inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Zirconium(IV) dilanthanum(III) penta­sulfide

aDepartment of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208-3113, USA
*Correspondence e-mail: ibers@chem.northwestern.edu

(Received 20 October 2011; accepted 27 October 2011; online 5 November 2011)

Zirconium(IV) dilanthanum(III) penta­sulfide, ZrLa2S5, crystallizes with four formula units in the space group Pnma in the U3S5 structure type. The asymmetric unit comprises one Zr, one La and four S atoms. The Zr and three S atoms are situated on mirror planes. The structure consists of LaS8 face-sharing bicapped distorted trigonal prisms and ZrS7 edge-sharing monocapped octa­hedra.

Related literature

The cell parameters of ZrLa2S5 were previously reported from X-ray powder diffraction measurements (Kokhno & Sere­brennikov, 1977[Kokhno, G. V. & Serebrennikov, V. V. (1977). Zh. Neorg. Khim. 22, 2111-2114.]). In a separate study, single-crystal X-ray diffraction measurements were used to determine the lattice parameters but not the structural parameters (Donohue & Jeitschko, 1974[Donohue, P. C. & Jeitschko, W. (1974). Mater. Res. Bull. 9, 1333-1336.]). Given that these lattice parameters, the space group, and the stoichiometry are similar to those of U3S5, it was assumed that ZrLa2S5 and U3S5 are isotypic (Donohue & Jeitschko, 1974[Donohue, P. C. & Jeitschko, W. (1974). Mater. Res. Bull. 9, 1333-1336.]). For analogous structures, see: Du Pont de Nemours (1976[Du Pont de Nemours, E. I., and Co. (1976). US Patent No. 3 956 461.]) and Potel et al. (1972[Potel, M., Brochu, R., Padiou, J. & Grandjean, D. (1972). C. R. Seances Acad. Sci. Ser. C, 275, 1419-1421.]). Physical property measurements of this and related compounds have been reported. For optical properties, see: Alekseeva et al. (1980[Alekseeva, T. P., Senova, R. N., Cherkasova, T. G. & Kokhno, G. V. (1980). Khim. Khim. Tekhnol. Geol. Mater. Reg. Nauchno-Prakt. Konf. 3, 8-9.]); for electrical properties, see: Senova et al. (1984[Senova, R. N., Alekseeva, T. P., Cherkasova, T. G. & Kokhno, G. V. (1984). Sintez i Reakts, pp. 89-92. Tomsk: Sposobnost Veshchestv.]). For synthetic details, see: Jin et al. (2009[Jin, G. B., Choi, E. S. & Ibers, J. A. (2009). Inorg. Chem. 48, 8227-8232.]). For ionic radii, see: Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). For standardization of structural data, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]).

Experimental

Crystal data
  • ZrLa2S5

  • Mr = 529.34

  • Orthorhombic, P n m a

  • a = 11.4784 (4) Å

  • b = 8.2010 (3) Å

  • c = 7.3799 (3) Å

  • V = 694.70 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 14.93 mm−1

  • T = 100 K

  • 0.12 × 0.11 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical [face indexed (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])] Tmin = 0.263, Tmax = 0.340

  • 8134 measured reflections

  • 890 independent reflections

  • 877 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.056

  • S = 2.51

  • 890 reflections

  • 44 parameters

  • Δρmax = 2.20 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker Software. CrystalMaker Software Ltd, Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Single crystals of ZrLa2S5 resulted from attempts to synthesize zirconium analogues of the uranium lanthanide oxysulfide compound UYb2O2S3 (Jin et al., 2009).

ZrLa2S5 adopts the U3S5 structure type (Potel et al., 1972). The unit-cell dimensions have been previously reported from single-crystal X-ray diffraction data (Donohue & Jeitschko, 1974) and from powder X-ray diffraction data (Kokhno & Serebrennikov, 1977). Unit-cell dimensions for ZrLa2S5 from the two single-crystal determinations compare favorably: a = 11.4864 (5), b = 8.2167 (5), c = 7.3894 (3) Å at room temperature (Donohue & Jeitschko, 1974) versus a = 11.4784 (4), b = 8.2010 (3), c = 7.3799 (3) Å from the present study at 100 K. (See also Kokhno & Serebrennikov, 1977). Isostructural compounds have been previously reported based on X-ray powder diffraction measurements for all trivalent lanthanides and yttrium excluding promethium, europium and ytterbium (Du Pont de Nemours, 1976).

The La—S interatomic distances (Table 1, Fig. 1) in the face-sharing bicapped distorted trigonal prisms LaS8 (Fig. 2) range from 2.8861 (8) to 3.0698 (9) Å. The Zr—S distances range from 2.5704 (8) to 2.7421 (11) Å. These values are close to the distances of 3.00 Å for La—S and 2.62 Å for Zr—S calculated from the summed ionic radii (Shannon, 1976).

Physical property measurements of ZrLa2S5 have been reported by Alekseeva et al. (1980) and Senova et al. (1984).

Related literature top

The cell parameters of ZrLa2S5 were previously reported from X-ray powder diffraction measurements (Kokhno & Serebrennikov, 1977). In a separate study, single-crystal X-ray diffraction measurements were used to determine the lattice parameters but not the structural parameters (Donohue & Jeitschko, 1974). Given that these lattice parameters, the space group, and the stoichiometry are similar to those of U3S5, it was assumed that ZrLa2S5 and U3S5 are isotypic (Donohue & Jeitschko, 1974). For analogous structures, see: Du Pont de Nemours (1976) and Potel et al. (1972). Physical property measurements of this and related compounds have been reported. For optical properties, see: Alekseeva et al. (1980); for electrical properties, see: Senova et al. (1984). For synthetic details, see: Jin et al. (2009). For ionic radii, see: Shannon (1976). For standardization of structural data, see: Gelato & Parthé (1987).

Experimental top

ZrO2 (99.99%, Aldrich) and La2S3 (99.9%, Strem) were used as received. Sb2S3 was synthesized from the elements. ZrLa2S5 was crystallized in a two step reaction in carbon-coated fused-silica tubes that had been evacuated to 10 -4 Torr. In the first step, 0.02 g (0.16 mmol) ZrO2 and 0.3 g (0.08 mmol) La2S3 were heated at 1273 K for 99 h and cooled to 298 K in 14 h. The resulting powder was combined with 0.02 g (0.06 mmol) Sb2S3 and heated at 1273 K for 99 h then cooled to 873 K at a rate of 2 K/h before cooling to 298 K over 10 h. The resulting ZrLa2S5 formed black prismatic crystals in low yield (<5 wt%). These were mechanically separated from the remaining powder.

Refinement top

The atomic positions were standardized with use of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak of 2.2 (2) e/Å3 is 0.50 Å and the deepest hole of -0.5 (2) e/Å3 is 0.99 Å from the Zr position.

Structure description top

Single crystals of ZrLa2S5 resulted from attempts to synthesize zirconium analogues of the uranium lanthanide oxysulfide compound UYb2O2S3 (Jin et al., 2009).

ZrLa2S5 adopts the U3S5 structure type (Potel et al., 1972). The unit-cell dimensions have been previously reported from single-crystal X-ray diffraction data (Donohue & Jeitschko, 1974) and from powder X-ray diffraction data (Kokhno & Serebrennikov, 1977). Unit-cell dimensions for ZrLa2S5 from the two single-crystal determinations compare favorably: a = 11.4864 (5), b = 8.2167 (5), c = 7.3894 (3) Å at room temperature (Donohue & Jeitschko, 1974) versus a = 11.4784 (4), b = 8.2010 (3), c = 7.3799 (3) Å from the present study at 100 K. (See also Kokhno & Serebrennikov, 1977). Isostructural compounds have been previously reported based on X-ray powder diffraction measurements for all trivalent lanthanides and yttrium excluding promethium, europium and ytterbium (Du Pont de Nemours, 1976).

The La—S interatomic distances (Table 1, Fig. 1) in the face-sharing bicapped distorted trigonal prisms LaS8 (Fig. 2) range from 2.8861 (8) to 3.0698 (9) Å. The Zr—S distances range from 2.5704 (8) to 2.7421 (11) Å. These values are close to the distances of 3.00 Å for La—S and 2.62 Å for Zr—S calculated from the summed ionic radii (Shannon, 1976).

Physical property measurements of ZrLa2S5 have been reported by Alekseeva et al. (1980) and Senova et al. (1984).

The cell parameters of ZrLa2S5 were previously reported from X-ray powder diffraction measurements (Kokhno & Serebrennikov, 1977). In a separate study, single-crystal X-ray diffraction measurements were used to determine the lattice parameters but not the structural parameters (Donohue & Jeitschko, 1974). Given that these lattice parameters, the space group, and the stoichiometry are similar to those of U3S5, it was assumed that ZrLa2S5 and U3S5 are isotypic (Donohue & Jeitschko, 1974). For analogous structures, see: Du Pont de Nemours (1976) and Potel et al. (1972). Physical property measurements of this and related compounds have been reported. For optical properties, see: Alekseeva et al. (1980); for electrical properties, see: Senova et al. (1984). For synthetic details, see: Jin et al. (2009). For ionic radii, see: Shannon (1976). For standardization of structural data, see: Gelato & Parthé (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of ZrLa2S5. Displacement ellipsoids are displayed at the 95% probability level.
[Figure 2] Fig. 2. The ZrLa2S5 structure. La atoms are blue, Zr atoms are black, S atoms are yellow
Zirconium(IV) dilanthanum(III) pentasulfide top
Crystal data top
ZrLa2S5Dx = 5.061 Mg m3
Mr = 529.34Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 6255 reflections
a = 11.4784 (4) Åθ = 3.1–27.9°
b = 8.2010 (3) ŵ = 14.93 mm1
c = 7.3799 (3) ÅT = 100 K
V = 694.70 (5) Å3Prism, black
Z = 40.12 × 0.11 × 0.09 mm
F(000) = 936
Data collection top
Bruker APEXII CCD
diffractometer
890 independent reflections
Radiation source: fine-focus sealed tube877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 27.9°, θmin = 3.3°
Absorption correction: numerical
[face indexed (SADABS; Bruker, 2009)]
h = 1415
Tmin = 0.263, Tmax = 0.340k = 106
8134 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017 [1.00000 + 0.00000exp(0.00(sinθ/λ)2)]/ [σ2(Fo2) + 0.0000 + 0.0000*P + (0.0158P)2 + 0.0000sinθ/λ]
where P = 1.00000Fo2 + 0.00000Fc2
wR(F2) = 0.056(Δ/σ)max = 0.001
S = 2.51Δρmax = 2.20 e Å3
890 reflectionsΔρmin = 0.54 e Å3
44 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0015 (2)
Crystal data top
ZrLa2S5V = 694.70 (5) Å3
Mr = 529.34Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 11.4784 (4) ŵ = 14.93 mm1
b = 8.2010 (3) ÅT = 100 K
c = 7.3799 (3) Å0.12 × 0.11 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
890 independent reflections
Absorption correction: numerical
[face indexed (SADABS; Bruker, 2009)]
877 reflections with I > 2σ(I)
Tmin = 0.263, Tmax = 0.340Rint = 0.018
8134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01744 parameters
wR(F2) = 0.0560 restraints
S = 2.51Δρmax = 2.20 e Å3
890 reflectionsΔρmin = 0.54 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.328759 (18)0.501789 (17)0.44160 (3)0.00537 (12)
Zr10.01001 (3)0.25000.42914 (5)0.00286 (13)
S10.29147 (10)0.25000.15995 (15)0.0061 (2)
S20.07363 (7)0.53474 (10)0.32234 (11)0.00812 (18)
S30.19311 (10)0.25000.64058 (15)0.0063 (2)
S40.00443 (9)0.25000.05768 (14)0.0073 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.00643 (17)0.00439 (17)0.00529 (17)0.00023 (5)0.00022 (6)0.00036 (5)
Zr10.0030 (2)0.0028 (2)0.0028 (2)0.0000.00063 (13)0.000
S10.0073 (5)0.0053 (5)0.0056 (5)0.0000.0013 (4)0.000
S20.0102 (4)0.0080 (3)0.0062 (4)0.0004 (3)0.0007 (3)0.0005 (3)
S30.0086 (5)0.0051 (5)0.0051 (5)0.0000.0008 (4)0.000
S40.0066 (6)0.0062 (5)0.0090 (6)0.0000.0007 (4)0.000
Geometric parameters (Å, º) top
La1—S4i2.8861 (8)Zr1—S2viii2.7206 (9)
La1—S4ii2.9230 (7)Zr1—S2ix2.7206 (9)
La1—S1ii2.9402 (8)Zr1—S42.7421 (11)
La1—S12.9610 (8)S1—Zr1i2.5932 (12)
La1—S32.9740 (8)S1—La1x2.9402 (8)
La1—S3iii3.0235 (8)S1—La1iii2.9402 (8)
La1—S2ii3.0398 (8)S1—La1vi2.9609 (8)
La1—S23.0698 (9)S2—Zr1viii2.7206 (9)
La1—La1iv4.0247 (4)S2—La1iii3.0398 (8)
La1—La1v4.0712 (3)S3—La1vi2.9739 (8)
La1—La1iii4.1092 (2)S3—La1ii3.0235 (8)
La1—La1ii4.1092 (2)S3—La1xi3.0235 (8)
Zr1—S2vi2.5704 (8)S4—La1xii2.8861 (8)
Zr1—S22.5705 (8)S4—La1vii2.8861 (8)
Zr1—S1vii2.5932 (12)S4—La1iii2.9230 (7)
Zr1—S32.6176 (12)S4—La1x2.9230 (7)
S4i—La1—S4ii92.295 (9)S2—La1—La1ii80.696 (17)
S4i—La1—S1ii145.31 (3)La1iv—La1—La1ii103.733 (7)
S4ii—La1—S1ii70.41 (3)La1v—La1—La1ii90.408 (4)
S4i—La1—S166.63 (3)La1iii—La1—La1ii127.785 (11)
S4ii—La1—S1141.82 (3)S2vi—Zr1—S2130.58 (4)
S1ii—La1—S1143.100 (13)S2vi—Zr1—S1vii101.36 (2)
S4i—La1—S382.42 (2)S2—Zr1—S1vii101.36 (2)
S4ii—La1—S3132.98 (3)S2vi—Zr1—S387.40 (2)
S1ii—La1—S387.96 (2)S2—Zr1—S387.40 (2)
S1—La1—S377.69 (2)S1vii—Zr1—S3158.10 (3)
S4i—La1—S3iii122.76 (3)S2vi—Zr1—S2viii153.69 (2)
S4ii—La1—S3iii78.51 (2)S2—Zr1—S2viii73.59 (3)
S1ii—La1—S3iii84.12 (2)S1vii—Zr1—S2viii80.19 (3)
S1—La1—S3iii86.66 (2)S3—Zr1—S2viii83.19 (3)
S3—La1—S3iii141.885 (17)S2vi—Zr1—S2ix73.59 (3)
S4i—La1—S2ii70.75 (3)S2—Zr1—S2ix153.69 (2)
S4ii—La1—S2ii63.66 (2)S1vii—Zr1—S2ix80.19 (3)
S1ii—La1—S2ii74.61 (3)S3—Zr1—S2ix83.19 (3)
S1—La1—S2ii129.30 (2)S2viii—Zr1—S2ix80.92 (4)
S3—La1—S2ii70.62 (3)S2vi—Zr1—S472.55 (2)
S3iii—La1—S2ii140.91 (2)S2—Zr1—S472.55 (2)
S4i—La1—S2136.89 (2)S1vii—Zr1—S473.97 (3)
S4ii—La1—S2130.36 (2)S3—Zr1—S4127.93 (4)
S1ii—La1—S269.42 (3)S2viii—Zr1—S4131.74 (2)
S1—La1—S273.87 (3)S2ix—Zr1—S4131.74 (2)
S3—La1—S272.74 (3)Zr1i—S1—La1x108.37 (3)
S3iii—La1—S269.57 (3)Zr1i—S1—La1iii108.37 (3)
S2ii—La1—S2128.71 (2)La1x—S1—La1iii87.63 (3)
S4i—La1—La1iv46.526 (16)Zr1i—S1—La1vi92.19 (3)
S4ii—La1—La1iv45.769 (15)La1x—S1—La1vi88.267 (9)
S1ii—La1—La1iv110.25 (2)La1iii—S1—La1vi159.29 (4)
S1—La1—La1iv106.65 (2)Zr1i—S1—La192.19 (3)
S3—La1—La1iv113.61 (2)La1x—S1—La1159.29 (4)
S3iii—La1—La1iv104.09 (2)La1iii—S1—La188.267 (9)
S2ii—La1—La1iv56.031 (16)La1vi—S1—La188.43 (3)
S2—La1—La1iv173.643 (17)Zr1—S2—Zr1viii106.41 (3)
S4i—La1—La1v135.682 (15)Zr1—S2—La1iii107.38 (3)
S4ii—La1—La1v45.861 (14)Zr1viii—S2—La1iii144.80 (3)
S1ii—La1—La1v46.186 (15)Zr1—S2—La195.92 (3)
S1—La1—La1v134.217 (15)Zr1viii—S2—La1101.56 (3)
S3—La1—La1v133.973 (16)La1iii—S2—La184.53 (2)
S3iii—La1—La1v47.682 (15)Zr1—S3—La1vi97.24 (3)
S2ii—La1—La1v95.655 (16)Zr1—S3—La197.24 (3)
S2—La1—La1v84.950 (15)La1vi—S3—La187.95 (3)
La1iv—La1—La1v90.417 (4)Zr1—S3—La1ii111.80 (3)
S4i—La1—La1iii107.70 (2)La1vi—S3—La1ii150.89 (4)
S4ii—La1—La1iii123.806 (19)La1—S3—La1ii86.491 (11)
S1ii—La1—La1iii106.89 (2)Zr1—S3—La1xi111.80 (3)
S1—La1—La1iii45.659 (16)La1vi—S3—La1xi86.491 (11)
S3—La1—La1iii102.01 (2)La1—S3—La1xi150.89 (4)
S3iii—La1—La1iii46.251 (17)La1ii—S3—La1xi84.64 (3)
S2ii—La1—La1iii172.533 (17)Zr1—S4—La1xii90.83 (3)
S2—La1—La1iii47.425 (16)Zr1—S4—La1vii90.83 (3)
La1iv—La1—La1iii128.467 (9)La1xii—S4—La1vii91.36 (3)
La1v—La1—La1iii90.409 (4)Zr1—S4—La1iii106.12 (3)
S4i—La1—La1ii107.50 (2)La1xii—S4—La1iii163.03 (4)
S4ii—La1—La1ii91.72 (2)La1vii—S4—La1iii87.705 (9)
S1ii—La1—La1ii46.074 (16)Zr1—S4—La1x106.12 (3)
S1—La1—La1ii124.18 (2)La1xii—S4—La1x87.705 (9)
S3—La1—La1ii47.258 (17)La1vii—S4—La1x163.03 (4)
S3iii—La1—La1ii128.91 (2)La1iii—S4—La1x88.28 (3)
S2ii—La1—La1ii48.044 (16)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y+1, z1/2; (iv) x+1, y+1, z+1; (v) x, y+3/2, z; (vi) x, y+1/2, z; (vii) x1/2, y, z+1/2; (viii) x, y+1, z+1; (ix) x, y1/2, z+1; (x) x+1/2, y1/2, z1/2; (xi) x+1/2, y1/2, z+1/2; (xii) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaZrLa2S5
Mr529.34
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)100
a, b, c (Å)11.4784 (4), 8.2010 (3), 7.3799 (3)
V3)694.70 (5)
Z4
Radiation typeMo Kα
µ (mm1)14.93
Crystal size (mm)0.12 × 0.11 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionNumerical
[face indexed (SADABS; Bruker, 2009)]
Tmin, Tmax0.263, 0.340
No. of measured, independent and
observed [I > 2σ(I)] reflections
8134, 890, 877
Rint0.018
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.017, 0.056, 2.51
No. of reflections890
No. of parameters44
Δρmax, Δρmin (e Å3)2.20, 0.54

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (Palmer, 2009).

 

Acknowledgements

The research was kindly supported by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Bio­sciences, and Geosciences Division and Divison of Materials Science and Engineering grant ER-15522. Use was made of the IMSERC X-ray Facility at Northwestern University, supported by the Inter­national Institute of Nanotechnology (IIN)

References

First citationAlekseeva, T. P., Senova, R. N., Cherkasova, T. G. & Kokhno, G. V. (1980). Khim. Khim. Tekhnol. Geol. Mater. Reg. Nauchno-Prakt. Konf. 3, 8–9.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDonohue, P. C. & Jeitschko, W. (1974). Mater. Res. Bull. 9, 1333–1336.  CrossRef CAS Google Scholar
First citationDu Pont de Nemours, E. I., and Co. (1976). US Patent No. 3 956 461.  Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationJin, G. B., Choi, E. S. & Ibers, J. A. (2009). Inorg. Chem. 48, 8227–8232.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKokhno, G. V. & Serebrennikov, V. V. (1977). Zh. Neorg. Khim. 22, 2111–2114.  CAS Google Scholar
First citationPalmer, D. (2009). CrystalMaker Software. CrystalMaker Software Ltd, Oxford, England.  Google Scholar
First citationPotel, M., Brochu, R., Padiou, J. & Grandjean, D. (1972). C. R. Seances Acad. Sci. Ser. C, 275, 1419–1421.  CAS Google Scholar
First citationSenova, R. N., Alekseeva, T. P., Cherkasova, T. G. & Kokhno, G. V. (1984). Sintez i Reakts, pp. 89–92. Tomsk: Sposobnost Veshchestv.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds