organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hy­dr­oxy­benzyl­­idene)-2-(hy­dr­oxy­imino)­propano­hydrazide

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska Street 64, 01601 Kyiv, Ukraine, and bDepartment of Chemistry, University of Joensuu, PO Box 111, 80101 Joensuu, Finland
*Correspondence e-mail: plutenkom@gmail.com

(Received 29 September 2011; accepted 31 October 2011; online 12 November 2011)

The mol­ecule of the title compound, C10H11N3O3, adopts an all-trans conformation and is approxomately planar, the largest deviation from the least-squares plane through all non-H atoms being 0.261 (1) Å. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal, the mol­ecules are packed into layers lying parallel to the ab plane by π-stacking inter­actions between the benzene ring of one molecule and the C—N bond of the oxime group of another molecule; the shortest inter­molecular C⋯C separation within the layer is 3.412 (1) Å. The layers are connected by O—H⋯O and N—H⋯O hydrogen bonds.

Related literature

For the preparation and characterization of 3d metal complexes with related oxime derivatives, see: Kanderal et al. (2005[Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428-1437.]); Moroz et al. (2010[Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750-4752.]). For the crystal structures of similar oxime derivatives, see: Świątek-Kozłowska et al. (2000[Świątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064-4068.]); Mokhir et al. (2002[Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113-121.]); Sachse et al. (2008[Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, pp. 800-806.]). For 2-hy­droxy­imino­propanamide and amide derivatives of 2-hy­droxy­imino­propanoic acid, see: Onindo et al. (1995[Onindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911-3915.]); Duda et al. (1997[Duda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853-3859.]); Sliva et al. (1997[Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287-294.]). For the synthesis of 2-(hy­droxy­imino)­propane­hydrazide, see: Fritsky et al. (1998[Fritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Glowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269-3274.]). For related structures, see: Krämer & Fritsky (2000[Krämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505-3510.]); Wörl et al. (2005[Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27-29.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O3

  • Mr = 221.22

  • Monoclinic, C c

  • a = 11.2296 (4) Å

  • b = 8.1905 (4) Å

  • c = 11.1000 (5) Å

  • β = 102.223 (2)°

  • V = 997.79 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.61 × 0.47 × 0.34 mm

Data collection
  • Bruker Kappa APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) Tmin = 0.935, Tmax = 0.964

  • 16456 measured reflections

  • 2465 independent reflections

  • 2383 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.086

  • S = 1.07

  • 2465 reflections

  • 148 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.84 1.85 2.5808 (10) 144
O3—H3⋯O2i 0.84 1.82 2.6518 (9) 171
N2—H2⋯O1ii 0.88 2.32 3.1535 (9) 157
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Polynucleative oxime ligands attract considerable interest because of their ability to act as efficient chelating agents with respect to 3 d-metal ions and their tendency to form polynuclear metal complexes (Kanderal et al. 2005; Moroz et al. 2010). In the present work we present the synthesis and structure of the title compound (1) (Fig. 1), which comprises several donor groups: oxime, hydrazone, azomethine, and phenolic.

In the structure 1 the N'-(2-hydroxybenzylidene)-2-(hydroxyimino)propanehydrazide molecules are connected by extensive system of hydrogen bonds. The bond lengths N—O and C—N in the oxime group are 1.3838 (9) and 1.2854 (9) Å respectively, which is typical for protonated moieties of this type (Świątek-Kozłowska et al., 2000; Mokhir et al., 2002; Sachse et al., 2008). The oxime group is in a trans position with respect to the amide group, in accordance with the structures of 2-hydroxyiminopropanamide and other amide derivatives of 2-hydroxyiminopropanoic acid (Onindo et al., 1995; Duda et al., 1997; Sliva et al., 1997).

Bond lengths N—N', N—C and C—O of the hydrazone group are 1.3643 (9), 1.3544 (9) and 1.2353 (9) Å, respectively, and are typical for the protonated hydrazone groups (Moroz et al., 2010). The oxime and the hydrazide groups are situated in trans-position around the C(8)—C(9) bond. The CH3C(NOH)C(O)NH fragment is almost planar (deviations of the non-hydrogen atoms from the moiety's mean plane are less than 0.2 Å).

The C—C (1.3814 (11) – 1.4115 (9) Å) bond lengths in the benzene ring have their typical values (Krämer et al., 2000; Wörl et al., 2005). The angles C—C'-C'', C—N—C' and N—C—C' are near 120°.

There are three hydrogen bonds in structure of 1 (Table 2). The O1—H1···N1 is an intramolecular hydrogen bond, where the phenolic oxygen atom acts as donor and the azomethine nitrogen atom acts as receptor. The O3—H3···O2 and N2—H2···O1 hydrogen bonds are intermolecular, the oximic oxygen and the hydrazone nitrogen atoms act as donors and the hydrazone oxygen and the phenolic oxygen atoms act as acceptors.

In the crystal packing, molecules of 1 form layers parallel to ab plane. The molecules in the layer are connected by π-stacking between the benzene ring of one molecule and C—N bond of the oxime group of another molecule. The distance between two planes formed by neighboring molecules is 3.3493 (7) Å. The layers are connected by extensive system of hydrogen bonds.

Related literature top

For the preparation and characterization of 3d metal complexes with related oxime derivatives, see: Kanderal et al. (2005); Moroz et al. (2010). For the crystal structures of similar oxime derivatives, see: Świątek-Kozłowska et al. (2000); Mokhir et al. (2002); Sachse et al. (2008). For 2-hydroxyiminopropanamide and amide derivatives of 2-hydroxyiminopropanoic acid, see: Onindo et al. (1995); Duda et al. (1997); Sliva et al. (1997). For the synthesis of 2-(hydroxyimino)propanehydrazide, see: Fritsky et al. (1998). For related structures, see: Krämer & Fritsky (2000); Wörl et al. (2005).

Experimental top

A mixture of 2-(hydroxyimino)propanehydrazide synthesized according to (Fritsky et al., 1998) (0.117 g, 0.1 mmol) and salicylic aldehyde (0.122 g, 0.1 mmol) in 10 ml of methanol was heated to reflux for 2 h. On cooling to room temperature, a solid precipitate was formed. The solid was filtered and then recrystallized from methanol. Yellowish needle crystals of 1 were obtained by slow evaporation of the methanolic solution. Yield: 2 g (90%).

Refinement top

All hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95–0.98 Å, N—H = 0.88 Å, O—H = 0.84 Å, and Uiso = 1.2–1.5 Ueq(parent atom). The highest peak is located 0.64 Å from atom N3 and the deepest hole is located 0.30 Å from atom H3.

Structure description top

Polynucleative oxime ligands attract considerable interest because of their ability to act as efficient chelating agents with respect to 3 d-metal ions and their tendency to form polynuclear metal complexes (Kanderal et al. 2005; Moroz et al. 2010). In the present work we present the synthesis and structure of the title compound (1) (Fig. 1), which comprises several donor groups: oxime, hydrazone, azomethine, and phenolic.

In the structure 1 the N'-(2-hydroxybenzylidene)-2-(hydroxyimino)propanehydrazide molecules are connected by extensive system of hydrogen bonds. The bond lengths N—O and C—N in the oxime group are 1.3838 (9) and 1.2854 (9) Å respectively, which is typical for protonated moieties of this type (Świątek-Kozłowska et al., 2000; Mokhir et al., 2002; Sachse et al., 2008). The oxime group is in a trans position with respect to the amide group, in accordance with the structures of 2-hydroxyiminopropanamide and other amide derivatives of 2-hydroxyiminopropanoic acid (Onindo et al., 1995; Duda et al., 1997; Sliva et al., 1997).

Bond lengths N—N', N—C and C—O of the hydrazone group are 1.3643 (9), 1.3544 (9) and 1.2353 (9) Å, respectively, and are typical for the protonated hydrazone groups (Moroz et al., 2010). The oxime and the hydrazide groups are situated in trans-position around the C(8)—C(9) bond. The CH3C(NOH)C(O)NH fragment is almost planar (deviations of the non-hydrogen atoms from the moiety's mean plane are less than 0.2 Å).

The C—C (1.3814 (11) – 1.4115 (9) Å) bond lengths in the benzene ring have their typical values (Krämer et al., 2000; Wörl et al., 2005). The angles C—C'-C'', C—N—C' and N—C—C' are near 120°.

There are three hydrogen bonds in structure of 1 (Table 2). The O1—H1···N1 is an intramolecular hydrogen bond, where the phenolic oxygen atom acts as donor and the azomethine nitrogen atom acts as receptor. The O3—H3···O2 and N2—H2···O1 hydrogen bonds are intermolecular, the oximic oxygen and the hydrazone nitrogen atoms act as donors and the hydrazone oxygen and the phenolic oxygen atoms act as acceptors.

In the crystal packing, molecules of 1 form layers parallel to ab plane. The molecules in the layer are connected by π-stacking between the benzene ring of one molecule and C—N bond of the oxime group of another molecule. The distance between two planes formed by neighboring molecules is 3.3493 (7) Å. The layers are connected by extensive system of hydrogen bonds.

For the preparation and characterization of 3d metal complexes with related oxime derivatives, see: Kanderal et al. (2005); Moroz et al. (2010). For the crystal structures of similar oxime derivatives, see: Świątek-Kozłowska et al. (2000); Mokhir et al. (2002); Sachse et al. (2008). For 2-hydroxyiminopropanamide and amide derivatives of 2-hydroxyiminopropanoic acid, see: Onindo et al. (1995); Duda et al. (1997); Sliva et al. (1997). For the synthesis of 2-(hydroxyimino)propanehydrazide, see: Fritsky et al. (1998). For related structures, see: Krämer & Fritsky (2000); Wörl et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids shown at the 50% probability level and atom labelling.
[Figure 2] Fig. 2. Crystal packing of the title compound.
N'-(2-Hydroxybenzylidene)-2-(hydroxyimino)propanohydrazide top
Crystal data top
C10H11N3O3F(000) = 464
Mr = 221.22Dx = 1.473 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 9875 reflections
a = 11.2296 (4) Åθ = 3.1–36.5°
b = 8.1905 (4) ŵ = 0.11 mm1
c = 11.1000 (5) ÅT = 100 K
β = 102.223 (2)°Block, yellow
V = 997.79 (8) Å30.61 × 0.47 × 0.34 mm
Z = 4
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
2465 independent reflections
Radiation source: fine-focus sealed tube2383 reflections with I > 2σ(I)
Curved graphite crystal monochromatorRint = 0.015
Detector resolution: 16 pixels mm-1θmax = 36.6°, θmin = 3.1°
φ scans and ω scans with κ offseth = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 1313
Tmin = 0.935, Tmax = 0.964l = 1718
16456 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.0678P]
where P = (Fo2 + 2Fc2)/3
2465 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.42 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H11N3O3V = 997.79 (8) Å3
Mr = 221.22Z = 4
Monoclinic, CcMo Kα radiation
a = 11.2296 (4) ŵ = 0.11 mm1
b = 8.1905 (4) ÅT = 100 K
c = 11.1000 (5) Å0.61 × 0.47 × 0.34 mm
β = 102.223 (2)°
Data collection top
Bruker Kappa APEXII DUO CCD
diffractometer
2465 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
2383 reflections with I > 2σ(I)
Tmin = 0.935, Tmax = 0.964Rint = 0.015
16456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0292 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.07Δρmax = 0.42 e Å3
2465 reflectionsΔρmin = 0.22 e Å3
148 parameters
Special details top

Geometry. All s.u.'s (except the s.u.'s in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43931 (7)0.17009 (9)0.11307 (6)0.01652 (13)
H10.41540.08630.14460.025*
O20.34012 (7)0.24663 (9)0.12079 (6)0.01761 (13)
O30.27014 (7)0.63005 (9)0.39602 (7)0.01675 (13)
H30.29750.66080.46880.025*
N10.43375 (7)0.03499 (9)0.28832 (7)0.01324 (13)
N20.39288 (7)0.18082 (9)0.32287 (6)0.01328 (12)
H20.39830.20710.40070.016*
N30.32114 (7)0.48105 (9)0.37696 (7)0.01365 (13)
C10.50374 (8)0.26684 (11)0.20397 (8)0.01297 (13)
C20.54689 (9)0.41516 (12)0.16937 (8)0.01686 (15)
H2A0.53020.44650.08510.020*
C30.61440 (9)0.51730 (12)0.25817 (9)0.01803 (16)
H3A0.64500.61730.23370.022*
C40.63779 (9)0.47511 (11)0.38250 (9)0.01695 (15)
H40.68400.54550.44270.020*
C50.59273 (8)0.32933 (11)0.41698 (8)0.01476 (14)
H50.60730.30110.50190.018*
C60.52600 (8)0.22227 (10)0.32956 (7)0.01217 (13)
C70.48236 (8)0.06904 (11)0.37043 (7)0.01343 (14)
H70.48970.04660.45570.016*
C80.34332 (8)0.28258 (10)0.22951 (7)0.01258 (13)
C90.29200 (7)0.43934 (10)0.26290 (7)0.01256 (13)
C100.21336 (9)0.53605 (12)0.16288 (8)0.01674 (15)
H10A0.14760.58770.19480.025*
H10B0.17840.46350.09430.025*
H10C0.26250.62040.13390.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0240 (3)0.0136 (3)0.0116 (2)0.0019 (2)0.0029 (2)0.0001 (2)
O20.0277 (3)0.0146 (3)0.0108 (2)0.0026 (2)0.0044 (2)0.0002 (2)
O30.0226 (3)0.0130 (3)0.0146 (2)0.0040 (2)0.0037 (2)0.0023 (2)
N10.0175 (3)0.0093 (3)0.0132 (3)0.0009 (2)0.0040 (2)0.0002 (2)
N20.0185 (3)0.0099 (3)0.0115 (2)0.0019 (2)0.0034 (2)0.0002 (2)
N30.0167 (3)0.0111 (3)0.0132 (3)0.0007 (2)0.0034 (2)0.0006 (2)
C10.0156 (3)0.0117 (3)0.0121 (3)0.0010 (2)0.0040 (2)0.0008 (2)
C20.0217 (4)0.0137 (3)0.0161 (3)0.0011 (3)0.0062 (3)0.0024 (3)
C30.0201 (4)0.0137 (3)0.0215 (4)0.0026 (3)0.0071 (3)0.0018 (3)
C40.0176 (4)0.0136 (3)0.0198 (3)0.0023 (3)0.0042 (3)0.0016 (3)
C50.0169 (3)0.0125 (3)0.0142 (3)0.0007 (3)0.0019 (3)0.0011 (2)
C60.0149 (3)0.0102 (3)0.0115 (3)0.0006 (2)0.0030 (2)0.0002 (2)
C70.0169 (3)0.0113 (3)0.0117 (3)0.0007 (3)0.0023 (2)0.0006 (2)
C80.0155 (3)0.0102 (3)0.0121 (3)0.0001 (2)0.0028 (2)0.0004 (2)
C90.0145 (3)0.0109 (3)0.0123 (3)0.0000 (2)0.0029 (2)0.0001 (2)
C100.0178 (4)0.0173 (4)0.0145 (3)0.0039 (3)0.0019 (3)0.0022 (3)
Geometric parameters (Å, º) top
O1—C11.3640 (11)C3—C41.3926 (14)
O1—H10.8400C3—H3A0.9500
O2—C81.2352 (10)C4—C51.3822 (13)
O3—N31.3832 (10)C4—H40.9500
O3—H30.8400C5—C61.4014 (11)
N1—C71.2822 (10)C5—H50.9500
N1—N21.3634 (10)C6—C71.4543 (12)
N2—C81.3543 (10)C7—H70.9500
N2—H20.8800C8—C91.4861 (12)
N3—C91.2850 (11)C9—C101.4916 (12)
C1—C21.3917 (12)C10—H10A0.9800
C1—C61.4113 (11)C10—H10B0.9800
C2—C31.3891 (14)C10—H10C0.9800
C2—H2A0.9500
C1—O1—H1109.5C4—C5—H5119.3
N3—O3—H3109.5C6—C5—H5119.3
C7—N1—N2120.02 (7)C5—C6—C1118.62 (7)
C8—N2—N1115.60 (7)C5—C6—C7119.34 (7)
C8—N2—H2122.2C1—C6—C7122.03 (7)
N1—N2—H2122.2N1—C7—C6118.21 (7)
C9—N3—O3110.98 (7)N1—C7—H7120.9
O1—C1—C2117.65 (7)C6—C7—H7120.9
O1—C1—C6122.40 (7)O2—C8—N2121.54 (8)
C2—C1—C6119.95 (8)O2—C8—C9121.13 (7)
C3—C2—C1119.97 (8)N2—C8—C9117.32 (7)
C3—C2—H2A120.0N3—C9—C8116.37 (7)
C1—C2—H2A120.0N3—C9—C10125.40 (8)
C2—C3—C4120.92 (9)C8—C9—C10118.22 (7)
C2—C3—H3A119.5C9—C10—H10A109.5
C4—C3—H3A119.5C9—C10—H10B109.5
C5—C4—C3119.05 (8)H10A—C10—H10B109.5
C5—C4—H4120.5C9—C10—H10C109.5
C3—C4—H4120.5H10A—C10—H10C109.5
C4—C5—C6121.48 (8)H10B—C10—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.852.5808 (10)144
O3—H3···O2i0.841.822.6518 (9)171
N2—H2···O1ii0.882.323.1535 (9)157
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H11N3O3
Mr221.22
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)11.2296 (4), 8.1905 (4), 11.1000 (5)
β (°) 102.223 (2)
V3)997.79 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.61 × 0.47 × 0.34
Data collection
DiffractometerBruker Kappa APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.935, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
16456, 2465, 2383
Rint0.015
(sin θ/λ)max1)0.838
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.086, 1.07
No. of reflections2465
No. of parameters148
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.22

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.852.5808 (10)144.0
O3—H3···O2i0.841.822.6518 (9)171.2
N2—H2···O1ii0.882.323.1535 (9)157.2
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y, z+1/2.
 

Acknowledgements

The financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

References

First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDuda, A. M., Karaczyn, A., Kozłowski, H., Fritsky, I. O., Głowiak, T., Prisyazhnaya, E. V., Sliva, T. Yu. & Świątek-Kozłowska, J. (1997). J. Chem. Soc. Dalton Trans. pp. 3853–3859.  CSD CrossRef Web of Science Google Scholar
First citationFritsky, I. O., Kozłowski, H., Sadler, P. J., Yefetova, O. P., Świątek-Kozłowska, J., Kalibabchuk, V. A. & Glowiak, T. (1998). J. Chem. Soc. Dalton Trans. pp. 3269–3274.  Web of Science CSD CrossRef Google Scholar
First citationKanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437.  Web of Science CrossRef PubMed Google Scholar
First citationKrämer, R. & Fritsky, I. O. (2000). Eur. J. Org. Chem. pp. 3505–3510.  Google Scholar
First citationMokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOnindo, C. O., Sliva, T. Yu., Kowalik-Jankowska, T., Fritsky, I. O., Buglyo, P., Pettit, L. D., Kozłowski, H. & Kiss, T. (1995). J. Chem. Soc. Dalton Trans. pp. 3911–3915.  CrossRef Web of Science Google Scholar
First citationSachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, pp. 800–806.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.  CSD CrossRef CAS Web of Science Google Scholar
First citationŚwiątek-Kozłowska, J., Fritsky, I. O., Dobosz, A., Karaczyn, A., Dudarenko, N. M., Sliva, T. Yu., Gumienna-Kontecka, E. & Jerzykiewicz, L. (2000). J. Chem. Soc. Dalton Trans. pp. 4064–4068.  Google Scholar
First citationWörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds