organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-2-(5-Chloro-2-oxoindolin-3-yl­­idene)-N-phenyl­hydrazinecarbo­thio­amide

aSchool of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia, bFaculty of Science, Sabha University, Libya, cDepartment of Chemistry, International University of Africa, Khartoum, Sudan, and dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: sgteoh@usm.my

(Received 26 September 2011; accepted 24 October 2011; online 2 November 2011)

In the title compound, C15H11ClN4OS, the dihedral angle between the nine-membered 5-chloro­indolin-2-one ring system and the benzene ring is 10.00 (6)°. Intra­molecular cyclic N—H⋯O and C—H⋯S hydrogen-bonding inter­actions [graph set S(6)] are present in the N—N—C—N chain between the ring systems. In the crystal, mol­ecules form centrosymmetric cyclic dimers through inter­molecular N—H⋯O hydrogen bonds [graph-set R22(8)] and are extended by C—H⋯Cl inter­actions into infinite chains which propagate along [100].

Related literature

For related structures, see: Ferrari et al. (2002[Ferrari, M. B., Pelizzi, C., Pelosi, G. & Rodriguez-Argüelles, M. C. (2002). Polyhedron, 21, 2593-2599.]); Pervez et al. (2010[Pervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010). Acta Cryst. E66, o1609.]); Ramzan et al. (2010[Ramzan, M., Pervez, H., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o2387.]). For various biological activities of Schiff bases, see: Bhandari et al. (2008[Bhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822-1831.]); Bhardwaj et al. (2010[Bhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983-2985.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358-361.]); Sridhar et al. (2002[Sridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129-132.]); Suryavanshi & Pai (2006[Suryavanshi, J. P. & Pai, N. R. (2006). Indian J. Chem. Sect. B, 45, 1227-1230.]). For cytotoxic and anti­cancer activities of isatin and its derivatives, see: Vine et al. (2009[Vine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anti-Cancer Agents in Med. Chem. 9, 397-414.]). For bond-length data, see; Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set analysis, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11ClN4OS

  • Mr = 330.79

  • Monoclinic, P 21 /c

  • a = 5.7117 (2) Å

  • b = 17.9510 (7) Å

  • c = 14.2455 (5) Å

  • β = 91.262 (2)°

  • V = 1460.25 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 100 K

  • 0.53 × 0.16 × 0.13 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.812, Tmax = 0.950

  • 15819 measured reflections

  • 4183 independent reflections

  • 3424 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.04

  • 4183 reflections

  • 211 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.89 (2) 1.98 (2) 2.8560 (17) 171 (2)
N3—H1N3⋯O1 0.86 (2) 2.08 (2) 2.7563 (16) 135.9 (19)
C2—H2A⋯Cl1ii 0.93 2.81 3.6935 (17) 158
C11—H11A⋯S1 0.93 2.61 3.2423 (14) 126
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+2.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems (Vine et al., 2009). Biological properties of isatin and its derivatives include a range of actions in the brain and offer protection against certain types of infections, such as anti-bacterial (Suryavanshi & Pai, 2006) antifungal, anticonvulsant, anti-HIV (Pandeya et al.,1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). In this paper we describe the single-crystal X-ray diffraction study of the title compound, C15H11ClN4OS.

In this compound (Fig. 1), the dihedral angle between the nine-membered 5-chloroindolin-2-one ring system and benzene ring is 10.00 (6)°. Atoms C8 in the 5-chloroindolin-2-one ring and C10 in the benzene ring are joined by a chain of four atoms (N2/N3/C9/N4) giving a torsion angle 7.47 (19)° while the the torsion angles C8—N2—N3—C9 and C10—N4—C9—N3 are 173.15 (13)° and -178.02 (13)°, respectively. The essentially planar conformation of the molecule is maintained by cyclic intramolecular N3—H···O1 and C11—H···S1 hydrogen-bonding interactions [graph set S(6) (Bernstein et al., 1995)] (Table 1) together with an S(5) N3—H···N2 interaction.

In the crystal the molecules form centrosymmetric cyclic dimers through intermolecular N—H···O hydrogen bonds [graph set R22(8)] and are extended by C—H···Cl interactions into infinite chains which propagate along [100] (Fig. 2). Weak C—H···π interactions are also present: C5—H5A···Cg3iii = 3.6321 (18) Å, where Cg3iii is the centroid of the C10—C15 ring [symmetry code: (iii) -x + 1, y + 1/2, -z + 3/2].

Related literature top

For related structures, see: Ferrari et al. (2002); Pervez et al. (2010); Ramzan et al. (2010). For various biological activities of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For cytotoxic and anticancer activities of isatin and its derivatives, see: Vine et al. (2009). For bond-length data, see; Allen et al. (1987). For graph-set analysis, see Bernstein et al. (1995).

Experimental top

The Schiff base have been synthesized by refluxing the reaction mixture of hot ethanolic solution (30 ml) of 4-phenyl-3-thiosemicarbazide (0.01 mol) and hot ethanolic solution (30 ml) of 5-chloroisatin (0.01 mol) for 2 h. The precipitate formed during reflux was filtered, washed with cold ethanol and recrystallized from hot ethanol: yield 97%; m.p. 521.4-521.9 K). The orange crystals were grown in acetone-DMF (3:1) by slow evaporation at room temperature.

Refinement top

N bound H atoms were located in a difference Fourier map and were refined freely. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The highest residual electron density peak (0.510 eÅ-3 is located at 0.87 Å from C3 and the deepest hole (-0.228 eÅ-3) is located at 0.56 Å from Sl.

Structure description top

Isatin (2,3-dioxindole) is an endogenous compound identified in humans, and its effect has been studied in a variety of systems (Vine et al., 2009). Biological properties of isatin and its derivatives include a range of actions in the brain and offer protection against certain types of infections, such as anti-bacterial (Suryavanshi & Pai, 2006) antifungal, anticonvulsant, anti-HIV (Pandeya et al.,1999), anti-depressant and anti-inflammatory activities (Bhandari et al., 2008). In this paper we describe the single-crystal X-ray diffraction study of the title compound, C15H11ClN4OS.

In this compound (Fig. 1), the dihedral angle between the nine-membered 5-chloroindolin-2-one ring system and benzene ring is 10.00 (6)°. Atoms C8 in the 5-chloroindolin-2-one ring and C10 in the benzene ring are joined by a chain of four atoms (N2/N3/C9/N4) giving a torsion angle 7.47 (19)° while the the torsion angles C8—N2—N3—C9 and C10—N4—C9—N3 are 173.15 (13)° and -178.02 (13)°, respectively. The essentially planar conformation of the molecule is maintained by cyclic intramolecular N3—H···O1 and C11—H···S1 hydrogen-bonding interactions [graph set S(6) (Bernstein et al., 1995)] (Table 1) together with an S(5) N3—H···N2 interaction.

In the crystal the molecules form centrosymmetric cyclic dimers through intermolecular N—H···O hydrogen bonds [graph set R22(8)] and are extended by C—H···Cl interactions into infinite chains which propagate along [100] (Fig. 2). Weak C—H···π interactions are also present: C5—H5A···Cg3iii = 3.6321 (18) Å, where Cg3iii is the centroid of the C10—C15 ring [symmetry code: (iii) -x + 1, y + 1/2, -z + 3/2].

For related structures, see: Ferrari et al. (2002); Pervez et al. (2010); Ramzan et al. (2010). For various biological activities of Schiff bases, see: Bhandari et al. (2008); Bhardwaj et al. (2010); Pandeya et al. (1999); Sridhar et al. (2002); Suryavanshi & Pai (2006). For cytotoxic and anticancer activities of isatin and its derivatives, see: Vine et al. (2009). For bond-length data, see; Allen et al. (1987). For graph-set analysis, see Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.
(Z)-2-(5-Chloro-2-oxoindolin-3-ylidene)-N- phenylhydrazinecarbothioamide top
Crystal data top
C15H11ClN4OSF(000) = 680
Mr = 330.79Dx = 1.505 Mg m3
Monoclinic, P21/cMelting point = 521.3–521.9 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.7117 (2) ÅCell parameters from 6388 reflections
b = 17.9510 (7) Åθ = 2.3–29.8°
c = 14.2455 (5) ŵ = 0.41 mm1
β = 91.262 (2)°T = 100 K
V = 1460.25 (9) Å3Block, orange
Z = 40.53 × 0.16 × 0.13 mm
Data collection top
Bruker APEXII CCD
diffractometer
4183 independent reflections
Radiation source: fine-focus sealed tube3424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 29.9°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 77
Tmin = 0.812, Tmax = 0.950k = 1625
15819 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.4941P]
where P = (Fo2 + 2Fc2)/3
4183 reflections(Δ/σ)max = 0.001
211 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H11ClN4OSV = 1460.25 (9) Å3
Mr = 330.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7117 (2) ŵ = 0.41 mm1
b = 17.9510 (7) ÅT = 100 K
c = 14.2455 (5) Å0.53 × 0.16 × 0.13 mm
β = 91.262 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4183 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3424 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.950Rint = 0.044
15819 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.51 e Å3
4183 reflectionsΔρmin = 0.23 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.08445 (7)0.29509 (2)0.51315 (3)0.02175 (10)
Cl10.74643 (8)0.58625 (3)1.01336 (3)0.03431 (13)
O10.71079 (18)0.45044 (6)0.51237 (8)0.0202 (2)
N10.9178 (2)0.52737 (7)0.61568 (10)0.0192 (3)
N20.3993 (2)0.43359 (7)0.68077 (9)0.0169 (2)
N30.3263 (2)0.39602 (7)0.60374 (9)0.0176 (2)
N40.0298 (2)0.34863 (7)0.69041 (9)0.0162 (2)
C10.7024 (2)0.51529 (8)0.74926 (11)0.0175 (3)
C20.6515 (3)0.52627 (8)0.84293 (11)0.0202 (3)
H2A0.51890.50550.86920.024*
C30.8066 (3)0.56950 (9)0.89592 (11)0.0213 (3)
C41.0055 (3)0.60157 (9)0.85810 (12)0.0226 (3)
H4A1.10510.63010.89600.027*
C51.0559 (3)0.59112 (9)0.76381 (12)0.0218 (3)
H5A1.18760.61250.73760.026*
C60.9031 (2)0.54775 (8)0.71060 (11)0.0177 (3)
C70.7407 (2)0.48082 (8)0.58967 (11)0.0176 (3)
C80.5894 (2)0.47276 (8)0.67398 (10)0.0164 (3)
C90.1396 (2)0.34679 (8)0.60775 (10)0.0163 (3)
C100.1615 (2)0.30657 (8)0.72387 (10)0.0158 (3)
C110.3209 (2)0.26888 (8)0.66549 (11)0.0175 (3)
H11A0.30360.26900.60070.021*
C120.5073 (3)0.23099 (8)0.70597 (12)0.0205 (3)
H12A0.61270.20500.66750.025*
C130.5381 (3)0.23133 (9)0.80179 (12)0.0227 (3)
H13A0.66350.20610.82770.027*
C140.3798 (3)0.26976 (10)0.85915 (12)0.0248 (3)
H14A0.40010.27070.92370.030*
C150.1915 (3)0.30674 (9)0.82049 (11)0.0212 (3)
H15A0.08490.33180.85940.025*
H1N11.030 (4)0.5395 (14)0.5766 (17)0.049 (7)*
H1N30.406 (4)0.3978 (11)0.5537 (15)0.029 (5)*
H1N40.095 (3)0.3761 (11)0.7308 (14)0.026 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02155 (19)0.0258 (2)0.01799 (19)0.00283 (14)0.00246 (14)0.00359 (14)
Cl10.0431 (3)0.0386 (3)0.0214 (2)0.01947 (19)0.00487 (17)0.00397 (16)
O10.0156 (5)0.0242 (5)0.0208 (5)0.0009 (4)0.0028 (4)0.0007 (4)
N10.0136 (6)0.0218 (6)0.0225 (7)0.0018 (5)0.0038 (5)0.0018 (5)
N20.0141 (5)0.0175 (6)0.0192 (6)0.0004 (4)0.0003 (5)0.0011 (5)
N30.0148 (6)0.0202 (6)0.0178 (6)0.0015 (4)0.0032 (5)0.0001 (5)
N40.0140 (5)0.0193 (6)0.0154 (6)0.0035 (4)0.0003 (4)0.0013 (5)
C10.0140 (6)0.0153 (6)0.0233 (8)0.0001 (5)0.0017 (5)0.0022 (5)
C20.0174 (7)0.0198 (7)0.0235 (8)0.0035 (5)0.0021 (6)0.0023 (6)
C30.0231 (7)0.0199 (7)0.0209 (7)0.0022 (6)0.0007 (6)0.0009 (6)
C40.0200 (7)0.0200 (7)0.0277 (8)0.0032 (5)0.0023 (6)0.0022 (6)
C50.0144 (6)0.0222 (7)0.0288 (8)0.0025 (5)0.0025 (6)0.0016 (6)
C60.0136 (6)0.0166 (6)0.0231 (7)0.0017 (5)0.0033 (5)0.0026 (5)
C70.0126 (6)0.0182 (7)0.0221 (7)0.0028 (5)0.0027 (5)0.0046 (5)
C80.0127 (6)0.0179 (7)0.0188 (7)0.0010 (5)0.0018 (5)0.0026 (5)
C90.0132 (6)0.0174 (6)0.0183 (7)0.0014 (5)0.0007 (5)0.0023 (5)
C100.0118 (6)0.0165 (6)0.0192 (7)0.0003 (5)0.0002 (5)0.0017 (5)
C110.0136 (6)0.0188 (7)0.0200 (7)0.0008 (5)0.0017 (5)0.0002 (5)
C120.0136 (6)0.0180 (7)0.0298 (8)0.0002 (5)0.0025 (6)0.0007 (6)
C130.0143 (6)0.0245 (8)0.0295 (9)0.0013 (5)0.0026 (6)0.0059 (6)
C140.0187 (7)0.0364 (9)0.0192 (8)0.0017 (6)0.0023 (6)0.0058 (7)
C150.0154 (7)0.0301 (8)0.0182 (7)0.0038 (6)0.0011 (5)0.0005 (6)
Geometric parameters (Å, º) top
S1—C91.6606 (15)C3—C41.392 (2)
Cl1—C31.7416 (17)C4—C51.393 (2)
O1—C71.2374 (18)C4—H4A0.9300
N1—C71.3573 (19)C5—C61.383 (2)
N1—C61.405 (2)C5—H5A0.9300
N1—H1N10.88 (3)C7—C81.502 (2)
N2—C81.2992 (18)C10—C151.391 (2)
N2—N31.3462 (18)C10—C111.395 (2)
N3—C91.3872 (18)C11—C121.398 (2)
N3—H1N30.85 (2)C11—H11A0.9300
N4—C91.3467 (19)C12—C131.380 (2)
N4—C101.4190 (18)C12—H12A0.9300
N4—H1N40.84 (2)C13—C141.389 (2)
C1—C21.386 (2)C13—H13A0.9300
C1—C61.409 (2)C14—C151.388 (2)
C1—C81.456 (2)C14—H14A0.9300
C2—C31.389 (2)C15—H15A0.9300
C2—H2A0.9300
C7—N1—C6111.28 (13)O1—C7—N1126.99 (14)
C7—N1—H1N1121.6 (16)O1—C7—C8126.77 (13)
C6—N1—H1N1127.0 (16)N1—C7—C8106.23 (13)
C8—N2—N3117.04 (13)N2—C8—C1125.93 (14)
N2—N3—C9120.67 (13)N2—C8—C7127.47 (14)
N2—N3—H1N3120.1 (14)C1—C8—C7106.56 (12)
C9—N3—H1N3118.8 (14)N4—C9—N3113.18 (13)
C9—N4—C10131.11 (13)N4—C9—S1129.76 (11)
C9—N4—H1N4113.9 (14)N3—C9—S1117.06 (11)
C10—N4—H1N4114.6 (14)C15—C10—C11119.87 (13)
C2—C1—C6120.49 (14)C15—C10—N4116.35 (13)
C2—C1—C8133.22 (13)C11—C10—N4123.73 (13)
C6—C1—C8106.28 (13)C10—C11—C12118.89 (14)
C1—C2—C3117.25 (14)C10—C11—H11A120.6
C1—C2—H2A121.4C12—C11—H11A120.6
C3—C2—H2A121.4C13—C12—C11121.37 (14)
C2—C3—C4122.48 (15)C13—C12—H12A119.3
C2—C3—Cl1118.78 (12)C11—C12—H12A119.3
C4—C3—Cl1118.71 (12)C12—C13—C14119.25 (14)
C3—C4—C5120.36 (15)C12—C13—H13A120.4
C3—C4—H4A119.8C14—C13—H13A120.4
C5—C4—H4A119.8C15—C14—C13120.28 (15)
C6—C5—C4117.56 (14)C15—C14—H14A119.9
C6—C5—H5A121.2C13—C14—H14A119.9
C4—C5—H5A121.2C14—C15—C10120.34 (14)
C5—C6—N1128.57 (14)C14—C15—H15A119.8
C5—C6—C1121.85 (15)C10—C15—H15A119.8
N1—C6—C1109.57 (13)
C8—N2—N3—C9173.15 (13)C6—C1—C8—N2179.26 (14)
C6—C1—C2—C30.6 (2)C2—C1—C8—C7177.07 (15)
C8—C1—C2—C3177.83 (15)C6—C1—C8—C71.51 (15)
C1—C2—C3—C40.5 (2)O1—C7—C8—N21.1 (2)
C1—C2—C3—Cl1178.76 (11)N1—C7—C8—N2179.62 (14)
C2—C3—C4—C50.1 (2)O1—C7—C8—C1176.64 (14)
Cl1—C3—C4—C5178.24 (12)N1—C7—C8—C12.68 (15)
C3—C4—C5—C60.4 (2)C10—N4—C9—N3178.02 (13)
C4—C5—C6—N1178.16 (14)C10—N4—C9—S11.7 (2)
C4—C5—C6—C10.3 (2)N2—N3—C9—N47.47 (19)
C7—N1—C6—C5176.63 (15)N2—N3—C9—S1172.31 (10)
C7—N1—C6—C11.99 (16)C9—N4—C10—C15162.39 (15)
C2—C1—C6—C50.2 (2)C9—N4—C10—C1120.3 (2)
C8—C1—C6—C5178.57 (13)C15—C10—C11—C120.8 (2)
C2—C1—C6—N1178.95 (13)N4—C10—C11—C12178.04 (13)
C8—C1—C6—N10.15 (15)C10—C11—C12—C131.1 (2)
C6—N1—C7—O1176.46 (14)C11—C12—C13—C140.4 (2)
C6—N1—C7—C82.86 (16)C12—C13—C14—C150.6 (2)
N3—N2—C8—C1177.80 (13)C13—C14—C15—C100.9 (2)
N3—N2—C8—C70.5 (2)C11—C10—C15—C140.2 (2)
C2—C1—C8—N20.7 (3)N4—C10—C15—C14177.23 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.89 (2)1.98 (2)2.8560 (17)171 (2)
N3—H1N3···O10.86 (2)2.08 (2)2.7563 (16)135.9 (19)
N4—H1N4···N20.84 (2)2.156 (18)2.6099 (17)113.8 (16)
C2—H2A···Cl1ii0.932.813.6935 (17)158
C11—H11A···S10.932.613.2423 (14)126
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC15H11ClN4OS
Mr330.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)5.7117 (2), 17.9510 (7), 14.2455 (5)
β (°) 91.262 (2)
V3)1460.25 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.53 × 0.16 × 0.13
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.812, 0.950
No. of measured, independent and
observed [I > 2σ(I)] reflections
15819, 4183, 3424
Rint0.044
(sin θ/λ)max1)0.702
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.04
No. of reflections4183
No. of parameters211
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.23

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O1i0.89 (2)1.98 (2)2.8560 (17)171 (2)
N3—H1N3···O10.86 (2)2.08 (2)2.7563 (16)135.9 (19)
C2—H2A···Cl1ii0.932.813.6935 (17)158
C11—H11A···S10.932.613.2423 (14)126
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+2.
 

Footnotes

Thomson Reuters ResearcherID: E-9395-2011

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). NEE thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing research leave. AQA thanks the Ministry of Higher Education and the University of Sabha (Libya) for a scholarship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhandari, S. V., Bothara, K. G., Raut, M. K., Patil, A. A., Sarkate, A. P. & Mokale, V. J. (2008). Bioorg. Med. Chem. 16, 1822–1831.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBhardwaj, S., Kumar, L., Verma, R. & Sing, U. K. (2010). J. Pharm. Res. 3, 2983–2985.  CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerrari, M. B., Pelizzi, C., Pelosi, G. & Rodriguez-Argüelles, M. C. (2002). Polyhedron, 21, 2593–2599.  Web of Science CSD CrossRef CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & Clercq, E. De. (1999). Indian J. Pharm. Sci. 61, 358–361.  Google Scholar
First citationPervez, H., Yaqub, M., Ramzan, M., Tahir, M. N. & Iqbal, M. S. (2010). Acta Cryst. E66, o1609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRamzan, M., Pervez, H., Yaqub, M. & Tahir, M. N. (2010). Acta Cryst. E66, o2387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, S. K., Pandeya, S. N., Stables, J. P. & Ramesh, A. (2002). Eur. J. Pharm. Sci. 16, 129–132.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSuryavanshi, J. P. & Pai, N. R. (2006). Indian J. Chem. Sect. B, 45, 1227–1230.  Google Scholar
First citationVine, K. L., Matesic, L., Locke, J. M., Ranson, M. & Skropeta, D. (2009). Anti-Cancer Agents in Med. Chem. 9, 397–414.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds