organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Guanidinium 2-(myristoylsulfanyl)ethane­sulfonate

aDepartment of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
*Correspondence e-mail: gpyap@udel.edu

(Received 25 October 2011; accepted 3 November 2011; online 12 November 2011)

In the title compound, CH6N3+·C16H31O4S2 [systematic name: guanidinium 2-(tetra­deca­noylsulfan­yl)ethane­sulfon­ate], each 2-(myristoyl­thio)­ethane­sulfonate ion displays hydrogen bonding to three guanidinium counter-ions, which themselves display hydrogen bonding to two symmetry-related 2-(myristoylthio)ethanesulfonate ions. Thus each cation forms six N—H⋯O bonds to neighboring anions, thereby self-assembling an extended ladder-type network. The average hydrogen-bond donor–acceptor distance is 2.931 (5) Å. The alkyl chains form the rungs of a ladder with hydrogen-bonding inter­actions forming the side rails.

Related literature

The synthesis of the title compound was adapted from Schramm et al. (1954[Schramm, C. H., Lemaire, H. & Karlson, R. H. (1954). J. Am. Chem. Soc. 77, 6231-6233.]) and Dalton et al. (1981[Dalton, J. R., Kirkpatrick, A. & Maclaren, J. A. (1981). Aust. J. Chem. 34, 759-763.]). For extended networks via hydrogen-bonding in guanidinium organo­sulfonates, see: Horner et al. (2001[Horner, M. J., Holman, K. T. & Ward, M. D. (2001). Angew. Chem. Int. Ed. 40, 4045-4048.], 2007[Horner, M. J., Holman, K. T. & Ward, M. D. (2007). J. Am. Chem. Soc. 129, 14640-14660.]); Russell & Ward (1996[Russell, V. A. & Ward, M. D. (1996). Chem. Mater. 8, 1654-1666.]). For typical donor-acceptor distances in these compounds, see: Adams (1978[Adams, J. M. (1978). Acta Cryst. B34, 1218-1220.]); Ashiq et al. (2010[Ashiq, M. I., Hussain, I., Dixon, S., Light, M. E. & Kilburn, J. D. (2010). Acta Cryst. C66, o455-o458.]). For studies of these structural motifs for use as electronic materials, see: Russell et al. (1994[Russell, V. A., Etter, M. C. & Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941-1952.]).

[Scheme 1]

Experimental

Crystal data
  • CH6N3+·C16H31O4S2

  • Mr = 411.62

  • Monoclinic, P 21 /c

  • a = 25.185 (13) Å

  • b = 7.370 (4) Å

  • c = 12.663 (7) Å

  • β = 101.851 (10)°

  • V = 2300 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 200 K

  • 0.25 × 0.18 × 0.01 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Gottingen, Germany.]) Tmin = 0.938, Tmax = 0.997

  • 18707 measured reflections

  • 5688 independent reflections

  • 2763 reflections with I > 2σ(I)

  • Rint = 0.085

Refinement
  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.247

  • S = 1.01

  • 5688 reflections

  • 292 parameters

  • 83 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (4) 2.12 (4) 2.943 (4) 159 (4)
N1—H2⋯O3ii 0.80 (4) 2.11 (4) 2.900 (4) 171 (4)
N2—H3⋯O2ii 0.84 (4) 2.12 (4) 2.957 (4) 171 (4)
N2—H4⋯O1 0.84 (4) 2.13 (4) 2.960 (4) 172 (4)
N3—H5⋯O2 0.83 (5) 2.06 (5) 2.892 (4) 178 (5)
N3—H6⋯O3i 0.82 (5) 2.14 (5) 2.942 (4) 167 (5)
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound was prepared as a reagent in attempts to synthesized a myristoylate protein derivative in vitro. The synthesis was adapted from Schramm et al. (1954) and Dalton et al. (1981). During characterization by X-ray diffraction it was observed to display an interesting ladder-type lattice network. It has been previously reported that guanidinium organosulfonates are capable of extended networks via hydrogen-bonding (Russell & Ward 1996, Horner et al. 2001, 2007). As shown in Figure 2 the guanidinium counterions form near planar end caps, the side rails, with the inward facing myristoyl groups interlocking causing a bilayer stacking or the rungs of the extended ladder-type network. The average hydrogen bond donor-acceptor distance is 2.931 (5) Å which is in the typical range observed for these type of compounds (Adams 1978, Ashiq et al. 2010). These structural motifs have previously been studied for use as electronic materials (Russell et al. 1994).

Related literature top

The synthesis of the title compound was adapted from Schramm et al. (1954) and Dalton et al. (1981). For extended networks via hydrogen-bonding in guanidinium organosulfonates, see: Horner et al. (2001, 2007); Russell & Ward (1996). For typical donor-acceptor distances in these compounds, see: Adams (1978); Ashiq et al. (2010). For studies of these structural motifs for use as electronic materials, see: Russell et al. (1994).

Experimental top

The compound synthesis was adapted from Schramm et al. (1954) and Dalton et al. (1981). Guanidinium 2-mercaptoethansulfonate, 1.0 g (5 mmol), and guanidinium carbonate, 0.9 g (9.9 mmol), were added to 20 mL 1:1 acetonitrile/water. The mixture was stirred and purged with dry nitrogen gas. When the guanidinium carbonate completely dissolved, 1.36 mL (5.01 mmol) of myristoyl chloride was added and the reaction was stirred under 1 atmosphere of nitrogen. After one hour, 4 mL 1:1 acetonitrile/water were added to the mixture. The mixture was stirred for an additional hour after which time the guanidinium 2-(myristoylthio)ethanesulfonate precipitate was filtered and collected yielding 1.09 g (2.65 mmol, 53% yield) of product. Crystals suitable for X-ray diffraction were obtained from slow evaporation of a saturated solution of the compound from a 9:1 acetonitrile/water mixed solvent.

Refinement top

All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms on the guanidium ion were located and refined with 1.2 Ueq of the attached N atom. All other H-atoms were were placed in calculated positions Chemically identical atoms in the disordered portions of the anion constrained to similar 1,2 and 1,3 atom-atom separations, equal atomic displacement parameters, rigid bond restraints and refined to roughly 50/50 site occupancy ratio. Although several C level alerts occur in the checkCIF report, trial refinements with global rigid bond constraints did not significantly improve the structure.

Structure description top

The title compound was prepared as a reagent in attempts to synthesized a myristoylate protein derivative in vitro. The synthesis was adapted from Schramm et al. (1954) and Dalton et al. (1981). During characterization by X-ray diffraction it was observed to display an interesting ladder-type lattice network. It has been previously reported that guanidinium organosulfonates are capable of extended networks via hydrogen-bonding (Russell & Ward 1996, Horner et al. 2001, 2007). As shown in Figure 2 the guanidinium counterions form near planar end caps, the side rails, with the inward facing myristoyl groups interlocking causing a bilayer stacking or the rungs of the extended ladder-type network. The average hydrogen bond donor-acceptor distance is 2.931 (5) Å which is in the typical range observed for these type of compounds (Adams 1978, Ashiq et al. 2010). These structural motifs have previously been studied for use as electronic materials (Russell et al. 1994).

The synthesis of the title compound was adapted from Schramm et al. (1954) and Dalton et al. (1981). For extended networks via hydrogen-bonding in guanidinium organosulfonates, see: Horner et al. (2001, 2007); Russell & Ward (1996). For typical donor-acceptor distances in these compounds, see: Adams (1978); Ashiq et al. (2010). For studies of these structural motifs for use as electronic materials, see: Russell et al. (1994).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular diagram of the structure in the asymmetric unit omitting H-atoms and one of two disordered contributions for clarity. Thermal ellipsoids depicted at 50% probability.
[Figure 2] Fig. 2. Packing diagram displaying extended ladder network.
Guanidinium 2-(tetradecanoylsulfanyl)ethanesulfonate top
Crystal data top
CH6N3+·C16H31O4S2F(000) = 896
Mr = 411.62Dx = 1.189 Mg m3
Monoclinic, P21/cMelting point: 326 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 25.185 (13) ÅCell parameters from 4043 reflections
b = 7.370 (4) Åθ = 1.7–25.0°
c = 12.663 (7) ŵ = 0.26 mm1
β = 101.851 (10)°T = 200 K
V = 2300 (2) Å3Block, colourless
Z = 40.25 × 0.18 × 0.01 mm
Data collection top
Bruker APEX
diffractometer
5688 independent reflections
Radiation source: fine-focus sealed tube2763 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.085
Detector resolution: 836.6 pixels mm-1θmax = 28.4°, θmin = 1.7°
ω scansh = 3331
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.938, Tmax = 0.997l = 1616
18707 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.247H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.1P)2 + 2.2088P]
where P = (Fo2 + 2Fc2)/3
5688 reflections(Δ/σ)max < 0.001
292 parametersΔρmax = 0.45 e Å3
83 restraintsΔρmin = 0.39 e Å3
Crystal data top
CH6N3+·C16H31O4S2V = 2300 (2) Å3
Mr = 411.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 25.185 (13) ŵ = 0.26 mm1
b = 7.370 (4) ÅT = 200 K
c = 12.663 (7) Å0.25 × 0.18 × 0.01 mm
β = 101.851 (10)°
Data collection top
Bruker APEX
diffractometer
5688 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2763 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.997Rint = 0.085
18707 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08283 restraints
wR(F2) = 0.247H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.45 e Å3
5688 reflectionsΔρmin = 0.39 e Å3
292 parameters
Special details top

Experimental. Data collection is performed with four batch runs at φ = 0.00 ° (600 frames), at φ = 90.00 ° (600 frames), at φ = 180 ° (600 frames) and at φ = 270 ° (600 frames). Frame width = 0.30 \& in ω. Data is merged, corrected for decay, and treated with multi-scan absorption corrections.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.08990 (4)0.52011 (11)0.43991 (7)0.0377 (3)
N10.05207 (15)0.1418 (4)0.2036 (3)0.0416 (8)
H10.0523 (16)0.240 (6)0.242 (3)0.050*
H20.0514 (17)0.145 (6)0.140 (3)0.050*
N20.05787 (14)0.1693 (4)0.2060 (3)0.0391 (8)
H30.0609 (16)0.173 (5)0.141 (3)0.047*
H40.0627 (16)0.264 (6)0.243 (3)0.047*
N30.05382 (19)0.0153 (5)0.3608 (3)0.0571 (11)
H50.0607 (19)0.111 (7)0.395 (4)0.069*
H60.0504 (19)0.080 (7)0.392 (4)0.069*
O10.08125 (13)0.5176 (3)0.3228 (2)0.0514 (8)
O20.07864 (11)0.3453 (3)0.48467 (19)0.0428 (7)
O30.06170 (10)0.6702 (3)0.47983 (19)0.0399 (7)
C10.05490 (16)0.0131 (5)0.2569 (3)0.0362 (8)
C20.15997 (19)0.5593 (6)0.4892 (5)0.0568 (12)
H2A0.1790 (17)0.452 (6)0.460 (3)0.056 (12)*
H2B0.163 (2)0.543 (6)0.561 (4)0.071 (16)*
C40.2617 (4)0.7903 (14)0.3451 (6)0.0384 (15)0.4984 (16)
C50.3212 (4)0.8295 (14)0.3533 (7)0.0417 (17)0.4984 (16)
H5A0.34160.78600.42410.050*0.4984 (16)
H5B0.32640.96250.35070.050*0.4984 (16)
C60.3447 (4)0.7415 (18)0.2645 (7)0.0376 (18)0.4984 (16)
H6A0.32180.77260.19350.045*0.4984 (16)
H6B0.34420.60800.27270.045*0.4984 (16)
C70.4024 (4)0.804 (2)0.2678 (8)0.043 (2)0.4984 (16)
H7A0.40090.93530.25120.052*0.4984 (16)
H7B0.42260.79060.34320.052*0.4984 (16)
C240.2725 (4)0.7552 (13)0.3933 (6)0.0384 (15)0.5016 (16)
C250.3012 (4)0.8162 (14)0.3060 (7)0.0417 (17)0.5016 (16)
H25A0.30630.94930.31170.050*0.5016 (16)
H25B0.27750.79040.23500.050*0.5016 (16)
C260.3560 (4)0.7276 (17)0.3097 (7)0.0376 (18)0.5016 (16)
H26A0.35090.59500.29980.045*0.5016 (16)
H26B0.37940.74840.38160.045*0.5016 (16)
C270.3847 (5)0.801 (2)0.2231 (7)0.043 (2)0.5016 (16)
H27A0.35760.79930.15430.052*0.5016 (16)
H27B0.39300.92990.24080.052*0.5016 (16)
C80.4335 (2)0.7213 (6)0.2010 (5)0.0800 (17)
H8A0.40660.67230.13950.096*
H8B0.45010.61430.24230.096*
C90.4748 (2)0.7936 (6)0.1544 (5)0.0821 (18)
H9A0.45540.87660.09800.098*
H9B0.49530.87330.21150.098*
C100.5146 (2)0.7172 (7)0.1078 (5)0.088 (2)
H10A0.49420.63790.05050.106*
H10B0.53400.63380.16400.106*
C110.5558 (2)0.7898 (6)0.0618 (5)0.0740 (16)
H11A0.53660.87460.00630.089*
H11B0.57670.86750.11950.089*
C120.5952 (2)0.7120 (7)0.0142 (6)0.098 (2)
H12A0.57410.63550.04390.117*
H12B0.61380.62580.06950.117*
C130.6371 (2)0.7811 (6)0.0313 (4)0.0693 (15)
H13A0.65070.88810.01340.083*
H13B0.61870.83000.10230.083*
C140.6846 (4)0.6936 (15)0.0512 (7)0.0436 (17)0.4984 (16)
H14A0.67340.56840.07380.052*0.4984 (16)
H14B0.70950.68300.02000.052*0.4984 (16)
C340.6675 (3)0.6978 (15)0.1047 (7)0.0436 (17)0.5016 (16)
H34A0.67300.56980.08120.052*0.5016 (16)
H34B0.64240.69490.17600.052*0.5016 (16)
C150.7177 (2)0.7554 (6)0.1253 (5)0.0736 (15)
H15A0.69160.80670.18730.088*
H15B0.73820.86030.08870.088*
C160.7555 (3)0.6604 (7)0.1720 (6)0.104 (2)
H16A0.77420.58060.11310.125*
H16B0.73270.57840.22450.125*
C170.7963 (3)0.7127 (8)0.2238 (6)0.111 (2)
H17A0.81390.60460.24620.166*
H17B0.82320.78510.17450.166*
H17C0.78090.78540.28750.166*
S20.24330 (9)0.7885 (4)0.47364 (18)0.0565 (5)0.4984 (16)
O40.2287 (2)0.7707 (10)0.2631 (4)0.0637 (18)0.4984 (16)
C30.1879 (3)0.7406 (17)0.4910 (9)0.0534 (19)0.4984 (16)
H3A0.18650.79250.56250.064*0.4984 (16)
H3B0.16280.81530.43780.064*0.4984 (16)
S220.20209 (9)0.7959 (4)0.36378 (18)0.0565 (5)0.5016 (16)
O240.2953 (2)0.6859 (9)0.4769 (4)0.0584 (16)0.5016 (16)
C230.1698 (4)0.7495 (17)0.4390 (8)0.0534 (19)0.5016 (16)
H23A0.13300.79430.40620.064*0.5016 (16)
H23B0.18300.82890.50190.064*0.5016 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0548 (6)0.0278 (5)0.0337 (5)0.0039 (4)0.0167 (4)0.0003 (4)
N10.066 (2)0.0291 (16)0.0317 (17)0.0027 (16)0.0143 (17)0.0002 (14)
N20.056 (2)0.0286 (17)0.0352 (18)0.0036 (15)0.0150 (16)0.0022 (13)
N30.114 (4)0.0287 (17)0.0329 (18)0.005 (2)0.024 (2)0.0012 (14)
O10.095 (2)0.0311 (14)0.0330 (14)0.0013 (14)0.0238 (14)0.0015 (11)
O20.0652 (18)0.0293 (13)0.0364 (14)0.0084 (13)0.0166 (13)0.0037 (10)
O30.0531 (17)0.0329 (13)0.0379 (14)0.0008 (12)0.0188 (12)0.0006 (10)
C10.046 (2)0.0285 (18)0.0342 (18)0.0014 (16)0.0083 (16)0.0005 (15)
C20.052 (3)0.049 (3)0.077 (4)0.000 (2)0.030 (3)0.008 (2)
C40.042 (4)0.035 (4)0.036 (4)0.003 (3)0.002 (3)0.004 (4)
C50.051 (6)0.035 (3)0.040 (5)0.010 (4)0.010 (4)0.008 (4)
C60.039 (4)0.036 (3)0.036 (6)0.002 (3)0.004 (4)0.002 (5)
C70.054 (7)0.038 (2)0.039 (6)0.008 (5)0.011 (4)0.005 (6)
C240.042 (4)0.035 (4)0.036 (4)0.003 (3)0.002 (3)0.004 (4)
C250.051 (6)0.035 (3)0.040 (5)0.010 (4)0.010 (4)0.008 (4)
C260.039 (4)0.036 (3)0.036 (6)0.002 (3)0.004 (4)0.002 (5)
C270.054 (7)0.038 (2)0.039 (6)0.008 (5)0.011 (4)0.005 (6)
C80.064 (3)0.040 (2)0.152 (5)0.001 (2)0.057 (4)0.006 (3)
C90.106 (4)0.035 (2)0.129 (5)0.003 (3)0.081 (4)0.002 (3)
C100.079 (4)0.041 (3)0.167 (6)0.003 (3)0.077 (4)0.011 (3)
C110.091 (4)0.039 (2)0.111 (4)0.000 (2)0.065 (3)0.006 (3)
C120.089 (4)0.039 (3)0.193 (7)0.004 (3)0.095 (5)0.008 (3)
C130.091 (4)0.040 (2)0.093 (4)0.001 (2)0.055 (3)0.001 (2)
C140.051 (5)0.036 (2)0.044 (5)0.003 (4)0.011 (4)0.002 (5)
C340.051 (5)0.036 (2)0.044 (5)0.003 (4)0.011 (4)0.002 (5)
C150.085 (4)0.046 (3)0.108 (4)0.005 (3)0.059 (3)0.005 (3)
C160.101 (5)0.045 (3)0.195 (7)0.001 (3)0.100 (5)0.003 (4)
C170.125 (6)0.074 (4)0.165 (7)0.012 (4)0.102 (5)0.019 (4)
S20.0356 (8)0.0827 (12)0.0492 (9)0.0116 (8)0.0037 (7)0.0106 (8)
O40.042 (3)0.103 (5)0.044 (3)0.001 (3)0.003 (3)0.017 (3)
C30.024 (4)0.056 (3)0.075 (6)0.007 (4)0.003 (4)0.002 (5)
S220.0356 (8)0.0827 (12)0.0492 (9)0.0116 (8)0.0037 (7)0.0106 (8)
O240.053 (4)0.075 (4)0.043 (3)0.005 (3)0.001 (3)0.015 (3)
C230.024 (4)0.056 (3)0.075 (6)0.007 (4)0.003 (4)0.002 (5)
Geometric parameters (Å, º) top
S1—O11.454 (3)C8—C91.402 (6)
S1—O21.459 (2)C8—H8A0.9900
S1—O31.459 (3)C8—H8B0.9900
S1—C21.771 (5)C9—C101.382 (6)
N1—C11.321 (5)C9—H9A0.9900
N1—H10.87 (4)C9—H9B0.9900
N1—H20.80 (4)C10—C111.397 (6)
N2—C11.329 (4)C10—H10A0.9900
N2—H30.84 (4)C10—H10B0.9900
N2—H40.84 (4)C11—C121.385 (6)
N3—C11.322 (5)C11—H11A0.9900
N3—H50.83 (5)C11—H11B0.9900
N3—H60.82 (5)C12—C131.398 (6)
C2—C31.507 (12)C12—H12A0.9900
C2—C231.580 (12)C12—H12B0.9900
C2—H2A1.03 (4)C13—C141.426 (9)
C2—H2B0.90 (5)C13—C341.457 (9)
C4—O41.199 (9)C13—H13A0.9900
C4—C51.508 (11)C13—H13B0.9900
C4—S21.781 (9)C14—C151.452 (9)
C5—C61.520 (10)C14—H14A0.9900
C5—H5A0.9900C14—H14B0.9900
C5—H5B0.9900C34—C151.409 (9)
C6—C71.516 (11)C34—H34A0.9900
C6—H6A0.9900C34—H34B0.9900
C6—H6B0.9900C15—C161.405 (6)
C7—C81.405 (14)C15—H15A0.9900
C7—H7A0.9900C15—H15B0.9900
C7—H7B0.9900C16—C171.384 (7)
C24—O241.209 (8)C16—H16A0.9900
C24—C251.507 (10)C16—H16B0.9900
C24—S221.762 (9)C17—H17A0.9800
C25—C261.520 (11)C17—H17B0.9800
C25—H25A0.9900C17—H17C0.9800
C25—H25B0.9900S2—C31.500 (9)
C26—C271.529 (11)C3—H3A0.9900
C26—H26A0.9900C3—H3B0.9900
C26—H26B0.9900S22—C231.415 (9)
C27—C81.440 (14)C23—H23A0.9900
C27—H27A0.9900C23—H23B0.9900
C27—H27B0.9900
O1—S1—O2112.64 (15)C10—C9—H9A103.8
O1—S1—O3112.41 (16)C8—C9—H9A103.8
O2—S1—O3112.79 (15)C10—C9—H9B103.8
O1—S1—C2106.9 (2)C8—C9—H9B103.8
O2—S1—C2105.5 (2)H9A—C9—H9B105.4
O3—S1—C2106.0 (2)C9—C10—C11133.5 (5)
C1—N1—H1116 (3)C9—C10—H10A103.8
C1—N1—H2122 (3)C11—C10—H10A103.8
H1—N1—H2122 (4)C9—C10—H10B103.8
C1—N2—H3122 (3)C11—C10—H10B103.8
C1—N2—H4118 (3)H10A—C10—H10B105.4
H3—N2—H4120 (4)C12—C11—C10133.0 (5)
C1—N3—H5119 (3)C12—C11—H11A104.0
C1—N3—H6120 (3)C10—C11—H11A104.0
H5—N3—H6120 (5)C12—C11—H11B104.0
N1—C1—N3120.6 (3)C10—C11—H11B104.0
N1—C1—N2120.2 (3)H11A—C11—H11B105.4
N3—C1—N2119.1 (3)C11—C12—C13134.1 (5)
C3—C2—S1125.3 (5)C11—C12—H12A103.7
C23—C2—S1103.3 (4)C13—C12—H12A103.7
C3—C2—H2A116 (2)C11—C12—H12B103.7
C23—C2—H2A114 (2)C13—C12—H12B103.7
S1—C2—H2A105 (2)H12A—C12—H12B105.3
C3—C2—H2B99 (3)C12—C13—C14129.7 (6)
C23—C2—H2B122 (3)C12—C13—C34130.6 (6)
S1—C2—H2B102 (3)C12—C13—H13A104.8
H2A—C2—H2B108 (4)C14—C13—H13A104.8
O4—C4—C5125.8 (8)C34—C13—H13A122.3
O4—C4—S2121.7 (7)C12—C13—H13B104.8
C5—C4—S2112.3 (6)C14—C13—H13B104.8
C4—C5—C6113.5 (8)C34—C13—H13B77.4
C4—C5—H5A108.9H13A—C13—H13B105.8
C6—C5—H5A108.9C13—C14—C15125.9 (8)
C4—C5—H5B108.9C13—C14—H14A105.8
C6—C5—H5B108.9C15—C14—H14A105.8
H5A—C5—H5B107.7C13—C14—H14B105.8
C5—C6—C7111.5 (9)C15—C14—H14B105.8
C5—C6—H6A109.3H14A—C14—H14B106.2
C7—C6—H6A109.3C15—C34—C13127.0 (8)
C5—C6—H6B109.3C15—C34—H34A105.6
C7—C6—H6B109.3C13—C34—H34A105.6
H6A—C6—H6B108.0C15—C34—H34B105.6
C8—C7—C6120.1 (9)C13—C34—H34B105.6
C8—C7—H7A107.3H34A—C34—H34B106.1
C6—C7—H7A107.3C34—C15—C16129.7 (6)
C8—C7—H7B107.3C16—C15—C14130.1 (6)
C6—C7—H7B107.3C34—C15—H15A77.6
H7A—C7—H7B106.9C16—C15—H15A104.7
O24—C24—C25123.7 (8)C14—C15—H15A104.7
O24—C24—S22122.3 (7)C34—C15—H15B123.3
C25—C24—S22114.0 (6)C16—C15—H15B104.7
C24—C25—C26114.8 (8)C14—C15—H15B104.7
C24—C25—H25A108.6H15A—C15—H15B105.7
C26—C25—H25A108.6C17—C16—C15133.9 (5)
C24—C25—H25B108.6C17—C16—H16A103.7
C26—C25—H25B108.6C15—C16—H16A103.7
H25A—C25—H25B107.6C17—C16—H16B103.7
C25—C26—C27112.8 (9)C15—C16—H16B103.7
C25—C26—H26A109.0H16A—C16—H16B105.4
C27—C26—H26A109.0C16—C17—H17A109.5
C25—C26—H26B109.0C16—C17—H17B109.5
C27—C26—H26B109.0H17A—C17—H17B109.5
H26A—C26—H26B107.8C16—C17—H17C109.5
C8—C27—C26122.9 (10)H17A—C17—H17C109.5
C8—C27—H27A106.6H17B—C17—H17C109.5
C26—C27—H27A106.6C3—S2—C4124.1 (5)
C8—C27—H27B106.6C2—C3—S2130.6 (8)
C26—C27—H27B106.6C2—C3—H3A104.6
H27A—C27—H27B106.6S2—C3—H3A104.6
C7—C8—C9130.0 (7)C2—C3—H3B104.6
C7—C8—C2726.2 (4)S2—C3—H3B104.6
C9—C8—C27131.6 (7)H3A—C3—H3B105.7
C7—C8—H8A104.8C23—S22—C24120.6 (5)
C9—C8—H8A104.8S22—C23—C2130.1 (9)
C27—C8—H8A80.1S22—C23—H23A104.7
C7—C8—H8B104.8C2—C23—H23A104.7
C9—C8—H8B104.8S22—C23—H23B104.7
C27—C8—H8B120.4C2—C23—H23B104.7
H8A—C8—H8B105.8H23A—C23—H23B105.7
C10—C9—C8133.7 (5)
O1—S1—C2—C377.5 (7)C11—C12—C13—C14160.2 (8)
O2—S1—C2—C3162.4 (6)C11—C12—C13—C34161.4 (8)
O3—S1—C2—C342.6 (7)C12—C13—C14—C15161.0 (8)
O1—S1—C2—C2360.2 (5)C34—C13—C14—C1556.8 (12)
O2—S1—C2—C23179.7 (5)C12—C13—C34—C15162.1 (8)
O3—S1—C2—C2359.9 (5)C14—C13—C34—C1561.0 (13)
O4—C4—C5—C633.4 (15)C13—C34—C15—C16162.0 (8)
S2—C4—C5—C6150.1 (8)C13—C34—C15—C1458.6 (13)
C4—C5—C6—C7172.8 (9)C13—C14—C15—C3459.3 (13)
C5—C6—C7—C8172.1 (9)C13—C14—C15—C16161.1 (8)
O24—C24—C25—C2620.9 (14)C34—C15—C16—C17157.6 (9)
S22—C24—C25—C26159.7 (7)C14—C15—C16—C17163.9 (9)
C24—C25—C26—C27177.2 (9)O4—C4—S2—C37.9 (12)
C25—C26—C27—C8171.4 (9)C5—C4—S2—C3175.6 (8)
C6—C7—C8—C9149.4 (9)C23—C2—C3—S2104.3 (19)
C6—C7—C8—C2744.5 (16)S1—C2—C3—S2144.0 (7)
C26—C27—C8—C758.2 (18)C4—S2—C3—C274.8 (11)
C26—C27—C8—C9156.3 (9)O24—C24—S22—C230.7 (12)
C7—C8—C9—C10163.9 (9)C25—C24—S22—C23178.6 (8)
C27—C8—C9—C10161.3 (8)C24—S22—C23—C259.9 (11)
C8—C9—C10—C11179.8 (7)C3—C2—C23—S2296.7 (16)
C9—C10—C11—C12179.1 (8)S1—C2—C23—S22115.7 (8)
C10—C11—C12—C13179.2 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (4)2.12 (4)2.943 (4)159 (4)
N1—H2···O3ii0.80 (4)2.11 (4)2.900 (4)171 (4)
N1—H2···S1ii0.80 (4)3.04 (4)3.764 (4)152 (4)
N2—H3···O2ii0.84 (4)2.12 (4)2.957 (4)171 (4)
N2—H4···O10.84 (4)2.13 (4)2.960 (4)172 (4)
N3—H5···O20.83 (5)2.06 (5)2.892 (4)178 (5)
N3—H6···O3i0.82 (5)2.14 (5)2.942 (4)167 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaCH6N3+·C16H31O4S2
Mr411.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)25.185 (13), 7.370 (4), 12.663 (7)
β (°) 101.851 (10)
V3)2300 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.25 × 0.18 × 0.01
Data collection
DiffractometerBruker APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.938, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
18707, 5688, 2763
Rint0.085
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.247, 1.01
No. of reflections5688
No. of parameters292
No. of restraints83
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.39

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (4)2.12 (4)2.943 (4)159 (4)
N1—H2···O3ii0.80 (4)2.11 (4)2.900 (4)171 (4)
N1—H2···S1ii0.80 (4)3.04 (4)3.764 (4)152 (4)
N2—H3···O2ii0.84 (4)2.12 (4)2.957 (4)171 (4)
N2—H4···O10.84 (4)2.13 (4)2.960 (4)172 (4)
N3—H5···O20.83 (5)2.06 (5)2.892 (4)178 (5)
N3—H6···O3i0.82 (5)2.14 (5)2.942 (4)167 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the National Science Foundation (grants CHE-0616375 and CHE-0911081) and the Department of Energy (grant DE—FG02–92ER14273).

References

First citationAdams, J. M. (1978). Acta Cryst. B34, 1218–1220.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationAshiq, M. I., Hussain, I., Dixon, S., Light, M. E. & Kilburn, J. D. (2010). Acta Cryst. C66, o455–o458.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalton, J. R., Kirkpatrick, A. & Maclaren, J. A. (1981). Aust. J. Chem. 34, 759–763.  CrossRef CAS Google Scholar
First citationHorner, M. J., Holman, K. T. & Ward, M. D. (2001). Angew. Chem. Int. Ed. 40, 4045–4048.  Web of Science CrossRef CAS Google Scholar
First citationHorner, M. J., Holman, K. T. & Ward, M. D. (2007). J. Am. Chem. Soc. 129, 14640–14660.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRussell, V. A., Etter, M. C. & Ward, M. D. (1994). J. Am. Chem. Soc. 116, 1941–1952.  CSD CrossRef CAS Web of Science Google Scholar
First citationRussell, V. A. & Ward, M. D. (1996). Chem. Mater. 8, 1654–1666.  CrossRef CAS Web of Science Google Scholar
First citationSchramm, C. H., Lemaire, H. & Karlson, R. H. (1954). J. Am. Chem. Soc. 77, 6231–6233.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds