organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5,5′-Bis(naphthalen-2-yl)-2,2′-bi(1,3,4-oxa­diazole)

aKey Laboratory of Automobile Materials (MOE), College of Materials Science and Engineering, Jilin University, Changchun 130012, People's Republic of China, bKey Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China, and cCollege of Physics, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: minli@jlu.edu.cn

(Received 10 November 2011; accepted 15 November 2011; online 19 November 2011)

The title mol­ecule, C24H14N4O2, lies on an inversion centre and the asymmetric unit containg one half-mol­ecule. The naphthalene ring systems are twisted slightly with respect to the oxadiazole rings, making a dihedral angle of 1.36 (6)°. These mol­ecules are π-stacked along the crystallographic a axis, with an inter­planar distance of 3.337 (1) Å. Adjacent mol­ecules are slipped from the `ideal' cofacial π-stack in both the long and short mol­ecular axis (the long mol­ecular axis is defined as the line through the naphthalene C atom in the 6-position and the mol­ecular center, the short mol­ecular axis is in the mol­ecular plane perpendicular to it). The slip distance along the long mol­ecular axis (S1) is 7.064 (1) Å, nearly a two-ring-length displacement. The side slip (S2, along the short mol­ecular axis) is 1.159 (8) Å.

Related literature

For the synthesis of 1,3,4-oxadiazole derivatives: see Schulz et al. (1997[Schulz, B., Bruma, M. & Brehmer, L. (1997). Adv. Mater. 9, 601-613.]). For related structures: see Schulz et al. (2005[Schulz, B., Orgzall, I., Freydank, A. & Xu, C. (2005). Adv. Colloid Interface Sci. 116, 143-164.]); Qu et al. (2008[Qu, S., Chen, X., Shao, X., Li, F., Zhang, H., Wang, H., Zhang, P., Yu, Z., Wu, K., Wang, Y. & Li, M. (2008). J. Mater. Chem. 18, 3954-3964.]); Landis et al. (2008[Landis, C. A., Dhar, B., Lee, T., Sarjeant, A. & Katz, E. (2008). J. Phys. Chem. B, 112, 7939-7945.]).

[Scheme 1]

Experimental

Crystal data
  • C24H14N4O2

  • Mr = 390.39

  • Monoclinic, P 21 /c

  • a = 7.8982 (16) Å

  • b = 5.7107 (11) Å

  • c = 21.503 (5) Å

  • β = 109.82 (3)°

  • V = 912.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.18 × 0.14 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.983, Tmax = 0.989

  • 8518 measured reflections

  • 2091 independent reflections

  • 1468 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.07

  • 2091 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Aromatic heterocycles, such as 1,3,4-oxadiazole and thiophene rings, which are conjugatable to phenyl rings, are often directly connected to the phenyl ring to obtain a large π-conjugated system or to tune the electronic structure. These compounds are of interest as charge transport materials or emitting layers in electroluminescent diodes (Schulz et al., 1997, Schulz et al., 2005). Comparing to thiophene derivatives, 1,3,4-oxadiazole derivatives are more likely to form π-stacked molecular packing (Schulz et al., 2005, Qu et al., 2008, Landis et al., 2008).

As shown in Fig. 1, both 1,3,4-oxadiazole rings are in a trans-conformation, which yields a linear molecular shape. These molecules are π-stacked along the crystallographic a-axis (Fig. 2). The molecules in the stacks are canted relative to the stacking axis by 26.57 (1)°. Adjacent molecules are slipped off each other in both long and short molecular axis to avoid unfavorable electrostatic interactions in the "ideal" cofacial stacks (Fig. 3).

Related literature top

For the synthesis of 1,3,4-oxadiazole derivatives: see Schulz et al. (1997). For related structures: see Schulz et al. (2005); Qu et al. (2008); Landis et al. (2008).

Experimental top

The tile compound was synthesized through a two-step reaction. Firstly, naphthylacyl hydrazide was reacted with oxalyl chloride in THF at room temperature for 8 h, yielding the product, oxalyl acid N',N'-di-naphthylacyl hydrazide. Secondly, the title compound was derived by intramolecular cyclization of this dihydrazide derivative with POCl3 under reflux conditions, and the coarse product was further purified by washing with DMSO for the 1H NMR FT—IR spectroscopic characterization and elemental analysis. Yield >70%. Crystals of the title compound suitable for X-ray diffraction were obtained by a slow diffusion method (diethyl ether was diffused into chloroform solution).

Refinement top

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.93 Å and were included in the refinement in the riding model with Uiso(H) = 1.2 Ueq(C).

Structure description top

Aromatic heterocycles, such as 1,3,4-oxadiazole and thiophene rings, which are conjugatable to phenyl rings, are often directly connected to the phenyl ring to obtain a large π-conjugated system or to tune the electronic structure. These compounds are of interest as charge transport materials or emitting layers in electroluminescent diodes (Schulz et al., 1997, Schulz et al., 2005). Comparing to thiophene derivatives, 1,3,4-oxadiazole derivatives are more likely to form π-stacked molecular packing (Schulz et al., 2005, Qu et al., 2008, Landis et al., 2008).

As shown in Fig. 1, both 1,3,4-oxadiazole rings are in a trans-conformation, which yields a linear molecular shape. These molecules are π-stacked along the crystallographic a-axis (Fig. 2). The molecules in the stacks are canted relative to the stacking axis by 26.57 (1)°. Adjacent molecules are slipped off each other in both long and short molecular axis to avoid unfavorable electrostatic interactions in the "ideal" cofacial stacks (Fig. 3).

For the synthesis of 1,3,4-oxadiazole derivatives: see Schulz et al. (1997). For related structures: see Schulz et al. (2005); Qu et al. (2008); Landis et al. (2008).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipoids drawn at the 50% probability level. The asymmetric unit only contains a half molecule, the second half is generated by symmetry code -x, -y+1, -z+2. The line through C8 and the molecular center is defined as the long molecular axis.
[Figure 2] Fig. 2. Molecular packing as viewed down the crystallographic a axis.
[Figure 3] Fig. 3. Two adjacent molecules in the molecular stacks as viewed perpendicular to the molecular plane. The slip distances along the long molecular axis (S1) and short axis (S2) are 7.064 (1)Å and 1.159 (8) Å, respectively.
5,5'-Bis(naphthalen-2-yl)-2,2'-bi(1,3,4-oxadiazole) top
Crystal data top
C24H14N4O2Z = 2
Mr = 390.39F(000) = 404
Monoclinic, P21/cDx = 1.421 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.8982 (16) ŵ = 0.09 mm1
b = 5.7107 (11) ÅT = 293 K
c = 21.503 (5) ÅBlock, colourless
β = 109.82 (3)°0.18 × 0.14 × 0.12 mm
V = 912.4 (3) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2091 independent reflections
Radiation source: fine-focus sealed tube1468 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.983, Tmax = 0.989k = 77
8518 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0577P)2]
where P = (Fo2 + 2Fc2)/3
2091 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H14N4O2V = 912.4 (3) Å3
Mr = 390.39Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.8982 (16) ŵ = 0.09 mm1
b = 5.7107 (11) ÅT = 293 K
c = 21.503 (5) Å0.18 × 0.14 × 0.12 mm
β = 109.82 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2091 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1468 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.989Rint = 0.030
8518 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.16 e Å3
2091 reflectionsΔρmin = 0.18 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.18040 (11)0.40921 (16)0.97102 (4)0.0412 (2)
N10.01904 (14)0.7350 (2)0.94532 (6)0.0482 (3)
N20.14392 (14)0.7347 (2)0.91193 (6)0.0479 (3)
C10.04644 (15)0.5425 (2)0.97855 (6)0.0407 (3)
C20.23461 (16)0.5413 (2)0.92839 (6)0.0388 (3)
C30.38061 (15)0.4564 (2)0.90721 (6)0.0373 (3)
C40.46713 (17)0.2407 (2)0.93102 (6)0.0448 (3)
H40.42870.14990.95960.054*
C50.60641 (17)0.1660 (2)0.91221 (7)0.0453 (3)
H50.66370.02560.92880.054*
C60.66520 (15)0.2993 (2)0.86777 (6)0.0389 (3)
C70.80712 (17)0.2254 (3)0.84590 (7)0.0506 (4)
H70.86810.08680.86210.061*
C80.85466 (18)0.3556 (3)0.80150 (8)0.0586 (4)
H80.94660.30370.78700.070*
C90.76681 (19)0.5674 (3)0.77722 (8)0.0565 (4)
H90.80080.65430.74680.068*
C100.63230 (17)0.6463 (3)0.79789 (6)0.0459 (3)
H100.57630.78810.78210.055*
C110.57699 (15)0.5144 (2)0.84322 (6)0.0364 (3)
C120.43475 (15)0.5888 (2)0.86414 (6)0.0379 (3)
H120.37680.72970.84850.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0390 (4)0.0454 (6)0.0423 (5)0.0017 (4)0.0180 (4)0.0038 (4)
N10.0447 (6)0.0538 (7)0.0506 (6)0.0060 (5)0.0222 (5)0.0051 (6)
N20.0464 (6)0.0498 (7)0.0518 (6)0.0059 (5)0.0225 (5)0.0066 (5)
C10.0343 (6)0.0481 (8)0.0402 (6)0.0009 (5)0.0133 (5)0.0021 (6)
C20.0392 (6)0.0417 (7)0.0358 (6)0.0030 (5)0.0131 (5)0.0017 (5)
C30.0363 (6)0.0379 (7)0.0371 (6)0.0013 (5)0.0115 (5)0.0009 (5)
C40.0512 (7)0.0399 (7)0.0453 (7)0.0005 (6)0.0190 (6)0.0083 (6)
C50.0481 (7)0.0357 (7)0.0495 (7)0.0050 (5)0.0130 (6)0.0036 (6)
C60.0366 (6)0.0377 (7)0.0403 (6)0.0001 (5)0.0103 (5)0.0054 (5)
C70.0433 (7)0.0485 (9)0.0588 (8)0.0042 (6)0.0156 (6)0.0084 (7)
C80.0438 (7)0.0718 (11)0.0680 (9)0.0010 (7)0.0290 (7)0.0128 (8)
C90.0522 (8)0.0680 (11)0.0569 (8)0.0083 (7)0.0285 (7)0.0018 (8)
C100.0450 (7)0.0465 (8)0.0472 (7)0.0033 (6)0.0168 (6)0.0036 (6)
C110.0363 (6)0.0366 (7)0.0355 (6)0.0036 (5)0.0110 (5)0.0029 (5)
C120.0395 (6)0.0340 (7)0.0391 (6)0.0019 (5)0.0118 (5)0.0026 (5)
Geometric parameters (Å, º) top
O1—C11.3568 (15)C6—C71.4190 (17)
O1—C21.3636 (15)C6—C111.4228 (18)
N1—C11.2889 (18)C7—C81.360 (2)
N1—N21.4031 (16)C7—H70.9300
N2—C21.2986 (17)C8—C91.404 (2)
C1—C1i1.443 (3)C8—H80.9300
C2—C31.4588 (17)C9—C101.3600 (19)
C3—C121.3714 (17)C9—H90.9300
C3—C41.4175 (18)C10—C111.4130 (18)
C4—C51.3629 (19)C10—H100.9300
C4—H40.9300C11—C121.4098 (17)
C5—C61.4173 (19)C12—H120.9300
C5—H50.9300
C1—O1—C2101.84 (10)C7—C6—C11118.45 (12)
C1—N1—N2105.54 (11)C8—C7—C6120.48 (14)
C2—N2—N1106.25 (11)C8—C7—H7119.8
N1—C1—O1113.78 (11)C6—C7—H7119.8
N1—C1—C1i127.93 (15)C7—C8—C9120.87 (14)
O1—C1—C1i118.28 (15)C7—C8—H8119.6
N2—C2—O1112.58 (11)C9—C8—H8119.6
N2—C2—C3128.24 (12)C10—C9—C8120.39 (14)
O1—C2—C3119.18 (12)C10—C9—H9119.8
C12—C3—C4120.03 (11)C8—C9—H9119.8
C12—C3—C2119.22 (12)C9—C10—C11120.50 (14)
C4—C3—C2120.75 (12)C9—C10—H10119.8
C5—C4—C3120.24 (12)C11—C10—H10119.8
C5—C4—H4119.9C12—C11—C10121.71 (12)
C3—C4—H4119.9C12—C11—C6119.00 (11)
C4—C5—C6120.93 (13)C10—C11—C6119.29 (11)
C4—C5—H5119.5C3—C12—C11120.93 (12)
C6—C5—H5119.5C3—C12—H12119.5
C5—C6—C7122.68 (13)C11—C12—H12119.5
C5—C6—C11118.86 (11)
C1—N1—N2—C20.01 (14)C4—C5—C6—C110.41 (19)
N2—N1—C1—O10.15 (15)C5—C6—C7—C8177.78 (13)
N2—N1—C1—C1i179.92 (16)C11—C6—C7—C81.28 (19)
C2—O1—C1—N10.23 (14)C6—C7—C8—C91.1 (2)
C2—O1—C1—C1i179.97 (14)C7—C8—C9—C100.1 (2)
N1—N2—C2—O10.16 (14)C8—C9—C10—C111.1 (2)
N1—N2—C2—C3179.98 (12)C9—C10—C11—C12178.28 (12)
C1—O1—C2—N20.24 (13)C9—C10—C11—C60.84 (19)
C1—O1—C2—C3179.92 (11)C5—C6—C11—C120.36 (17)
N2—C2—C3—C120.4 (2)C7—C6—C11—C12179.46 (11)
O1—C2—C3—C12179.76 (10)C5—C6—C11—C10178.78 (11)
N2—C2—C3—C4179.09 (12)C7—C6—C11—C100.33 (17)
O1—C2—C3—C40.72 (18)C4—C3—C12—C110.42 (18)
C12—C3—C4—C51.19 (19)C2—C3—C12—C11179.11 (11)
C2—C3—C4—C5178.33 (12)C10—C11—C12—C3178.77 (11)
C3—C4—C5—C61.2 (2)C6—C11—C12—C30.35 (18)
C4—C5—C6—C7178.66 (12)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC24H14N4O2
Mr390.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.8982 (16), 5.7107 (11), 21.503 (5)
β (°) 109.82 (3)
V3)912.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.14 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.983, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
8518, 2091, 1468
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.07
No. of reflections2091
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

We would like to thank Mrs Ye Ling and Dr Li Bao of Jilin University for the crystal structure analysis. This work was supported by the National Science Foundation of China (50873044, 51073071, 51103057, and 21072076) and Jilin University (200903014).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLandis, C. A., Dhar, B., Lee, T., Sarjeant, A. & Katz, E. (2008). J. Phys. Chem. B, 112, 7939–7945.  CAS Google Scholar
First citationQu, S., Chen, X., Shao, X., Li, F., Zhang, H., Wang, H., Zhang, P., Yu, Z., Wu, K., Wang, Y. & Li, M. (2008). J. Mater. Chem. 18, 3954–3964.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSchulz, B., Bruma, M. & Brehmer, L. (1997). Adv. Mater. 9, 601–613.  CrossRef CAS Web of Science Google Scholar
First citationSchulz, B., Orgzall, I., Freydank, A. & Xu, C. (2005). Adv. Colloid Interface Sci. 116, 143–164.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds