metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis{μ2-2-[(2-hy­dr­oxy­eth­yl)(meth­yl)amino]­ethano­lato}bis­­(μ3-N-methyl-2,2′-aza­nediyldi­ethano­lato)tetra­kis­(thio­cyan­atato-κN)dichromium(III)dimanganese(II) di­methyl­formamide tetra­solvate

aDepartment of Inorganic Chemistry,Taras Shevchenko National University of Kyiv, Volodymyrs'ka St. 64, Kyiv 01601, Ukraine, and bSTC "Institute for Single Crystals" National Academy of Sciences of Ukraine, 60, Lenina Avenue, Kharkiv 61001, Ukraine
*Correspondence e-mail: valya.semenaka@gmail.com

(Received 10 October 2011; accepted 18 November 2011; online 30 November 2011)

The heterometallic title complex, [Cr2Mn2(C5H11NO2)2(C5H12NO2)2(NCS)4]·4C3H7NO, was prepared using manganese powder, Reineckes salt, ammonium thio­cyanate and a non-aqueous solution of N-methyl­diethano­lamine in air. The centrosymmetric mol­ecular structure of the complex is based on a tetra­nuclear {Mn2Cr2(μ-O)6} core. The tetra­nuclear complex mol­ecule and the two uncoordinated dimethyl­formamide mol­ecules are linked by O—H⋯O hydrogen bonds, while the two other mol­ecules of dimethyl­formamide do not participate in hydrogen bonding.

Related literature

For background to polynuclear chromium-containing complexes, see: McInnes et al. (2005[McInnes, E. J. L., Piligkos, S., Timco, G. A. & Winpenny, R. E. P. (2005). Coord. Chem. Rev. 249, 2577-2590.]); Affronte et al. (2005[Affronte, M., Casson, I., Evangelisti, M., Candini, A., Carretta, S., Muryn, C. A., Teat, S. J., Timco, G. A., Wernsdorfer, W. & Winpenny, R. E. P. (2005). Angew. Chem. Int. Ed. 44, 6496-6500.]). For the use of amino ­alcohols with versatile bridging modes in generating such metal clusters, see: Langley et al. (2009[Langley, S. K., Berry, K.J., Moubaraki, B. & Murray, K. S. (2009). Dalton Trans. pp. 973-982.]); Ferguson et al. (2008[Ferguson, A., Lawrence, J., Parkin, A., Sanchez-Benitez, J., Kamenev, K. V., Brechin, E. K., Wernsdorfer, W., Hill, S. & Murrie, M. (2008). Dalton Trans. pp. 6409-6414.]); Saalfrank et al. (2001[Saalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765-2769.]). For background to direct synthesis, see: Kokozay & Shevchenko (2005[Kokozay, V. N. & Shevchenko, D. V. (2005). Mater. Sci. Poland, 23, 287-312.]).

[Scheme 1]

Experimental

Crystal data
  • [Cr2Mn2(C5H11NO2)2(C5H12NO2)2(NCS)4]·4C3H7NO

  • Mr = 1208.64

  • Monoclinic, P 21 /n

  • a = 11.5207 (2) Å

  • b = 13.5261 (2) Å

  • c = 18.5825 (4) Å

  • β = 106.123 (2)°

  • V = 2781.81 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 100 K

  • 0.3 × 0.2 × 0.1 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.6, Tmax = 0.8

  • 14864 measured reflections

  • 8065 independent reflections

  • 5070 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.048

  • S = 0.98

  • 8065 reflections

  • 313 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5 0.82 1.78 2.5985 (18) 176

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Great interest in the synthesis and investigation of polynuclear chromium- and manganese-containing compounds dates from the late 90 s mostly due to the works R.E.P. Winpenny and coworkers devoted to magnetic studies of high-nuclear cages and wheels (McInnes et al., 2005; Affronte et al., 2005). At the same time, the potential of alcohols and amino alcohols in generating such metal clusters was widely explored (Saalfrank et al., 2001; Langley et al., 2009; Ferguson et al., 2008).The polydentate alkoxo ligands possessing versatile bridging modes were recognized as promising reagents for synthesis of new heterometallic complexes. Previously we have demonstrated that amino alcohols represent a powerful tool for assembling polynuclear metal complexes in conditions of the synthetic approach named "direct synthesis of coordination compounds". This strategy employs metal powders or metal oxides as starting materials and eliminates the separate step of building block construction, proving to be an efficient route to obtain new heterometallic complexes (Kokozay & Shevchenko, 2005). Novel heterometallic compound [Mn2Cr2(NCS)4(HMeDea)2(MeDea)2].4dmf have been prepared in one-step self-assembly reaction of zerovalent manganese, Reineckes salt, ammonium thiocyanate and dymethylformamide (dmf) solution of N-methyldiethanolamine (H2MeDea) in air using molar ratio Mn0:NH4[Cr(NCS)4(NH3)2].H2O = 4: 1. X-ray diffraction studies reveal that the centrosymmetric molecular structure of the complex is based on a tetranuclear {Mn2Cr2(µ-O)6} core with the metal atoms arranged in a planar rhombic array. In the present complex MeDea and HMeDea ligands adopt a chelating-bridging mode forming five-membered rings. Both manganese(II) ions are five coordinated and have N2O3 donor sets (Fig. 1) formed by three oxygen and one nitrogen atom of N-methyldiethanolamine ligands and one nitrogen atom of terminal thiocyanate group. The Mn–O(N) bond lengths vary in the range 2.0651 (10)–2.3004 (13) Å, while cis and trans O(N)–Mn–O(N) bond angles range from 65.28 (6)° to 124.35 (14)° and from 140.06 (9)° to 173.0 (3)°, respectively. Each chromium(III) atom has distorted octahedral environment comprised by four oxygen and one nitrogen atoms from N-methyldiethanolamine ligands and one nitrogen atom from terminal thiocyanate group. The Cr–O(N) distances are in the range of 1.9391 (10)–2.0974 (14) Å. The cis and trans O(N)–Cr–O(N) bond angles vary from 80.70 (5)° to 101.65 (5)° and from 158.59 (5)° to 177.32 (5)°, respectively. Tetranuclear molecule of the complex and two dmf molecules are linked together by O–H···O hydrogen bonds [O(3)–H(3)···O(5): D–A = 2.598 Å, D–H···A = 175.99°], two other uncoordinated molecules of dmf are not involved in hydrogen bonding.

Related literature top

For background to polynuclear chromium-containing complexes, see: McInnes et al. (2005); Affronte et al. (2005). For the use of aminoalcohols having versatile bridging modes in generating such metal clusters, see: Langley et al. (2009); Ferguson et al. (2008); Saalfrank et al. (2001). For background to direct synthesis, see: Kokozay & Shevchenko (2005).

Experimental top

Manganese powder (0.137 g, 2.5 mmol), NH4[Cr(NCS)4(NH3)2].H2O (0.221 g, 0.625 mmol), NH4NCS (0.333 g, 4.375 mmol), dmf (20 mL) and N-methyldiethanolamine (0.80 cm3) were heated to 50–60° and stirred magnetically during 2 h. Dark blue crystals suitable for the X-ray crystallographic study were deposited after several months after addition of diethyl ether and PriOH into the resulting blue solution. The crystals were filtered off, washed with dry PriOH, and finally dried at room temperature. Yield: 0.09 g, 24% (per chromium). Anal. Calc. for C36H74Mn2Cr2N12O12S4 (M = 1208.64): Mn, 9.09; Cr, 8.60; C, 35.78; H, 6.12; N, 13.91; S, 10.61. Found: Mn, 9.1; Cr, 8.8; C, 35.8; H, 6.2; N, 13.8; S, 10.7. IR: 2889(m), 2867(sh), 2818(sh), 2080(vs), 1660(s), 1458(w), 1449(sh), 1410(sh), 1383(m), 1355(w), 1308(w), 1260(sh), 1253(w), 1207(sh), 1171(sh), 1143(sh), 1075(s), 1032(sh), 1002(sh), 980(sh), 913(m), 764(sh), 744(m), 676(m), 643(sh), 545(m), 517(m), 474(w), 419(sh), 412(w). The compound is sparingly soluble in dmso and dmf, insoluble in water and it is indefinitely stable in air.

Refinement top

All non-hydrogen atoms were located from the initial solution and refined with anisotropic thermal parameters. The hydrogen atoms were positioned geometrically and included into refinement using riding model approximation with Uiso=nUeq of non-hydrogen carrier atom (n = 1.5 for CH3 and OH groups and n = 1.2 for remaining H-atoms)

Structure description top

Great interest in the synthesis and investigation of polynuclear chromium- and manganese-containing compounds dates from the late 90 s mostly due to the works R.E.P. Winpenny and coworkers devoted to magnetic studies of high-nuclear cages and wheels (McInnes et al., 2005; Affronte et al., 2005). At the same time, the potential of alcohols and amino alcohols in generating such metal clusters was widely explored (Saalfrank et al., 2001; Langley et al., 2009; Ferguson et al., 2008).The polydentate alkoxo ligands possessing versatile bridging modes were recognized as promising reagents for synthesis of new heterometallic complexes. Previously we have demonstrated that amino alcohols represent a powerful tool for assembling polynuclear metal complexes in conditions of the synthetic approach named "direct synthesis of coordination compounds". This strategy employs metal powders or metal oxides as starting materials and eliminates the separate step of building block construction, proving to be an efficient route to obtain new heterometallic complexes (Kokozay & Shevchenko, 2005). Novel heterometallic compound [Mn2Cr2(NCS)4(HMeDea)2(MeDea)2].4dmf have been prepared in one-step self-assembly reaction of zerovalent manganese, Reineckes salt, ammonium thiocyanate and dymethylformamide (dmf) solution of N-methyldiethanolamine (H2MeDea) in air using molar ratio Mn0:NH4[Cr(NCS)4(NH3)2].H2O = 4: 1. X-ray diffraction studies reveal that the centrosymmetric molecular structure of the complex is based on a tetranuclear {Mn2Cr2(µ-O)6} core with the metal atoms arranged in a planar rhombic array. In the present complex MeDea and HMeDea ligands adopt a chelating-bridging mode forming five-membered rings. Both manganese(II) ions are five coordinated and have N2O3 donor sets (Fig. 1) formed by three oxygen and one nitrogen atom of N-methyldiethanolamine ligands and one nitrogen atom of terminal thiocyanate group. The Mn–O(N) bond lengths vary in the range 2.0651 (10)–2.3004 (13) Å, while cis and trans O(N)–Mn–O(N) bond angles range from 65.28 (6)° to 124.35 (14)° and from 140.06 (9)° to 173.0 (3)°, respectively. Each chromium(III) atom has distorted octahedral environment comprised by four oxygen and one nitrogen atoms from N-methyldiethanolamine ligands and one nitrogen atom from terminal thiocyanate group. The Cr–O(N) distances are in the range of 1.9391 (10)–2.0974 (14) Å. The cis and trans O(N)–Cr–O(N) bond angles vary from 80.70 (5)° to 101.65 (5)° and from 158.59 (5)° to 177.32 (5)°, respectively. Tetranuclear molecule of the complex and two dmf molecules are linked together by O–H···O hydrogen bonds [O(3)–H(3)···O(5): D–A = 2.598 Å, D–H···A = 175.99°], two other uncoordinated molecules of dmf are not involved in hydrogen bonding.

For background to polynuclear chromium-containing complexes, see: McInnes et al. (2005); Affronte et al. (2005). For the use of aminoalcohols having versatile bridging modes in generating such metal clusters, see: Langley et al. (2009); Ferguson et al. (2008); Saalfrank et al. (2001). For background to direct synthesis, see: Kokozay & Shevchenko (2005).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: ABSPACK in CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: CrysAlis PRO (Oxford Diffraction, 2010); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the complex, showing the atom numbering, with 50% probability displacement ellipsoids
Bis{µ2-2-[(2-hydroxyethyl)(methyl)amino]ethanolato}bis(µ3-N- methyl-2,2'-azanediyldiethanolato)tetrakis(thiocyanatato- κN)dichromium(III)dimanganese(II) dimethylformamide tetrasolvate top
Crystal data top
[Cr2Mn2(C5H11NO2)2(C5H12NO2)2(NCS)4]·4C3H7NOZ = 2
Mr = 1208.64F(000) = 1264
Monoclinic, P21/nDx = 1.443 Mg m3
a = 11.5207 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.5261 (2) ŵ = 1.04 mm1
c = 18.5825 (4) ÅT = 100 K
β = 106.123 (2)°Block, dark blue
V = 2781.81 (9) Å30.3 × 0.2 × 0.1 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
5070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 30°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1216
Tmin = 0.6, Tmax = 0.8k = 1619
14864 measured reflectionsl = 2612
8065 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.048H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.010P)2]
where P = (Fo2 + 2Fc2)/3
8065 reflections(Δ/σ)max = 0.002
313 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cr2Mn2(C5H11NO2)2(C5H12NO2)2(NCS)4]·4C3H7NOV = 2781.81 (9) Å3
Mr = 1208.64Z = 2
Monoclinic, P21/nMo Kα radiation
a = 11.5207 (2) ŵ = 1.04 mm1
b = 13.5261 (2) ÅT = 100 K
c = 18.5825 (4) Å0.3 × 0.2 × 0.1 mm
β = 106.123 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
8065 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
5070 reflections with I > 2σ(I)
Tmin = 0.6, Tmax = 0.8Rint = 0.025
14864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.048H-atom parameters constrained
S = 0.98Δρmax = 0.43 e Å3
8065 reflectionsΔρmin = 0.38 e Å3
313 parameters
Special details top

Experimental. CrysAlis RED, Oxford Diffraction Ltd., Version 1.171.32.24 (release 21-04-2008 CrysAlis171 .NET) (compiled Apr 21 2008,18:23:10) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50236 (2)0.224755 (17)0.513287 (14)0.01778 (6)
Cr10.38351 (2)0.005009 (19)0.523254 (14)0.01505 (6)
S10.16877 (4)0.10240 (4)0.69652 (3)0.04214 (14)
S20.25156 (4)0.38492 (3)0.28877 (2)0.02974 (11)
O10.44591 (9)0.05372 (7)0.44303 (6)0.0156 (2)
O20.41428 (9)0.12490 (7)0.56870 (6)0.0181 (2)
O30.62650 (11)0.35388 (8)0.52249 (7)0.0325 (3)
H30.67260.37040.49810.049*
O40.34983 (9)0.13296 (7)0.47288 (6)0.0181 (2)
O50.77327 (11)0.41465 (9)0.44798 (7)0.0340 (3)
O60.56001 (11)0.24649 (9)0.10559 (7)0.0342 (3)
N10.48650 (11)0.31521 (9)0.61496 (7)0.0197 (3)
N20.21359 (11)0.02768 (9)0.45005 (7)0.0189 (3)
N30.31690 (12)0.05439 (10)0.60560 (8)0.0218 (3)
N40.38177 (13)0.28738 (10)0.41875 (8)0.0270 (3)
N50.95472 (13)0.40818 (10)0.42324 (8)0.0271 (4)
N60.55036 (12)0.27485 (11)0.22479 (8)0.0262 (3)
C10.38489 (15)0.16079 (12)0.63305 (9)0.0242 (4)
H1A0.38770.10590.66880.029*
H1B0.3020.18820.61860.029*
C20.47414 (15)0.24061 (12)0.66996 (9)0.0234 (4)
H2A0.44620.27290.70990.028*
H2B0.55390.21020.69330.028*
C30.59968 (16)0.37190 (14)0.64366 (10)0.0316 (4)
H3A0.66580.32650.66890.038*
H3B0.58940.4210.68090.038*
C40.63246 (17)0.42432 (13)0.58016 (10)0.0333 (5)
H4A0.57530.47920.56110.04*
H4B0.7150.45210.59780.04*
C50.38177 (16)0.38211 (13)0.59616 (10)0.0347 (5)
H5A0.380.42040.64060.052*
H5B0.30740.34330.57920.052*
H5C0.38820.42720.55620.052*
C60.23263 (14)0.14850 (12)0.42388 (9)0.0212 (4)
H6A0.20250.21450.43310.025*
H6B0.23580.1460.37120.025*
C70.14866 (14)0.06917 (11)0.43730 (10)0.0226 (4)
H7A0.07690.06420.39340.027*
H7B0.12090.08650.48160.027*
C80.23655 (14)0.06676 (12)0.37959 (9)0.0227 (4)
H8A0.22990.13970.37910.027*
H8B0.17370.0410.33580.027*
C90.35990 (13)0.03810 (12)0.37239 (9)0.0200 (4)
H9A0.360.03220.35770.024*
H9B0.38060.0790.33350.024*
C100.14028 (14)0.09998 (13)0.47868 (10)0.0282 (4)
H10A0.06380.11190.44030.042*
H10B0.18490.16230.49070.042*
H10C0.12370.07360.52390.042*
C110.25484 (15)0.07453 (12)0.64353 (9)0.0217 (4)
C120.32760 (15)0.32850 (12)0.36446 (9)0.0208 (4)
C130.87761 (16)0.38143 (13)0.46022 (10)0.0280 (4)
H13A0.90330.33360.49880.034*
C141.07644 (16)0.36743 (15)0.44205 (12)0.0428 (5)
H14A1.08770.32220.48460.064*
H14B1.13540.42130.45540.064*
H14C1.08810.33140.39880.064*
C150.92280 (18)0.48139 (15)0.36406 (12)0.0452 (6)
H15A0.83540.49310.35040.068*
H15B0.94580.45730.32020.068*
H15C0.96560.54330.38160.068*
C160.59011 (15)0.29153 (13)0.16508 (10)0.0283 (4)
H16A0.64730.34330.1690.034*
C170.46767 (16)0.19439 (13)0.22546 (10)0.0310 (4)
H17A0.43350.16990.17430.047*
H17B0.40240.21810.24540.047*
H17C0.51120.14080.25720.047*
C180.59935 (17)0.32815 (15)0.29436 (11)0.0434 (5)
H18A0.65620.37850.28720.065*
H18B0.64150.28180.33350.065*
H18C0.53340.36010.30940.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02102 (13)0.01665 (12)0.01768 (13)0.00053 (12)0.00874 (10)0.00076 (11)
Cr10.01441 (12)0.01699 (13)0.01527 (13)0.00159 (12)0.00662 (10)0.00100 (11)
S10.0342 (3)0.0666 (4)0.0332 (3)0.0060 (3)0.0221 (2)0.0104 (3)
S20.0363 (3)0.0302 (3)0.0181 (2)0.0017 (2)0.00015 (19)0.0021 (2)
O10.0148 (6)0.0195 (6)0.0124 (6)0.0011 (5)0.0040 (4)0.0002 (5)
O20.0213 (6)0.0202 (6)0.0160 (6)0.0023 (5)0.0106 (5)0.0040 (5)
O30.0441 (8)0.0250 (7)0.0377 (8)0.0126 (6)0.0269 (7)0.0112 (6)
O40.0160 (6)0.0192 (6)0.0191 (6)0.0028 (5)0.0049 (5)0.0033 (5)
O50.0265 (7)0.0378 (8)0.0414 (8)0.0010 (6)0.0158 (6)0.0019 (7)
O60.0396 (8)0.0382 (8)0.0284 (7)0.0000 (6)0.0153 (6)0.0026 (6)
N10.0210 (8)0.0180 (7)0.0205 (7)0.0010 (6)0.0065 (6)0.0007 (6)
N20.0151 (7)0.0205 (7)0.0218 (8)0.0003 (6)0.0066 (6)0.0022 (6)
N30.0243 (8)0.0235 (8)0.0202 (8)0.0041 (7)0.0108 (6)0.0015 (6)
N40.0353 (9)0.0211 (8)0.0254 (8)0.0013 (7)0.0098 (7)0.0021 (7)
N50.0265 (8)0.0276 (8)0.0304 (9)0.0025 (7)0.0131 (7)0.0070 (7)
N60.0246 (8)0.0296 (8)0.0253 (8)0.0001 (7)0.0086 (6)0.0018 (7)
C10.0336 (10)0.0234 (9)0.0217 (9)0.0031 (8)0.0176 (8)0.0055 (8)
C20.0302 (10)0.0244 (9)0.0167 (9)0.0027 (8)0.0086 (7)0.0029 (7)
C30.0352 (11)0.0326 (10)0.0270 (10)0.0097 (9)0.0087 (8)0.0085 (9)
C40.0452 (12)0.0240 (10)0.0362 (12)0.0136 (9)0.0204 (10)0.0102 (9)
C50.0431 (12)0.0319 (11)0.0299 (11)0.0153 (10)0.0117 (9)0.0025 (9)
C60.0199 (9)0.0221 (9)0.0213 (9)0.0064 (8)0.0050 (7)0.0028 (8)
C70.0160 (9)0.0265 (9)0.0254 (10)0.0052 (8)0.0059 (7)0.0030 (8)
C80.0206 (9)0.0239 (9)0.0206 (9)0.0017 (8)0.0006 (7)0.0026 (8)
C90.0202 (9)0.0249 (9)0.0139 (8)0.0039 (7)0.0031 (7)0.0016 (7)
C100.0190 (9)0.0316 (10)0.0338 (11)0.0051 (8)0.0066 (8)0.0047 (9)
C110.0222 (9)0.0235 (9)0.0182 (9)0.0029 (8)0.0038 (7)0.0016 (7)
C120.0257 (10)0.0178 (9)0.0213 (9)0.0037 (8)0.0105 (8)0.0031 (8)
C130.0320 (11)0.0252 (10)0.0284 (10)0.0016 (9)0.0108 (8)0.0002 (8)
C140.0319 (12)0.0445 (13)0.0566 (15)0.0105 (10)0.0198 (10)0.0128 (11)
C150.0407 (12)0.0525 (14)0.0455 (14)0.0039 (11)0.0173 (10)0.0217 (11)
C160.0232 (10)0.0303 (11)0.0354 (11)0.0013 (8)0.0151 (8)0.0000 (9)
C170.0341 (11)0.0305 (10)0.0316 (11)0.0012 (9)0.0143 (9)0.0048 (9)
C180.0436 (13)0.0519 (14)0.0351 (12)0.0069 (11)0.0119 (10)0.0138 (11)
Geometric parameters (Å, º) top
Mn1—O4i2.0651 (10)C1—H1B0.99
Mn1—N42.0923 (15)C2—H2A0.99
Mn1—O22.1199 (10)C2—H2B0.99
Mn1—O32.2337 (11)C3—C41.512 (2)
Mn1—N12.3004 (13)C3—H3A0.99
Cr1—O21.9391 (10)C3—H3B0.99
Cr1—O41.9546 (10)C4—H4A0.99
Cr1—O11.9914 (10)C4—H4B0.99
Cr1—O1i2.0013 (10)C5—H5A0.98
Cr1—N32.0071 (13)C5—H5B0.98
Cr1—N22.0974 (14)C5—H5C0.98
Cr1—Cr1i3.0428 (4)C6—C71.511 (2)
S1—C111.6240 (16)C6—H6A0.99
S2—C121.6260 (18)C6—H6B0.99
O1—C91.4238 (18)C7—H7A0.99
O1—Cr1i2.0013 (10)C7—H7B0.99
O2—C11.4161 (16)C8—C91.514 (2)
O3—C41.4212 (19)C8—H8A0.99
O3—H30.8197C8—H8B0.99
O4—C61.4189 (18)C9—H9A0.99
O4—Mn1i2.0651 (10)C9—H9B0.99
O5—C131.2437 (18)C10—H10A0.98
O6—C161.225 (2)C10—H10B0.98
N1—C51.470 (2)C10—H10C0.98
N1—C21.4710 (19)C13—H13A0.95
N1—C31.479 (2)C14—H14A0.98
N2—C101.4841 (18)C14—H14B0.98
N2—C71.4944 (19)C14—H14C0.98
N2—C81.5021 (19)C15—H15A0.98
N3—C111.1671 (17)C15—H15B0.98
N4—C121.169 (2)C15—H15C0.98
N5—C131.3159 (19)C16—H16A0.95
N5—C151.449 (2)C17—H17A0.98
N5—C141.456 (2)C17—H17B0.98
N6—C161.332 (2)C17—H17C0.98
N6—C171.449 (2)C18—H18A0.98
N6—C181.451 (2)C18—H18B0.98
C1—C21.517 (2)C18—H18C0.98
C1—H1A0.99
O4i—Mn1—N4132.86 (5)N1—C3—H3B109.6
O4i—Mn1—O292.63 (4)C4—C3—H3B109.6
N4—Mn1—O2111.71 (5)H3A—C3—H3B108.1
O4i—Mn1—O388.41 (4)O3—C4—C3107.69 (13)
N4—Mn1—O390.54 (5)O3—C4—H4A110.2
O2—Mn1—O3147.52 (4)C3—C4—H4A110.2
O4i—Mn1—N1117.93 (5)O3—C4—H4B110.2
N4—Mn1—N1106.77 (5)C3—C4—H4B110.2
O2—Mn1—N177.41 (4)H4A—C4—H4B108.5
O3—Mn1—N173.53 (4)N1—C5—H5A109.5
O2—Cr1—O4177.32 (5)N1—C5—H5B109.5
O2—Cr1—O184.50 (4)H5A—C5—H5B109.5
O4—Cr1—O193.42 (4)N1—C5—H5C109.5
O2—Cr1—O1i96.72 (4)H5A—C5—H5C109.5
O4—Cr1—O1i84.58 (4)H5B—C5—H5C109.5
O1—Cr1—O1i80.70 (5)O4—C6—C7109.13 (13)
O2—Cr1—N391.83 (5)O4—C6—H6A109.9
O4—Cr1—N390.19 (5)C7—C6—H6A109.9
O1—Cr1—N3175.88 (5)O4—C6—H6B109.9
O1i—Cr1—N3101.65 (5)C7—C6—H6B109.9
O2—Cr1—N296.68 (5)H6A—C6—H6B108.3
O4—Cr1—N281.41 (5)N2—C7—C6109.47 (12)
O1—Cr1—N284.05 (4)N2—C7—H7A109.8
O1i—Cr1—N2158.59 (5)C6—C7—H7A109.8
N3—Cr1—N294.53 (5)N2—C7—H7B109.8
O2—Cr1—Cr1i90.82 (3)C6—C7—H7B109.8
O4—Cr1—Cr1i88.67 (3)H7A—C7—H7B108.2
O1—Cr1—Cr1i40.47 (3)N2—C8—C9112.56 (13)
O1i—Cr1—Cr1i40.23 (3)N2—C8—H8A109.1
N3—Cr1—Cr1i141.77 (4)C9—C8—H8A109.1
N2—Cr1—Cr1i122.99 (4)N2—C8—H8B109.1
C9—O1—Cr1109.12 (8)C9—C8—H8B109.1
C9—O1—Cr1i127.69 (9)H8A—C8—H8B107.8
Cr1—O1—Cr1i99.30 (5)O1—C9—C8108.09 (12)
C1—O2—Cr1128.37 (9)O1—C9—H9A110.1
C1—O2—Mn1116.79 (9)C8—C9—H9A110.1
Cr1—O2—Mn1114.84 (4)O1—C9—H9B110.1
C4—O3—Mn1118.54 (9)C8—C9—H9B110.1
C4—O3—H3109.4H9A—C9—H9B108.4
Mn1—O3—H3132.1N2—C10—H10A109.5
C6—O4—Cr1117.74 (9)N2—C10—H10B109.5
C6—O4—Mn1i126.56 (9)H10A—C10—H10B109.5
Cr1—O4—Mn1i115.19 (5)N2—C10—H10C109.5
C5—N1—C2110.85 (12)H10A—C10—H10C109.5
C5—N1—C3110.47 (13)H10B—C10—H10C109.5
C2—N1—C3110.54 (13)N3—C11—S1179.83 (19)
C5—N1—Mn1112.29 (10)N4—C12—S2179.54 (18)
C2—N1—Mn1104.53 (9)O5—C13—N5124.30 (17)
C3—N1—Mn1107.99 (9)O5—C13—H13A117.9
C10—N2—C7108.96 (12)N5—C13—H13A117.9
C10—N2—C8109.64 (12)N5—C14—H14A109.5
C7—N2—C8111.83 (12)N5—C14—H14B109.5
C10—N2—Cr1115.34 (10)H14A—C14—H14B109.5
C7—N2—Cr1104.72 (9)N5—C14—H14C109.5
C8—N2—Cr1106.32 (9)H14A—C14—H14C109.5
C11—N3—Cr1165.05 (14)H14B—C14—H14C109.5
C12—N4—Mn1171.08 (13)N5—C15—H15A109.5
C13—N5—C15121.22 (15)N5—C15—H15B109.5
C13—N5—C14121.02 (15)H15A—C15—H15B109.5
C15—N5—C14117.73 (14)N5—C15—H15C109.5
C16—N6—C17120.90 (15)H15A—C15—H15C109.5
C16—N6—C18121.30 (15)H15B—C15—H15C109.5
C17—N6—C18117.37 (14)O6—C16—N6126.22 (17)
O2—C1—C2109.56 (12)O6—C16—H16A116.9
O2—C1—H1A109.8N6—C16—H16A116.9
C2—C1—H1A109.8N6—C17—H17A109.5
O2—C1—H1B109.8N6—C17—H17B109.5
C2—C1—H1B109.8H17A—C17—H17B109.5
H1A—C1—H1B108.2N6—C17—H17C109.5
N1—C2—C1110.99 (13)H17A—C17—H17C109.5
N1—C2—H2A109.4H17B—C17—H17C109.5
C1—C2—H2A109.4N6—C18—H18A109.5
N1—C2—H2B109.4N6—C18—H18B109.5
C1—C2—H2B109.4H18A—C18—H18B109.5
H2A—C2—H2B108N6—C18—H18C109.5
N1—C3—C4110.37 (15)H18A—C18—H18C109.5
N1—C3—H3A109.6H18B—C18—H18C109.5
C4—C3—H3A109.6
O2—Cr1—O1—C9126.82 (9)O3—Mn1—N1—C324.90 (10)
O4—Cr1—O1—C951.49 (9)O2—Cr1—N2—C1033.38 (11)
O1i—Cr1—O1—C9135.43 (11)O4—Cr1—N2—C10148.52 (11)
N2—Cr1—O1—C929.49 (9)O1—Cr1—N2—C10117.11 (10)
Cr1i—Cr1—O1—C9135.43 (11)O1i—Cr1—N2—C10161.80 (12)
O2—Cr1—O1—Cr1i97.75 (5)N3—Cr1—N2—C1059.00 (11)
O4—Cr1—O1—Cr1i83.93 (5)Cr1i—Cr1—N2—C10128.72 (9)
O1i—Cr1—O1—Cr1i0O2—Cr1—N2—C7153.11 (9)
N2—Cr1—O1—Cr1i164.92 (5)O4—Cr1—N2—C728.78 (9)
O1—Cr1—O2—C1173.65 (13)O1—Cr1—N2—C7123.16 (9)
O1i—Cr1—O2—C1106.42 (13)O1i—Cr1—N2—C778.47 (15)
N3—Cr1—O2—C14.47 (13)N3—Cr1—N2—C760.73 (9)
N2—Cr1—O2—C190.32 (13)Cr1i—Cr1—N2—C7111.54 (8)
Cr1i—Cr1—O2—C1146.32 (12)O2—Cr1—N2—C888.37 (10)
O1—Cr1—O2—Mn15.92 (5)O4—Cr1—N2—C889.74 (9)
O1i—Cr1—O2—Mn174.01 (6)O1—Cr1—N2—C84.64 (9)
N3—Cr1—O2—Mn1175.97 (6)O1i—Cr1—N2—C840.06 (18)
N2—Cr1—O2—Mn189.25 (6)N3—Cr1—N2—C8179.25 (10)
Cr1i—Cr1—O2—Mn134.11 (5)Cr1i—Cr1—N2—C86.98 (11)
O4i—Mn1—O2—C1121.25 (11)O2—Cr1—N3—C1187.0 (5)
N4—Mn1—O2—C1100.05 (11)O4—Cr1—N3—C1191.3 (5)
O3—Mn1—O2—C130.08 (14)O1i—Cr1—N3—C11175.8 (5)
N1—Mn1—O2—C13.21 (11)N2—Cr1—N3—C119.9 (5)
O4i—Mn1—O2—Cr159.13 (6)Cr1i—Cr1—N3—C11179.4 (5)
N4—Mn1—O2—Cr179.57 (6)Cr1—O2—C1—C2152.10 (10)
O3—Mn1—O2—Cr1150.30 (6)Mn1—O2—C1—C228.33 (16)
N1—Mn1—O2—Cr1177.17 (6)C5—N1—C2—C176.39 (16)
O4i—Mn1—O3—C4121.36 (13)C3—N1—C2—C1160.77 (13)
N4—Mn1—O3—C4105.78 (13)Mn1—N1—C2—C144.81 (14)
O2—Mn1—O3—C428.96 (16)O2—C1—C2—N150.17 (17)
N1—Mn1—O3—C41.57 (12)C5—N1—C3—C474.85 (17)
O1—Cr1—O4—C691.82 (10)C2—N1—C3—C4162.08 (13)
O1i—Cr1—O4—C6172.13 (10)Mn1—N1—C3—C448.29 (15)
N3—Cr1—O4—C686.19 (10)Mn1—O3—C4—C327.02 (18)
N2—Cr1—O4—C68.37 (10)N1—C3—C4—O349.63 (19)
Cr1i—Cr1—O4—C6132.03 (10)Cr1—O4—C6—C714.59 (15)
O1—Cr1—O4—Mn1i80.51 (5)Mn1i—O4—C6—C7174.07 (9)
O1i—Cr1—O4—Mn1i0.19 (5)C10—N2—C7—C6168.24 (14)
N3—Cr1—O4—Mn1i101.49 (6)C8—N2—C7—C670.40 (16)
N2—Cr1—O4—Mn1i163.96 (6)Cr1—N2—C7—C644.32 (14)
Cr1i—Cr1—O4—Mn1i40.29 (5)O4—C6—C7—N239.62 (17)
O4i—Mn1—N1—C5176.21 (10)C10—N2—C8—C9145.05 (14)
N4—Mn1—N1—C511.66 (11)C7—N2—C8—C993.99 (15)
O2—Mn1—N1—C597.53 (11)Cr1—N2—C8—C919.74 (15)
O3—Mn1—N1—C597.14 (11)Cr1—O1—C9—C847.36 (14)
O4i—Mn1—N1—C263.56 (10)Cr1i—O1—C9—C8166.30 (9)
N4—Mn1—N1—C2131.89 (10)N2—C8—C9—O144.64 (17)
O2—Mn1—N1—C222.71 (9)C15—N5—C13—O50.6 (3)
O3—Mn1—N1—C2142.63 (10)C14—N5—C13—O5178.61 (17)
O4i—Mn1—N1—C354.17 (11)C17—N6—C16—O63.1 (3)
N4—Mn1—N1—C3110.38 (11)C18—N6—C16—O6175.29 (18)
O2—Mn1—N1—C3140.44 (11)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O50.821.782.5985 (18)176

Experimental details

Crystal data
Chemical formula[Cr2Mn2(C5H11NO2)2(C5H12NO2)2(NCS)4]·4C3H7NO
Mr1208.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.5207 (2), 13.5261 (2), 18.5825 (4)
β (°) 106.123 (2)
V3)2781.81 (9)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.6, 0.8
No. of measured, independent and
observed [I > 2σ(I)] reflections
14864, 8065, 5070
Rint0.025
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.048, 0.98
No. of reflections8065
No. of parameters313
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.38

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), ABSPACK in CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O50.821.782.5985 (18)176
 

References

First citationAffronte, M., Casson, I., Evangelisti, M., Candini, A., Carretta, S., Muryn, C. A., Teat, S. J., Timco, G. A., Wernsdorfer, W. & Winpenny, R. E. P. (2005). Angew. Chem. Int. Ed. 44, 6496–6500.  Web of Science CSD CrossRef CAS Google Scholar
First citationFerguson, A., Lawrence, J., Parkin, A., Sanchez-Benitez, J., Kamenev, K. V., Brechin, E. K., Wernsdorfer, W., Hill, S. & Murrie, M. (2008). Dalton Trans. pp. 6409–6414.  Web of Science CSD CrossRef Google Scholar
First citationKokozay, V. N. & Shevchenko, D. V. (2005). Mater. Sci. Poland, 23, 287–312.  CAS Google Scholar
First citationLangley, S. K., Berry, K.J., Moubaraki, B. & Murray, K. S. (2009). Dalton Trans. pp. 973–982.  Web of Science CSD CrossRef Google Scholar
First citationMcInnes, E. J. L., Piligkos, S., Timco, G. A. & Winpenny, R. E. P. (2005). Coord. Chem. Rev. 249, 2577–2590.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaalfrank, R. W., Bernt, I., Chowdhry, M. M., Hampel, F. & Vaughan, G. B. M. (2001). Chem. Eur. J. 7, 2765–2769.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds