reflections
Radiation source: fine-focus sealed tube7469 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and φ scansθmax = 29.1°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 2323
Tmin = 0.938, Tmax = 0.976k = 1617
54239 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0315P)2 + 3.406P]
where P = (Fo2 + 2Fc2)/3
10578 reflections(Δ/σ)max = 0.001
463 parametersΔρmax = 0.96 e Å3
18 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Mo2Cl2O5(C18H24N2)2]·0.2H2OV = 3943.8 (3) Å3
Mr = 883.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.9997 (7) ŵ = 0.82 mm1
b = 12.7444 (6) ÅT = 150 K
c = 18.4609 (8) Å0.08 × 0.06 × 0.03 mm
β = 99.582 (2)°
Data collection top
Bruker X8 KappaCCD APEXII
diffractometer
10578 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
7469 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.976Rint = 0.050
54239 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04018 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.02Δρmax = 0.96 e Å3
10578 reflectionsΔρmin = 0.67 e Å3
463 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.161140 (13)0.78289 (2)0.101763 (13)0.02009 (7)
Mo20.153567 (14)0.63578 (2)0.067460 (14)0.02215 (7)
Cl10.16494 (4)0.87386 (6)0.22163 (4)0.02652 (16)
Cl20.21012 (5)0.51282 (7)0.14517 (4)0.03473 (19)
N10.11178 (12)0.65491 (18)0.17242 (13)0.0210 (5)
N20.02749 (13)0.81233 (19)0.10764 (13)0.0213 (5)
N30.27507 (13)0.59963 (19)0.00696 (13)0.0223 (5)
N40.14638 (12)0.48235 (19)0.00290 (12)0.0211 (5)
O10.12571 (10)0.69242 (15)0.02171 (10)0.0224 (4)
O20.25605 (11)0.73982 (17)0.12818 (11)0.0276 (5)
O30.16755 (12)0.89784 (16)0.05679 (12)0.0311 (5)
O40.06091 (11)0.61851 (17)0.11680 (11)0.0297 (5)
O50.19330 (13)0.74344 (18)0.10133 (12)0.0360 (5)
C10.15948 (16)0.5835 (2)0.21063 (16)0.0238 (6)
H10.21150.57430.19920.029*
C20.13739 (16)0.5228 (2)0.26543 (17)0.0245 (6)
H20.17390.47360.29100.029*
C30.06192 (16)0.5334 (2)0.28335 (16)0.0263 (7)
C40.01067 (16)0.6030 (3)0.23986 (17)0.0297 (7)
H40.04320.60880.24720.036*
C50.03666 (15)0.6629 (2)0.18700 (16)0.0235 (6)
C60.01214 (16)0.7471 (2)0.14631 (16)0.0232 (6)
C70.09241 (16)0.7619 (3)0.14974 (17)0.0292 (7)
H70.11980.71260.17510.035*
C80.13296 (16)0.8487 (3)0.11624 (17)0.0298 (7)
C90.09027 (17)0.9162 (3)0.07927 (17)0.0295 (7)
H90.11520.97700.05610.035*
C100.01101 (17)0.8954 (2)0.07589 (16)0.0245 (6)
H100.01710.94270.04970.029*
C110.03393 (19)0.4783 (3)0.34808 (19)0.0385 (8)
C120.0029 (3)0.5616 (4)0.3962 (2)0.0777 (16)
H12A0.04640.60950.41580.117*
H12B0.01720.52730.43700.117*
H12C0.04030.60130.36660.117*
C130.0336 (2)0.4023 (4)0.3180 (2)0.0666 (14)
H13A0.07630.44080.28680.100*
H13B0.05470.37010.35900.100*
H13C0.01290.34740.28900.100*
C140.1016 (2)0.4186 (3)0.3952 (2)0.0461 (10)
H14A0.12040.36270.36590.069*
H14B0.08220.38780.43760.069*
H14C0.14560.46690.41230.069*
C150.22161 (17)0.8645 (3)0.1206 (2)0.0397 (9)
C160.2495 (2)0.9713 (4)0.0924 (4)0.0971 (19)
H16A0.30760.97570.08860.146*
H16B0.23480.98240.04380.146*
H16C0.22431.02520.12640.146*
C170.2693 (2)0.7825 (4)0.0698 (3)0.0681 (13)
H17A0.25270.71180.08700.102*
H17B0.25900.79200.01950.102*
H17C0.32640.79140.07060.102*
C180.2369 (3)0.8407 (6)0.1960 (3)0.106 (2)
H18A0.21210.89480.23010.159*
H18B0.21420.77200.21150.159*
H18C0.29460.83970.19600.159*
C190.33976 (16)0.6593 (2)0.00679 (17)0.0274 (7)
H190.33520.72030.02320.033*
C200.41289 (16)0.6358 (3)0.04836 (17)0.0279 (7)
H200.45720.68060.04650.033*
C210.42233 (15)0.5476 (2)0.09269 (16)0.0241 (6)
C220.35406 (15)0.4888 (2)0.09491 (16)0.0243 (6)
H220.35680.42950.12650.029*
C230.28184 (15)0.5150 (2)0.05182 (15)0.0206 (6)
C240.20800 (15)0.4519 (2)0.04866 (15)0.0209 (6)
C250.20205 (15)0.3673 (2)0.09379 (15)0.0213 (6)
H250.24590.34940.13070.026*
C260.13233 (16)0.3073 (2)0.08606 (15)0.0211 (6)
C270.07065 (16)0.3385 (2)0.03097 (16)0.0234 (6)
H270.02230.29950.02230.028*
C280.07950 (15)0.4252 (2)0.01084 (16)0.0232 (6)
H280.03600.44570.04730.028*
C290.50289 (16)0.5150 (3)0.13790 (18)0.0304 (7)
C300.50366 (18)0.5490 (3)0.21771 (19)0.0435 (9)
H30A0.55340.52560.24810.065*
H30B0.45820.51740.23590.065*
H30C0.49990.62560.22010.065*
C310.57226 (17)0.5677 (3)0.1089 (2)0.0420 (9)
H31A0.56880.64390.11470.063*
H31B0.56960.55050.05680.063*
H31C0.62290.54230.13670.063*
C320.51307 (18)0.3958 (3)0.1352 (2)0.0428 (9)
H32A0.50290.37220.08400.064*
H32B0.47520.36190.16240.064*
H32C0.56760.37700.15750.064*
C330.12703 (17)0.2135 (2)0.13614 (16)0.0260 (6)
C340.1347 (2)0.2522 (3)0.21501 (17)0.0394 (9)
H34A0.18570.28880.22880.059*
H34B0.13250.19230.24790.059*
H34C0.09080.30060.21920.059*
C350.04774 (18)0.1555 (3)0.11683 (17)0.0319 (7)
H35A0.00430.20120.12650.048*
H35B0.04900.09190.14690.048*
H35C0.03910.13620.06470.048*
C360.1950 (2)0.1374 (3)0.1283 (2)0.0459 (9)
H36A0.18990.11430.07710.069*
H36B0.19220.07630.16010.069*
H36C0.24640.17290.14280.069*
O1W0.1847 (9)0.6639 (13)0.2975 (10)0.078 (5)0.20
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01580 (10)0.02716 (14)0.01656 (13)0.00222 (10)0.00054 (8)0.00064 (11)
Mo20.02064 (11)0.02864 (15)0.01613 (13)0.00094 (10)0.00001 (9)0.00249 (11)
Cl10.0231 (3)0.0348 (4)0.0201 (4)0.0005 (3)0.0010 (3)0.0053 (3)
Cl20.0354 (4)0.0461 (5)0.0232 (4)0.0068 (4)0.0064 (3)0.0019 (4)
N10.0157 (10)0.0261 (14)0.0201 (13)0.0015 (9)0.0001 (9)0.0008 (10)
N20.0193 (11)0.0258 (14)0.0169 (13)0.0015 (9)0.0026 (9)0.0009 (10)
N30.0197 (11)0.0278 (14)0.0197 (13)0.0008 (10)0.0042 (9)0.0008 (10)
N40.0175 (10)0.0289 (14)0.0150 (12)0.0024 (9)0.0030 (9)0.0006 (10)
O10.0183 (9)0.0286 (12)0.0188 (11)0.0011 (8)0.0015 (8)0.0022 (8)
O20.0177 (9)0.0421 (13)0.0222 (11)0.0017 (9)0.0009 (8)0.0067 (9)
O30.0377 (12)0.0301 (12)0.0259 (12)0.0038 (9)0.0067 (10)0.0005 (9)
O40.0260 (10)0.0400 (13)0.0199 (11)0.0023 (9)0.0052 (8)0.0001 (9)
O50.0374 (12)0.0373 (14)0.0332 (13)0.0015 (10)0.0059 (10)0.0100 (11)
C10.0184 (12)0.0276 (17)0.0244 (16)0.0005 (11)0.0008 (11)0.0013 (13)
C20.0202 (13)0.0260 (16)0.0257 (17)0.0038 (11)0.0011 (12)0.0026 (13)
C30.0223 (13)0.0332 (18)0.0221 (16)0.0011 (12)0.0001 (12)0.0064 (13)
C40.0164 (13)0.043 (2)0.0296 (18)0.0021 (12)0.0049 (12)0.0090 (14)
C50.0167 (12)0.0327 (17)0.0204 (15)0.0003 (11)0.0008 (11)0.0024 (13)
C60.0195 (13)0.0300 (17)0.0189 (15)0.0008 (11)0.0007 (11)0.0022 (12)
C70.0168 (13)0.044 (2)0.0259 (17)0.0010 (13)0.0016 (12)0.0048 (14)
C80.0201 (13)0.043 (2)0.0248 (17)0.0051 (13)0.0012 (12)0.0036 (14)
C90.0282 (15)0.0311 (18)0.0256 (17)0.0071 (13)0.0059 (13)0.0003 (14)
C100.0277 (14)0.0245 (16)0.0189 (16)0.0003 (12)0.0032 (12)0.0014 (12)
C110.0338 (17)0.051 (2)0.033 (2)0.0093 (16)0.0107 (14)0.0173 (17)
C120.107 (4)0.090 (4)0.047 (3)0.053 (3)0.043 (3)0.033 (3)
C130.0322 (19)0.099 (4)0.070 (3)0.011 (2)0.0104 (19)0.048 (3)
C140.0408 (19)0.058 (3)0.040 (2)0.0081 (17)0.0077 (16)0.0235 (19)
C150.0185 (14)0.059 (2)0.040 (2)0.0117 (15)0.0008 (13)0.0013 (18)
C160.037 (2)0.072 (3)0.186 (6)0.021 (2)0.029 (3)0.006 (4)
C170.0261 (17)0.096 (4)0.083 (3)0.005 (2)0.0089 (19)0.006 (3)
C180.048 (2)0.219 (6)0.056 (3)0.055 (3)0.023 (2)0.010 (4)
C190.0246 (14)0.0271 (17)0.0318 (18)0.0008 (12)0.0084 (13)0.0010 (14)
C200.0179 (13)0.0360 (18)0.0302 (18)0.0029 (12)0.0057 (12)0.0050 (14)
C210.0188 (13)0.0330 (18)0.0198 (16)0.0008 (12)0.0013 (11)0.0062 (13)
C220.0201 (13)0.0294 (17)0.0230 (16)0.0016 (12)0.0025 (11)0.0003 (13)
C230.0175 (12)0.0281 (16)0.0160 (15)0.0000 (11)0.0020 (10)0.0008 (12)
C240.0186 (12)0.0260 (16)0.0163 (15)0.0006 (11)0.0024 (10)0.0034 (12)
C250.0201 (12)0.0250 (16)0.0166 (14)0.0008 (11)0.0033 (11)0.0003 (12)
C260.0221 (13)0.0240 (16)0.0161 (15)0.0014 (11)0.0000 (11)0.0022 (12)
C270.0204 (13)0.0268 (17)0.0212 (16)0.0040 (11)0.0018 (11)0.0022 (12)
C280.0189 (12)0.0306 (17)0.0178 (15)0.0008 (11)0.0039 (11)0.0023 (13)
C290.0168 (13)0.045 (2)0.0282 (18)0.0030 (13)0.0011 (12)0.0047 (15)
C300.0240 (15)0.072 (3)0.031 (2)0.0066 (16)0.0046 (14)0.0089 (18)
C310.0182 (14)0.064 (3)0.043 (2)0.0004 (15)0.0031 (14)0.0020 (19)
C320.0232 (15)0.052 (2)0.051 (2)0.0094 (15)0.0012 (15)0.0005 (18)
C330.0273 (14)0.0306 (17)0.0182 (15)0.0062 (13)0.0013 (11)0.0023 (13)
C340.0481 (19)0.046 (2)0.0210 (18)0.0263 (16)0.0025 (15)0.0002 (15)
C350.0388 (17)0.0327 (19)0.0199 (17)0.0130 (14)0.0075 (13)0.0037 (14)
C360.0426 (19)0.034 (2)0.060 (3)0.0063 (16)0.0040 (18)0.0164 (18)
O1W0.055 (9)0.079 (12)0.105 (14)0.006 (8)0.029 (9)0.015 (10)
Geometric parameters (Å, º) top
Mo1—O11.8920 (19)C15—C171.541 (5)
Mo1—O21.6972 (19)C16—H16A0.9800
Mo1—O31.696 (2)C16—H16B0.9800
Mo1—N12.330 (2)C16—H16C0.9800
Mo1—N22.323 (2)C17—H17A0.9800
Mo1—Cl12.4895 (8)C17—H17B0.9800
Mo2—O11.9274 (19)C17—H17C0.9800
Mo2—O41.6975 (19)C18—H18A0.9800
Mo2—O51.694 (2)C18—H18B0.9800
Mo2—N32.328 (2)C18—H18C0.9800
Mo2—N42.304 (2)C19—C201.381 (4)
Mo2—Cl22.4283 (8)C19—H190.9500
N1—C11.339 (3)C20—C211.384 (4)
N1—C51.352 (3)C20—H200.9500
N2—C101.329 (4)C21—C221.388 (4)
N2—C61.347 (4)C21—C291.537 (4)
N3—C191.337 (4)C22—C231.388 (4)
N3—C231.353 (4)C22—H220.9500
N4—C281.338 (3)C23—C241.484 (4)
N4—C241.350 (3)C24—C251.377 (4)
C1—C21.375 (4)C25—C261.397 (4)
C1—H10.9500C25—H250.9500
C2—C31.384 (4)C26—C271.391 (4)
C2—H20.9500C26—C331.523 (4)
C3—C41.399 (4)C27—C281.371 (4)
C3—C111.529 (4)C27—H270.9500
C4—C51.369 (4)C28—H280.9500
C4—H40.9500C29—C311.529 (4)
C5—C61.482 (4)C29—C321.531 (5)
C6—C71.389 (4)C29—C301.534 (5)
C7—C81.393 (4)C30—H30A0.9800
C7—H70.9500C30—H30B0.9800
C8—C91.378 (4)C30—H30C0.9800
C8—C151.536 (4)C31—H31A0.9800
C9—C101.385 (4)C31—H31B0.9800
C9—H90.9500C31—H31C0.9800
C10—H100.9500C32—H32A0.9800
C11—C141.524 (4)C32—H32B0.9800
C11—C131.533 (5)C32—H32C0.9800
C11—C121.534 (6)C33—C341.522 (4)
C12—H12A0.9800C33—C351.526 (4)
C12—H12B0.9800C33—C361.534 (4)
C12—H12C0.9800C34—H34A0.9800
C13—H13A0.9800C34—H34B0.9800
C13—H13B0.9800C34—H34C0.9800
C13—H13C0.9800C35—H35A0.9800
C14—H14A0.9800C35—H35B0.9800
C14—H14B0.9800C35—H35C0.9800
C14—H14C0.9800C36—H36A0.9800
C15—C181.490 (6)C36—H36B0.9800
C15—C161.504 (6)C36—H36C0.9800
O3—Mo1—O2106.53 (10)C18—C15—C17105.9 (4)
O3—Mo1—O1100.49 (9)C16—C15—C17107.4 (4)
O2—Mo1—O1101.02 (9)C8—C15—C17107.5 (3)
O3—Mo1—N291.51 (9)C15—C16—H16A109.5
O2—Mo1—N2158.31 (9)C15—C16—H16B109.5
O1—Mo1—N287.03 (8)H16A—C16—H16B109.5
O3—Mo1—N1159.54 (9)C15—C16—H16C109.5
O2—Mo1—N191.52 (9)H16A—C16—H16C109.5
O1—Mo1—N185.02 (8)H16B—C16—H16C109.5
N2—Mo1—N168.95 (8)C15—C17—H17A109.5
O3—Mo1—Cl192.21 (8)C15—C17—H17B109.5
O2—Mo1—Cl190.71 (7)H17A—C17—H17B109.5
O1—Mo1—Cl1159.37 (6)C15—C17—H17C109.5
N2—Mo1—Cl176.36 (6)H17A—C17—H17C109.5
N1—Mo1—Cl177.70 (6)H17B—C17—H17C109.5
O5—Mo2—O4107.35 (10)C15—C18—H18A109.5
O5—Mo2—O1100.46 (10)C15—C18—H18B109.5
O4—Mo2—O199.73 (9)H18A—C18—H18B109.5
O5—Mo2—N4159.56 (9)C15—C18—H18C109.5
O4—Mo2—N492.48 (9)H18A—C18—H18C109.5
O1—Mo2—N480.46 (8)H18B—C18—H18C109.5
O5—Mo2—N390.52 (9)N3—C19—C20122.7 (3)
O4—Mo2—N3160.69 (9)N3—C19—H19118.7
O1—Mo2—N383.69 (8)C20—C19—H19118.7
N4—Mo2—N369.21 (8)C19—C20—C21120.7 (3)
O5—Mo2—Cl294.77 (8)C19—C20—H20119.7
O4—Mo2—Cl291.29 (7)C21—C20—H20119.7
O1—Mo2—Cl2157.51 (6)C20—C21—C22116.2 (3)
N4—Mo2—Cl279.53 (6)C20—C21—C29123.0 (3)
N3—Mo2—Cl279.71 (6)C22—C21—C29120.8 (3)
C1—N1—C5117.1 (2)C21—C22—C23121.1 (3)
C1—N1—Mo1121.85 (18)C21—C22—H22119.4
C5—N1—Mo1119.91 (18)C23—C22—H22119.4
C10—N2—C6118.2 (2)N3—C23—C22121.3 (3)
C10—N2—Mo1121.46 (19)N3—C23—C24115.0 (2)
C6—N2—Mo1120.28 (18)C22—C23—C24123.6 (3)
C19—N3—C23117.9 (2)N4—C24—C25121.7 (2)
C19—N3—Mo2122.4 (2)N4—C24—C23115.1 (2)
C23—N3—Mo2119.71 (17)C25—C24—C23123.2 (2)
C28—N4—C24117.8 (2)C24—C25—C26120.9 (2)
C28—N4—Mo2121.53 (18)C24—C25—H25119.6
C24—N4—Mo2120.46 (18)C26—C25—H25119.6
Mo1—O1—Mo2143.50 (10)C27—C26—C25116.2 (3)
N1—C1—C2123.7 (3)C27—C26—C33123.6 (2)
N1—C1—H1118.2C25—C26—C33120.1 (2)
C2—C1—H1118.2C28—C27—C26120.1 (3)
C1—C2—C3119.9 (3)C28—C27—H27119.9
C1—C2—H2120.0C26—C27—H27119.9
C3—C2—H2120.0N4—C28—C27123.3 (3)
C2—C3—C4116.0 (3)N4—C28—H28118.4
C2—C3—C11124.3 (3)C27—C28—H28118.4
C4—C3—C11119.6 (3)C31—C29—C32109.0 (3)
C5—C4—C3121.2 (3)C31—C29—C30109.2 (3)
C5—C4—H4119.4C32—C29—C30109.2 (3)
C3—C4—H4119.4C31—C29—C21111.2 (3)
N1—C5—C4121.8 (3)C32—C29—C21110.2 (3)
N1—C5—C6114.9 (2)C30—C29—C21108.1 (2)
C4—C5—C6123.0 (3)C29—C30—H30A109.5
N2—C6—C7121.4 (3)C29—C30—H30B109.5
N2—C6—C5115.4 (2)H30A—C30—H30B109.5
C7—C6—C5123.1 (3)C29—C30—H30C109.5
C6—C7—C8120.3 (3)H30A—C30—H30C109.5
C6—C7—H7119.8H30B—C30—H30C109.5
C8—C7—H7119.8C29—C31—H31A109.5
C9—C8—C7117.0 (3)C29—C31—H31B109.5
C9—C8—C15123.1 (3)H31A—C31—H31B109.5
C7—C8—C15119.9 (3)C29—C31—H31C109.5
C8—C9—C10120.0 (3)H31A—C31—H31C109.5
C8—C9—H9120.0H31B—C31—H31C109.5
C10—C9—H9120.0C29—C32—H32A109.5
N2—C10—C9123.0 (3)C29—C32—H32B109.5
N2—C10—H10118.5H32A—C32—H32B109.5
C9—C10—H10118.5C29—C32—H32C109.5
C14—C11—C3111.8 (3)H32A—C32—H32C109.5
C14—C11—C13109.9 (3)H32B—C32—H32C109.5
C3—C11—C13108.6 (3)C34—C33—C26108.7 (3)
C14—C11—C12108.4 (3)C34—C33—C35108.2 (3)
C3—C11—C12108.5 (3)C26—C33—C35112.2 (2)
C13—C11—C12109.8 (3)C34—C33—C36110.4 (3)
C11—C12—H12A109.5C26—C33—C36108.5 (3)
C11—C12—H12B109.5C35—C33—C36108.8 (3)
H12A—C12—H12B109.5C33—C34—H34A109.5
C11—C12—H12C109.5C33—C34—H34B109.5
H12A—C12—H12C109.5H34A—C34—H34B109.5
H12B—C12—H12C109.5C33—C34—H34C109.5
C11—C13—H13A109.5H34A—C34—H34C109.5
C11—C13—H13B109.5H34B—C34—H34C109.5
H13A—C13—H13B109.5C33—C35—H35A109.5
C11—C13—H13C109.5C33—C35—H35B109.5
H13A—C13—H13C109.5H35A—C35—H35B109.5
H13B—C13—H13C109.5C33—C35—H35C109.5
C11—C14—H14A109.5H35A—C35—H35C109.5
C11—C14—H14B109.5H35B—C35—H35C109.5
H14A—C14—H14B109.5C33—C36—H36A109.5
C11—C14—H14C109.5C33—C36—H36B109.5
H14A—C14—H14C109.5H36A—C36—H36B109.5
H14B—C14—H14C109.5C33—C36—H36C109.5
C18—C15—C16114.4 (4)H36A—C36—H36C109.5
C18—C15—C8110.3 (3)H36B—C36—H36C109.5
C16—C15—C8110.9 (3)
O3—Mo1—N1—C1154.4 (3)N1—C5—C6—N28.0 (4)
O2—Mo1—N1—C12.2 (2)C4—C5—C6—N2166.9 (3)
O1—Mo1—N1—C198.8 (2)N1—C5—C6—C7174.8 (3)
N2—Mo1—N1—C1172.5 (2)C4—C5—C6—C710.3 (5)
Cl1—Mo1—N1—C192.6 (2)N2—C6—C7—C83.5 (5)
O3—Mo1—N1—C513.1 (4)C5—C6—C7—C8173.5 (3)
O2—Mo1—N1—C5165.3 (2)C6—C7—C8—C91.2 (5)
O1—Mo1—N1—C593.7 (2)C6—C7—C8—C15179.8 (3)
N2—Mo1—N1—C55.0 (2)C7—C8—C9—C100.8 (5)
Cl1—Mo1—N1—C574.9 (2)C15—C8—C9—C10178.2 (3)
O3—Mo1—N2—C103.8 (2)C6—N2—C10—C91.7 (4)
O2—Mo1—N2—C10150.5 (3)Mo1—N2—C10—C9179.0 (2)
O1—Mo1—N2—C1096.7 (2)C8—C9—C10—N20.6 (5)
N1—Mo1—N2—C10177.5 (2)C2—C3—C11—C145.6 (5)
Cl1—Mo1—N2—C1095.7 (2)C4—C3—C11—C14171.7 (3)
O3—Mo1—N2—C6173.5 (2)C2—C3—C11—C13115.8 (4)
O2—Mo1—N2—C626.7 (4)C4—C3—C11—C1367.0 (4)
O1—Mo1—N2—C686.1 (2)C2—C3—C11—C12125.0 (4)
N1—Mo1—N2—C60.3 (2)C4—C3—C11—C1252.2 (4)
Cl1—Mo1—N2—C681.6 (2)C9—C8—C15—C18138.6 (4)
O5—Mo2—N3—C191.0 (2)C7—C8—C15—C1842.5 (5)
O4—Mo2—N3—C19157.1 (3)C9—C8—C15—C1610.8 (5)
O1—Mo2—N3—C19101.5 (2)C7—C8—C15—C16170.3 (4)
N4—Mo2—N3—C19176.4 (2)C9—C8—C15—C17106.4 (4)
Cl2—Mo2—N3—C1993.7 (2)C7—C8—C15—C1772.6 (4)
O5—Mo2—N3—C23179.7 (2)C23—N3—C19—C202.2 (4)
O4—Mo2—N3—C2322.2 (4)Mo2—N3—C19—C20177.1 (2)
O1—Mo2—N3—C2379.2 (2)N3—C19—C20—C210.1 (5)
N4—Mo2—N3—C233.0 (2)C19—C20—C21—C222.8 (4)
Cl2—Mo2—N3—C2385.6 (2)C19—C20—C21—C29177.6 (3)
O5—Mo2—N4—C28171.6 (3)C20—C21—C22—C233.2 (4)
O4—Mo2—N4—C285.4 (2)C29—C21—C22—C23177.2 (3)
O1—Mo2—N4—C2894.0 (2)C19—N3—C23—C221.8 (4)
N3—Mo2—N4—C28179.2 (2)Mo2—N3—C23—C22177.6 (2)
Cl2—Mo2—N4—C2896.3 (2)C19—N3—C23—C24179.5 (3)
O5—Mo2—N4—C2413.8 (4)Mo2—N3—C23—C240.1 (3)
O4—Mo2—N4—C24179.9 (2)C21—C22—C23—N31.0 (4)
O1—Mo2—N4—C2480.6 (2)C21—C22—C23—C24176.5 (3)
N3—Mo2—N4—C246.2 (2)C28—N4—C24—C252.3 (4)
Cl2—Mo2—N4—C2489.1 (2)Mo2—N4—C24—C25172.5 (2)
O3—Mo1—O1—Mo260.75 (19)C28—N4—C24—C23176.7 (2)
O2—Mo1—O1—Mo248.57 (19)Mo2—N4—C24—C238.5 (3)
N2—Mo1—O1—Mo2151.74 (18)N3—C23—C24—N45.4 (4)
N1—Mo1—O1—Mo2139.15 (18)C22—C23—C24—N4172.2 (3)
Cl1—Mo1—O1—Mo2172.16 (6)N3—C23—C24—C25175.6 (3)
O5—Mo2—O1—Mo140.34 (19)C22—C23—C24—C256.8 (4)
O4—Mo2—O1—Mo1150.18 (18)N4—C24—C25—C262.1 (4)
N4—Mo2—O1—Mo1118.93 (18)C23—C24—C25—C26176.8 (3)
N3—Mo2—O1—Mo149.02 (18)C24—C25—C26—C270.1 (4)
Cl2—Mo2—O1—Mo191.5 (2)C24—C25—C26—C33179.6 (3)
C5—N1—C1—C23.3 (4)C25—C26—C27—C281.7 (4)
Mo1—N1—C1—C2164.5 (2)C33—C26—C27—C28178.7 (3)
N1—C1—C2—C30.4 (5)C24—N4—C28—C270.5 (4)
C1—C2—C3—C43.8 (4)Mo2—N4—C28—C27174.3 (2)
C1—C2—C3—C11173.6 (3)C26—C27—C28—N41.5 (5)
C2—C3—C4—C55.2 (5)C20—C21—C29—C3118.8 (4)
C11—C3—C4—C5172.3 (3)C22—C21—C29—C31161.6 (3)
C1—N1—C5—C41.8 (4)C20—C21—C29—C32139.8 (3)
Mo1—N1—C5—C4166.3 (2)C22—C21—C29—C3240.6 (4)
C1—N1—C5—C6176.7 (2)C20—C21—C29—C30101.0 (4)
Mo1—N1—C5—C68.6 (3)C22—C21—C29—C3078.6 (4)
C3—C4—C5—N12.6 (5)C27—C26—C33—C34117.4 (3)
C3—C4—C5—C6172.0 (3)C25—C26—C33—C3462.9 (3)
C10—N2—C6—C73.7 (4)C27—C26—C33—C352.2 (4)
Mo1—N2—C6—C7178.9 (2)C25—C26—C33—C35177.4 (3)
C10—N2—C6—C5173.5 (2)C27—C26—C33—C36122.4 (3)
Mo1—N2—C6—C53.8 (3)C25—C26—C33—C3657.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O1i0.952.523.341 (3)145
C34—H34A···Cl1ii0.982.773.748 (4)174
C35—H35A···O4i0.982.543.421 (4)149
C12—H12C···O1W0.982.693.641 (16)163
C18—H18B···O1W0.982.102.970 (18)147
O1W···Cl2i3.573 (18)
O1W···O5iii3.236 (17)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mo2Cl2O5(C18H24N2)2]·0.2H2O
Mr883.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)16.9997 (7), 12.7444 (6), 18.4609 (8)
β (°) 99.582 (2)
V3)3943.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.08 × 0.06 × 0.03
Data collection
DiffractometerBruker X8 KappaCCD APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.938, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
54239, 10578, 7469
Rint0.050
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.086, 1.02
No. of reflections10578
No. of parameters463
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.67

Computer programs: APEX2 (Bruker, 2006), SAINT-Plus (Bruker, 2006), SAINT-Plus (Bruker, 2005), SHELXTL (Sheldrick, 2008), DIAMOND (Brandenburg, 2009).

Selected bond lengths (Å) top
Mo1—O11.8920 (19)Mo2—O11.9274 (19)
Mo1—O21.6972 (19)Mo2—O41.6975 (19)
Mo1—O31.696 (2)Mo2—O51.694 (2)
Mo1—N12.330 (2)Mo2—N32.328 (2)
Mo1—N22.323 (2)Mo2—N42.304 (2)
Mo1—Cl12.4895 (8)Mo2—Cl22.4283 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O1i0.952.523.341 (3)145
C34—H34A···Cl1ii0.982.773.748 (4)174
C35—H35A···O4i0.982.543.421 (4)149
C12—H12C···O1W0.982.693.641 (16)163
C18—H18B···O1W0.982.102.970 (18)147
O1W···Cl2i..3.573 (18).
O1W···O5iii..3.236 (17).
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y1/2, z+1/2; (iii) x1/2, y+3/2, z+1/2.
 

Acknowledgements

We are grateful to the Fundação para a Ciência e a Tecnologia (FCT/FEDER and POCI, Portugal) for their general financial support to CICECO, and for the post-doctoral research grant No. SFRH/BPD/63736/2009 (to JAF). Thanks are also due to the FCT for specific funding toward the purchase of the single-crystal diffractometer.

References

First citationArzoumanian, H., Bakhtchadjian, R., Agrifoglio, G., Atencio, R. & Briceno, A. (2006). Transition Met. Chem. 31, 681–689.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoelho, A. C., Nolasco, M., Balula, S. S., Antunes, M. M., Pereira, C. C. L., Paz, F. A. A., Valente, A. A., Pillinger, M., Ribeiro-Claro, P., Klinowski, J. & Gonçalves, I. S. (2011). Inorg. Chem. 50, 525–538.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationFernandes, J. A., Almeida Paz, F. A. & Romão, C. C. (2011). Acta Cryst. E67, m288–m289.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFernandes, J. A., Gomes, A. C., Figueiredo, S., Gago, S., Lopes, A. D., Pillinger, M., Ribeiro-Claro, P. J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2010a). Acta Cryst. E66, m1005–m1006.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFernandes, J. A., Gomes, A. C., Figueiredo, S., Gago, S., Ribeiro-Claro, P. J. A., Gonçalves, I. S. & Almeida Paz, F. A. (2010b). Acta Cryst. E66, m862–m863.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGago, S., Neves, P., Monteiro, B., Pessêgo, M., Lopes, A. D., Valente, A. A., Paz, F. A. A., Pillinger, M., Moreira, J., Silva, C. M. & Gonçalves, I. S. (2009). Eur. J. Inorg. Chem. pp. 4528–4537.  Web of Science CSD CrossRef Google Scholar
First citationJeyakumar, K. & Chand, D. K. (2009). J. Chem. Sci. 121, 111–123.  CrossRef CAS Google Scholar
First citationKühn, F. E., Groarke, M., Bencze, E., Herdtweck, E., Prazeres, A., Santos, A. M., Calhorda, M. J., Romão, C. C., Gonçalves, I. S., Lopes, A. D. & Pillinger, M. (2002). Chem. Eur. J. 8, 2370–2383.  Web of Science PubMed Google Scholar
First citationNunes, C. D., Valente, A. A., Pillinger, M., Rocha, J. & Gonçalves, I. S. (2003). Chem. Eur. J. 9, 4380–4390.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPereira, C. C. L., Balula, S. S., Paz, F. A. A., Valente, A. A., Pillinger, M., Klinowski, J. & Gonçalves, I. S. (2007). Inorg. Chem. 46, 8508–8510.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRodrigues, C. W., Limberg, C. & Pritzkow, H. (2004). Chem. Commun. pp. 2734–2735.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds