metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Di­aqua­bis­­(2,2′-bi­pyrimidine-κ2N1,N1′)manganese(II) bis­­(perchlorate) nitro­methane disolvate monohydrate

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 28 October 2011; accepted 30 October 2011; online 5 November 2011)

The asymmetric unit of the title compound, [Mn(C8H6N4)2(H2O)2](ClO4)2·2CH3NO2·H2O, contains one half of a cationic MnII complex, a ClO4 anion, a nitro­methane solvent mol­ecule and one half-mol­ecule of water. The complex mol­ecule and the solvent water mol­ecule are located on a twofold rotation axis. In the complex, the MnII ion has a distorted cis-N4O2 octa­hedral coordination geometry defined by four N atoms of the two chelating 2,2′-bipyrimidine ligands and two O atoms of water mol­ecules. In the crystal, the complex cations, anions and solvent mol­ecules are linked by inter­molecular O—H⋯N, O—H⋯O and weak C—H⋯O hydrogen bonds. The ClO4 anion is disordered over two sites with a site-occupancy factor of 0.512 (12) for the major component.

Related literature

For related structures of 2,2′-bipyrimidine MnII complexes, see: Hong et al. (1996[Hong, D. M., Wei, H. H., Gan, L. L., Lee, G. H. & Wang, Y. (1996). Polyhedron, 15, 2335-2340.]); Ha (2011[Ha, K. (2011). Acta Cryst. E67, m656-m657.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C8H6N4)2(H2O)2](ClO4)2·2CH3NO2·H2O

  • Mr = 746.31

  • Monoclinic, C 2/c

  • a = 21.913 (3) Å

  • b = 9.1956 (14) Å

  • c = 15.106 (2) Å

  • β = 101.756 (3)°

  • V = 2980.1 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 200 K

  • 0.35 × 0.27 × 0.24 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.830, Tmax = 1.000

  • 10552 measured reflections

  • 3617 independent reflections

  • 2302 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.199

  • S = 1.06

  • 3617 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 2.176 (2)
Mn1—N1 2.258 (3)
Mn1—N4 2.249 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N2i 0.84 2.48 3.286 (4) 162
O1—H1A⋯N3i 0.84 2.29 2.879 (4) 128
O1—H1B⋯O8ii 0.84 1.97 2.757 (4) 156
O8—H8A⋯O2iii 0.84 1.95 2.792 (4) 175
C3—H3⋯O6iv 0.95 2.54 3.346 (5) 143
C6—H6⋯O3Av 0.95 2.58 3.239 (7) 127
C8—H8⋯O6vi 0.95 2.59 3.175 (5) 120
C9—H9C⋯O5A 0.98 2.52 3.388 (9) 148
Symmetry codes: (i) -x, -y+2, -z+1; (ii) x, y+1, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Mononuclear MnII complexes of 2,2'-bipyrimidine (bpym; C8H6N4) ligand and ClO4- anions, such as [Mn(bpym)2(H2O)2](ClO4)2.2H2O (Hong et al., 1996) and [Mn(bpym)2(CH3CN)(H2O)][Mn(bpym)2(H2O)2](ClO4)4.2H2O (Ha, 2011), have been investigated previously.

The asymmetric unit of the title compound, [Mn(bpym)2(H2O)2](ClO4)2.2CH3NO2.H2O, contains one half of a cationic MnII complex, a ClO4 anion, a nitromethane solvent molecule and one half of a water molecule (Fig. 1). The complex and the solvent water molecule are located on the twofold rotation axis running in the [010] direction and passing through the atoms Mn1 and O8. In the complex, the MnII ion has a distorted cis-N4O2 octahedral coordination geometry defined by four N atoms of the two chelating bpym ligands and two O atoms of water ligands. The tight N—Mn—N chelating angles contribute the distortion of the ocataheron [<N1—Mn1—N4 = 72.59 (10)°], which result in non-linear trans axes [<O1—Mn1—N4i = 161.83 (10)° and <N1—Mn1—N1i = 174.05 (14)°); symmetry code i: -x,y,1/2 - z]. The Mn—N bond lengths are almost equivalent and slightly longer than the Mn—O bond (Table 1). The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.087 (3) Å] is 75.44 (4)°. In the crystal structure, the complex molecules, anions and solvent molecules are linked by intermolecular O—H···N, O—H···O and C—H···O hydrogen bonds (Fig. 2, Table 2). The complexes are stacked in columns along the b axis. When viewed down the c axis, the successive complexes stack in the opposite manner. In the columns, several intermolecular π-π interactions between adjacent pyrimidine rings are present, the shortest ring centroid-centroid distance being 3.688 (2) Å.

Related literature top

For related structures of 2,2'-bipyrimidine MnII complexes, see: Hong et al. (1996); Ha (2011).

Experimental top

To a solution of Mn(ClO4)2.6H2O (0.3617 g, 0.999 mmol) in EtOH (20 ml) was added 2,2'-bipyrimidine (0.1586 g, 1.003 mmol) and stirred for 3 h at room temperature. The formed precipitate was separated by filtration, washed with EtOH and dried at 50°C, to give a pale yellow powder (0.2713 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3NO2 solution.

Refinement top

Carbon-bound H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.95 Å (CH) or 0.98 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)]. Oxygen-bound H atoms were located from Fourier difference maps then allowed to ride on their parent O atoms in the final cycles of refinement with O—H = 0.84 Å and Uiso(H) = 1.5 Ueq(O). The ClO4- anion displayed relatively large displacement factors and low electron density peaks so that the anion appears to be highly disordered. Atoms O3, O4 and O5 were modelled isotropically as disordered over two sites with a site occupancy factor of 0.51 (1) for the major component. The highest peak (1.05 e Å-3) and the deepest hole (-0.69 e Å-3) in the difference Fourier map are located 0.81 Å and 0.66 Å from the atoms O3A and O5B, respectively.

Structure description top

Mononuclear MnII complexes of 2,2'-bipyrimidine (bpym; C8H6N4) ligand and ClO4- anions, such as [Mn(bpym)2(H2O)2](ClO4)2.2H2O (Hong et al., 1996) and [Mn(bpym)2(CH3CN)(H2O)][Mn(bpym)2(H2O)2](ClO4)4.2H2O (Ha, 2011), have been investigated previously.

The asymmetric unit of the title compound, [Mn(bpym)2(H2O)2](ClO4)2.2CH3NO2.H2O, contains one half of a cationic MnII complex, a ClO4 anion, a nitromethane solvent molecule and one half of a water molecule (Fig. 1). The complex and the solvent water molecule are located on the twofold rotation axis running in the [010] direction and passing through the atoms Mn1 and O8. In the complex, the MnII ion has a distorted cis-N4O2 octahedral coordination geometry defined by four N atoms of the two chelating bpym ligands and two O atoms of water ligands. The tight N—Mn—N chelating angles contribute the distortion of the ocataheron [<N1—Mn1—N4 = 72.59 (10)°], which result in non-linear trans axes [<O1—Mn1—N4i = 161.83 (10)° and <N1—Mn1—N1i = 174.05 (14)°); symmetry code i: -x,y,1/2 - z]. The Mn—N bond lengths are almost equivalent and slightly longer than the Mn—O bond (Table 1). The dihedral angle between the least-squares planes of the two bpym ligands [maximum deviation = 0.087 (3) Å] is 75.44 (4)°. In the crystal structure, the complex molecules, anions and solvent molecules are linked by intermolecular O—H···N, O—H···O and C—H···O hydrogen bonds (Fig. 2, Table 2). The complexes are stacked in columns along the b axis. When viewed down the c axis, the successive complexes stack in the opposite manner. In the columns, several intermolecular π-π interactions between adjacent pyrimidine rings are present, the shortest ring centroid-centroid distance being 3.688 (2) Å.

For related structures of 2,2'-bipyrimidine MnII complexes, see: Hong et al. (1996); Ha (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 40% probability level for non-H atoms. Unlabelled atoms are related to the reference atoms by the (-x, y, 1/2 - z) symmetry transformation. For the sake of clarity, only the major disorder component is shown.
[Figure 2] Fig. 2. View of the unit-cell contents of the title compound. Hydrogen-bond interactions and the bonds of the disordered anions are drawn with dashed lines.
cis-Diaquabis(2,2'-bipyrimidine- κ2N1,N1')manganese(II) bis(perchlorate) nitromethane disolvate monohydrate top
Crystal data top
[Mn(C8H6N4)2(H2O)2](ClO4)2·2CH3NO2·H2OF(000) = 1524
Mr = 746.31Dx = 1.663 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3688 reflections
a = 21.913 (3) Åθ = 2.4–28.2°
b = 9.1956 (14) ŵ = 0.71 mm1
c = 15.106 (2) ÅT = 200 K
β = 101.756 (3)°Stick, pale yellow
V = 2980.1 (8) Å30.35 × 0.27 × 0.24 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3617 independent reflections
Radiation source: fine-focus sealed tube2302 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2929
Tmin = 0.830, Tmax = 1.000k = 1211
10552 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.1146P)2]
where P = (Fo2 + 2Fc2)/3
3617 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 1.05 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Mn(C8H6N4)2(H2O)2](ClO4)2·2CH3NO2·H2OV = 2980.1 (8) Å3
Mr = 746.31Z = 4
Monoclinic, C2/cMo Kα radiation
a = 21.913 (3) ŵ = 0.71 mm1
b = 9.1956 (14) ÅT = 200 K
c = 15.106 (2) Å0.35 × 0.27 × 0.24 mm
β = 101.756 (3)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3617 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2302 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 1.000Rint = 0.044
10552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.06Δρmax = 1.05 e Å3
3617 reflectionsΔρmin = 0.69 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.00001.01984 (8)0.25000.0309 (2)
O10.04920 (12)1.1867 (3)0.31005 (16)0.0423 (6)
H1A0.05871.17000.36020.063*
H1B0.04091.27380.30070.063*
N10.08152 (12)1.0071 (3)0.36833 (18)0.0303 (6)
N20.10990 (15)0.9334 (3)0.52207 (18)0.0391 (7)
N30.00248 (13)0.7724 (3)0.49924 (18)0.0380 (7)
N40.02402 (13)0.8545 (3)0.34722 (17)0.0319 (6)
C10.13597 (16)1.0798 (4)0.3762 (2)0.0375 (8)
H10.14461.13160.32580.045*
C20.17891 (18)1.0796 (4)0.4560 (3)0.0445 (9)
H20.21771.12840.46150.053*
C30.16387 (19)1.0065 (4)0.5278 (3)0.0475 (9)
H30.19281.00740.58400.057*
C40.07234 (15)0.9357 (3)0.4413 (2)0.0306 (7)
C50.01357 (15)0.8495 (4)0.42920 (19)0.0305 (7)
C60.04833 (19)0.6911 (4)0.4843 (3)0.0478 (9)
H60.05730.63470.53280.057*
C70.08852 (19)0.6844 (4)0.4026 (3)0.0507 (10)
H70.12420.62320.39310.061*
C80.07495 (17)0.7708 (4)0.3339 (3)0.0414 (8)
H80.10230.77060.27640.050*
Cl10.35218 (4)0.06501 (11)0.11241 (6)0.0450 (3)
O20.41653 (14)0.0994 (4)0.1248 (2)0.0629 (9)
O3A0.3343 (3)0.0585 (8)0.0577 (5)0.055 (2)*0.512 (12)
O4A0.3261 (3)0.0650 (8)0.1904 (4)0.059 (2)*0.512 (12)
O5A0.3161 (3)0.1896 (8)0.0597 (6)0.073 (2)*0.512 (12)
O3B0.3318 (4)0.0053 (11)0.0305 (7)0.080 (3)*0.488 (12)
O4B0.3488 (5)0.0100 (12)0.1960 (7)0.099 (3)*0.488 (12)
O5B0.3249 (5)0.2003 (12)0.1121 (9)0.107 (4)*0.488 (12)
O60.29523 (16)0.4196 (3)0.2512 (2)0.0631 (9)
O70.25300 (16)0.2492 (4)0.3104 (2)0.0721 (10)
N50.25476 (15)0.3308 (3)0.2479 (2)0.0434 (7)
C90.2066 (2)0.3224 (7)0.1673 (3)0.0796 (16)
H9A0.19400.42090.14640.119*
H9B0.17060.27020.18080.119*
H9C0.22250.27050.12010.119*
O80.00000.4351 (4)0.25000.0667 (13)
H8A0.02380.48890.28660.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0335 (4)0.0380 (4)0.0215 (4)0.0000.0063 (3)0.000
O10.0559 (16)0.0434 (14)0.0278 (12)0.0113 (12)0.0088 (11)0.0014 (10)
N10.0273 (14)0.0367 (15)0.0272 (14)0.0031 (11)0.0065 (11)0.0004 (10)
N20.0457 (18)0.0441 (17)0.0240 (14)0.0028 (13)0.0013 (13)0.0013 (12)
N30.0424 (17)0.0447 (17)0.0299 (15)0.0020 (13)0.0143 (13)0.0051 (12)
N40.0356 (15)0.0363 (15)0.0253 (13)0.0012 (11)0.0099 (11)0.0006 (11)
C10.0350 (19)0.042 (2)0.0363 (18)0.0022 (14)0.0091 (15)0.0024 (14)
C20.033 (2)0.049 (2)0.048 (2)0.0020 (15)0.0001 (17)0.0024 (17)
C30.045 (2)0.054 (2)0.038 (2)0.0024 (17)0.0055 (17)0.0064 (17)
C40.0337 (17)0.0338 (17)0.0261 (16)0.0058 (13)0.0101 (13)0.0031 (12)
C50.0358 (18)0.0358 (17)0.0219 (15)0.0020 (13)0.0106 (13)0.0016 (12)
C60.052 (2)0.054 (2)0.042 (2)0.0003 (18)0.0208 (19)0.0139 (17)
C70.049 (2)0.050 (2)0.056 (2)0.0115 (18)0.017 (2)0.0038 (19)
C80.038 (2)0.047 (2)0.0386 (19)0.0077 (15)0.0080 (16)0.0030 (15)
Cl10.0442 (6)0.0512 (6)0.0427 (5)0.0063 (4)0.0164 (4)0.0097 (4)
O20.0440 (17)0.075 (2)0.068 (2)0.0179 (14)0.0072 (15)0.0119 (16)
O60.067 (2)0.064 (2)0.064 (2)0.0197 (16)0.0253 (17)0.0072 (15)
O70.078 (2)0.065 (2)0.078 (2)0.0016 (17)0.0283 (19)0.0181 (18)
N50.0447 (19)0.0431 (18)0.0466 (19)0.0030 (14)0.0189 (15)0.0066 (14)
C90.052 (3)0.120 (5)0.061 (3)0.019 (3)0.004 (2)0.035 (3)
O80.062 (3)0.045 (2)0.085 (3)0.0000.004 (2)0.000
Geometric parameters (Å, º) top
Mn1—O12.176 (2)C4—C51.491 (5)
Mn1—O1i2.176 (2)C6—C71.364 (6)
Mn1—N1i2.258 (3)C6—H60.9500
Mn1—N12.258 (3)C7—C81.386 (5)
Mn1—N4i2.249 (3)C7—H70.9500
Mn1—N42.249 (3)C8—H80.9500
O1—H1A0.8400Cl1—O5B1.380 (11)
O1—H1B0.8400Cl1—O3B1.387 (9)
N1—C41.332 (4)Cl1—O4A1.410 (6)
N1—C11.351 (4)Cl1—O3A1.413 (6)
N2—C41.326 (4)Cl1—O21.420 (3)
N2—C31.348 (5)Cl1—O4B1.454 (10)
N3—C61.322 (5)Cl1—O5A1.521 (8)
N3—C51.337 (4)O6—N51.199 (4)
N4—C81.337 (4)O7—N51.213 (4)
N4—C51.341 (4)N5—C91.441 (5)
C1—C21.369 (5)C9—H9A0.9800
C1—H10.9500C9—H9B0.9800
C2—C31.372 (6)C9—H9C0.9800
C2—H20.9500O8—H8A0.8400
C3—H30.9500
O1—Mn1—O1i90.36 (14)N3—C5—C4118.5 (3)
O1—Mn1—N4i161.83 (10)N4—C5—C4116.6 (3)
O1i—Mn1—N4i90.14 (9)N3—C6—C7123.1 (3)
O1—Mn1—N490.14 (9)N3—C6—H6118.4
O1i—Mn1—N4161.83 (10)C7—C6—H6118.5
N4i—Mn1—N494.98 (13)C6—C7—C8117.0 (4)
O1—Mn1—N1i89.27 (9)C6—C7—H7121.5
O1i—Mn1—N1i94.93 (9)C8—C7—H7121.5
N4i—Mn1—N1i72.59 (10)N4—C8—C7121.2 (4)
N4—Mn1—N1i103.25 (10)N4—C8—H8119.4
O1—Mn1—N194.93 (9)C7—C8—H8119.4
O1i—Mn1—N189.27 (9)O5B—Cl1—O3B110.9 (6)
N4i—Mn1—N1103.25 (10)O5B—Cl1—O4A75.8 (5)
N4—Mn1—N172.59 (10)O3B—Cl1—O4A129.3 (5)
N1i—Mn1—N1174.05 (14)O5B—Cl1—O3A130.9 (6)
Mn1—O1—H1A118.8O4A—Cl1—O3A112.2 (4)
Mn1—O1—H1B117.4O5B—Cl1—O2102.5 (5)
H1A—O1—H1B115.3O3B—Cl1—O2110.6 (4)
C4—N1—C1116.7 (3)O4A—Cl1—O2116.8 (3)
C4—N1—Mn1116.8 (2)O3A—Cl1—O2113.9 (3)
C1—N1—Mn1125.9 (2)O5B—Cl1—O4B109.4 (6)
C4—N2—C3115.0 (3)O3B—Cl1—O4B119.3 (5)
C6—N3—C5116.6 (3)O3A—Cl1—O4B94.0 (5)
C8—N4—C5117.1 (3)O2—Cl1—O4B102.5 (5)
C8—N4—Mn1126.2 (2)O3B—Cl1—O5A81.1 (5)
C5—N4—Mn1116.4 (2)O4A—Cl1—O5A100.5 (4)
N1—C1—C2120.9 (3)O3A—Cl1—O5A104.3 (4)
N1—C1—H1119.6O2—Cl1—O5A107.3 (3)
C2—C1—H1119.6O4B—Cl1—O5A134.3 (5)
C1—C2—C3117.6 (4)O6—N5—O7122.0 (4)
C1—C2—H2121.2O6—N5—C9118.6 (4)
C3—C2—H2121.2O7—N5—C9119.4 (4)
N2—C3—C2122.9 (3)N5—C9—H9A109.5
N2—C3—H3118.6N5—C9—H9B109.5
C2—C3—H3118.6H9A—C9—H9B109.5
N2—C4—N1126.8 (3)N5—C9—H9C109.5
N2—C4—C5117.6 (3)H9A—C9—H9C109.5
N1—C4—C5115.7 (3)H9B—C9—H9C109.5
N3—C5—N4124.9 (3)
O1—Mn1—N1—C476.5 (2)C1—C2—C3—N21.5 (6)
O1i—Mn1—N1—C4166.8 (2)C3—N2—C4—N13.2 (5)
N4i—Mn1—N1—C4103.2 (2)C3—N2—C4—C5176.5 (3)
N4—Mn1—N1—C412.1 (2)C1—N1—C4—N23.0 (5)
O1—Mn1—N1—C194.8 (3)Mn1—N1—C4—N2169.1 (3)
O1i—Mn1—N1—C14.5 (3)C1—N1—C4—C5176.6 (3)
N4i—Mn1—N1—C185.5 (3)Mn1—N1—C4—C511.2 (3)
N4—Mn1—N1—C1176.6 (3)C6—N3—C5—N42.8 (5)
O1—Mn1—N4—C889.8 (3)C6—N3—C5—C4176.3 (3)
O1i—Mn1—N4—C8178.6 (3)C8—N4—C5—N33.1 (5)
N4i—Mn1—N4—C872.7 (3)Mn1—N4—C5—N3171.0 (2)
N1i—Mn1—N4—C80.6 (3)C8—N4—C5—C4176.0 (3)
N1—Mn1—N4—C8175.0 (3)Mn1—N4—C5—C49.8 (3)
O1—Mn1—N4—C583.7 (2)N2—C4—C5—N31.5 (4)
O1i—Mn1—N4—C57.9 (5)N1—C4—C5—N3178.2 (3)
N4i—Mn1—N4—C5113.8 (2)N2—C4—C5—N4179.4 (3)
N1i—Mn1—N4—C5173.0 (2)N1—C4—C5—N40.9 (4)
N1—Mn1—N4—C511.4 (2)C5—N3—C6—C70.3 (6)
C4—N1—C1—C20.4 (5)N3—C6—C7—C81.6 (6)
Mn1—N1—C1—C2170.9 (3)C5—N4—C8—C70.9 (5)
N1—C1—C2—C31.7 (6)Mn1—N4—C8—C7172.6 (3)
C4—N2—C3—C20.7 (5)C6—C7—C8—N41.3 (6)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2ii0.842.483.286 (4)162
O1—H1A···N3ii0.842.292.879 (4)128
O1—H1B···O8iii0.841.972.757 (4)156
O8—H8A···O2iv0.841.952.792 (4)175
C3—H3···O6v0.952.543.346 (5)143
C6—H6···O3Avi0.952.583.239 (7)127
C8—H8···O6vii0.952.593.175 (5)120
C9—H9C···O5A0.982.523.388 (9)148
Symmetry codes: (ii) x, y+2, z+1; (iii) x, y+1, z; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y+3/2, z+1; (vi) x1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Mn(C8H6N4)2(H2O)2](ClO4)2·2CH3NO2·H2O
Mr746.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)21.913 (3), 9.1956 (14), 15.106 (2)
β (°) 101.756 (3)
V3)2980.1 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.35 × 0.27 × 0.24
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.830, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10552, 3617, 2302
Rint0.044
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.199, 1.06
No. of reflections3617
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.69

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Mn1—O12.176 (2)Mn1—N42.249 (3)
Mn1—N12.258 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N2i0.842.483.286 (4)161.6
O1—H1A···N3i0.842.292.879 (4)127.6
O1—H1B···O8ii0.841.972.757 (4)156.4
O8—H8A···O2iii0.841.952.792 (4)175.2
C3—H3···O6iv0.952.543.346 (5)142.7
C6—H6···O3Av0.952.583.239 (7)127.0
C8—H8···O6vi0.952.593.175 (5)120.0
C9—H9C···O5A0.982.523.388 (9)147.5
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1; (v) x1/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z.
 

Acknowledgements

This study was supported financially by Chonnam National University, 2010.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011). Acta Cryst. E67, m656–m657.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHong, D. M., Wei, H. H., Gan, L. L., Lee, G. H. & Wang, Y. (1996). Polyhedron, 15, 2335–2340.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds