supplementary materials


aa2031 scheme

Acta Cryst. (2012). E68, o5    [ doi:10.1107/S1600536811050616 ]

1,2-Bis(dibromomethyl)benzene

S.-K. Fang, H.-Y. Lin and K.-Y. Chen

Abstract top

In the title compound, C8H6Br4, intramolecular C-H...Br hydrogen bonds generate two S(6) rings. The two geminal bromine-atom substituents point to opposite sides of the aromatic ring system. In the crystal, molecules are linked by intermolecular [pi]-[pi] interactions with centroid-centroid distances of 3.727 (9) and 3.858 (9) Å.

Comment top

The title compound and its derivatives are useful reagents to build a naphthalene ring (Chen et al., 2002, 2006, 2007; Chow et al., 2005; Jansen et al., 2010; Pandithavidana et al., 2009). In addition, they have been prepared as potential precursors to pentacene derivatives (Swartz et al., 2005).

The ORTEP diagram of the title compound is shown in Fig. 1. Two intramolecular C—H···Br hydrogen bonds (see Table 1) generate two S(6) ring motifs (Bernstein et al., 1995). The two geminal bromine substituents point to opposite sides of the aromatic ring system. In the crystal structure (Fig. 2), the molecules are stabilized by intermolecular ππ interactions. Cg1···Cg1i distance is 3.727 (9)Å, symmetry code: (i) -1 - x, -y, 1 - z; Cg1···Cg1ii distance is 3.858 (9)Å, symmetry code: (ii) -x, -y, 1 - z; Cg1 is the centroid of the C2/C7 ring).

Related literature top

For the preparation of the title compound, see: Ghorbani-Vaghei et al. (2009). For its applications, see: Chen et al. (2002, 2006, 2007); Chow et al. (2005); Jansen et al. (2010); Pandithavidana et al. (2009); Swartz et al. (2005). For related structures, see: Kuś & Jones (2003); Qin et al. (2005); Sim et al. (2001). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by bromination of o-xylene with N,N,N',N'- tetrabromobenzene-1,3-disulfonamide in CCl4, according to the literature method (Ghorbani-Vaghei et al., 2009). Colorless crystals suitable for the crystallographic studies were isolated over a period of four weeks by slow evaporation from the chloroform solution.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 and 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed along the a axis. H atoms have been omitted for clarity.
1,2-Bis(dibromomethyl)benzene top
Crystal data top
C8H6Br4Z = 2
Mr = 421.77F(000) = 388
Triclinic, P1Dx = 2.591 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0222 (8) ÅCell parameters from 1856 reflections
b = 7.7313 (9) Åθ = 2.8–29.1°
c = 10.5927 (12) ŵ = 14.83 mm1
α = 108.473 (10)°T = 297 K
β = 97.108 (9)°Parallelepiped, colorless
γ = 90.394 (9)°0.58 × 0.48 × 0.36 mm
V = 540.61 (11) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2469 independent reflections
Radiation source: fine-focus sealed tube1297 reflections with I > 2σ(I)
graphiteRint = 0.073
ω scansθmax = 29.2°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 98
Tmin = 0.122, Tmax = 1.000k = 1010
4575 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.091Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.258H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0875P)2 + 18.1246P]
where P = (Fo2 + 2Fc2)/3
2469 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 1.62 e Å3
0 restraintsΔρmin = 1.27 e Å3
Crystal data top
C8H6Br4γ = 90.394 (9)°
Mr = 421.77V = 540.61 (11) Å3
Triclinic, P1Z = 2
a = 7.0222 (8) ÅMo Kα radiation
b = 7.7313 (9) ŵ = 14.83 mm1
c = 10.5927 (12) ÅT = 297 K
α = 108.473 (10)°0.58 × 0.48 × 0.36 mm
β = 97.108 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2469 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1297 reflections with I > 2σ(I)
Tmin = 0.122, Tmax = 1.000Rint = 0.073
4575 measured reflectionsθmax = 29.2°
Refinement top
R[F2 > 2σ(F2)] = 0.091 w = 1/[σ2(Fo2) + (0.0875P)2 + 18.1246P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.258Δρmax = 1.62 e Å3
S = 1.04Δρmin = 1.27 e Å3
2469 reflectionsAbsolute structure: ?
109 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
H-atom parameters constrained
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.0868 (3)0.1807 (3)0.90582 (19)0.0434 (6)
Br20.6361 (3)0.1787 (3)0.9231 (2)0.0492 (6)
Br30.5867 (3)0.5842 (3)0.7641 (2)0.0488 (6)
Br41.0292 (3)0.5783 (3)0.7275 (2)0.0478 (6)
C10.832 (3)0.078 (3)0.8116 (17)0.036 (4)
H1A0.83110.05330.80030.043*
C20.796 (2)0.094 (2)0.6741 (16)0.030 (4)
C30.769 (2)0.070 (3)0.5681 (18)0.035 (4)
H3A0.78040.18030.58620.042*
C40.725 (2)0.073 (2)0.4342 (17)0.033 (4)
H4A0.70440.18210.36390.040*
C50.714 (2)0.097 (3)0.4101 (16)0.032 (4)
H5A0.69240.10040.32240.039*
C60.735 (2)0.255 (2)0.5136 (16)0.031 (4)
H6A0.71830.36440.49540.037*
C70.781 (2)0.261 (2)0.6455 (15)0.024 (3)
C80.821 (2)0.436 (2)0.7532 (17)0.033 (4)
H8A0.85330.41230.83870.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0330 (10)0.0605 (15)0.0388 (10)0.0108 (9)0.0006 (8)0.0207 (10)
Br20.0364 (11)0.0769 (17)0.0443 (11)0.0028 (10)0.0117 (9)0.0313 (11)
Br30.0386 (11)0.0406 (13)0.0671 (14)0.0169 (9)0.0072 (9)0.0165 (11)
Br40.0406 (11)0.0372 (13)0.0653 (14)0.0084 (8)0.0102 (9)0.0148 (10)
C10.047 (10)0.027 (10)0.041 (10)0.009 (8)0.002 (8)0.024 (8)
C20.019 (7)0.033 (11)0.033 (9)0.003 (7)0.000 (6)0.008 (8)
C30.016 (8)0.038 (11)0.051 (11)0.004 (7)0.006 (7)0.014 (9)
C40.040 (10)0.026 (10)0.033 (9)0.005 (7)0.017 (8)0.003 (8)
C50.024 (8)0.042 (11)0.025 (8)0.015 (7)0.008 (7)0.001 (8)
C60.042 (10)0.015 (9)0.029 (8)0.006 (7)0.009 (7)0.003 (7)
C70.019 (7)0.026 (9)0.032 (8)0.003 (6)0.007 (6)0.013 (7)
C80.032 (9)0.030 (11)0.038 (9)0.011 (7)0.003 (7)0.014 (8)
Geometric parameters (Å, °) top
Br1—C11.965 (17)C3—H3A0.9300
Br2—C11.932 (19)C4—C51.42 (3)
Br3—C82.003 (18)C4—H4A0.9300
Br4—C81.922 (15)C5—C61.35 (2)
C1—C21.49 (2)C5—H5A0.9300
C1—H1A0.9800C6—C71.38 (2)
C2—C71.42 (2)C6—H6A0.9300
C2—C31.40 (2)C7—C81.47 (2)
C3—C41.41 (2)C8—H8A0.9800
C2—C1—Br2113.8 (12)C6—C5—C4120.4 (16)
C2—C1—Br1112.7 (11)C6—C5—H5A119.8
Br2—C1—Br1110.0 (9)C4—C5—H5A119.8
C2—C1—H1A106.6C5—C6—C7122.7 (17)
Br2—C1—H1A106.6C5—C6—H6A118.6
Br1—C1—H1A106.6C7—C6—H6A118.6
C7—C2—C3119.0 (16)C6—C7—C2118.7 (15)
C7—C2—C1124.9 (15)C6—C7—C8120.6 (15)
C3—C2—C1116.0 (16)C2—C7—C8120.7 (14)
C4—C3—C2121.2 (17)C7—C8—Br4112.8 (11)
C4—C3—H3A119.4C7—C8—Br3110.0 (11)
C2—C3—H3A119.4Br4—C8—Br3108.1 (9)
C5—C4—C3117.9 (16)C7—C8—H8A108.6
C5—C4—H4A121.1Br4—C8—H8A108.6
C3—C4—H4A121.1Br3—C8—H8A108.6
Br2—C1—C2—C761.2 (18)C5—C6—C7—C8174.1 (15)
Br1—C1—C2—C765.0 (19)C3—C2—C7—C62(2)
Br2—C1—C2—C3117.0 (14)C1—C2—C7—C6176.1 (15)
Br1—C1—C2—C3116.9 (14)C3—C2—C7—C8175.9 (14)
C7—C2—C3—C41(2)C1—C2—C7—C86(2)
C1—C2—C3—C4177.2 (14)C6—C7—C8—Br458.1 (18)
C2—C3—C4—C52(2)C2—C7—C8—Br4119.7 (14)
C3—C4—C5—C63(2)C6—C7—C8—Br362.6 (16)
C4—C5—C6—C75(3)C2—C7—C8—Br3119.6 (13)
C5—C6—C7—C24(2)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br10.982.643.364 (16)131
C8—H8A···Br20.982.783.420 (16)124
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br10.982.643.364 (16)131
C8—H8A···Br20.982.783.420 (16)124
Acknowledgements top

This work was supported by the National Science Council (NSC 99–2113-M-035–001-MY2) and Feng Chia University in Taiwan.

references
References top

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115–8119.

Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136–12144.

Chen, K.-Y., Hsing, H.-H., Wu, C.-C., Hwang, J.-J. & Chow, T. J. (2007). Chem. Commun. 10, 1065–1067.

Chow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967–6975.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Ghorbani-Vaghei, R., Chegini, M., Veisi, H. & Karimi-Tabar, M. (2009). Tetrahedron Lett. 50, 1861–1865.

Jansen, G., Kahlert, B., Klärner, F.-G., Boese, R. & Bläser, D. (2010). J. Am. Chem. Soc., 132, 8581–8592.

Kuś, P. & Jones, P. G. (2003). Acta Cryst. E59, o899–o900.

Pandithavidana, D. R., Poloukhtine, A. & Popik, V. V. (2009). J. Am. Chem. Soc. 131, 351–356.

Qin, S., Yin, G. & Zhou, B. (2005). Acta Cryst. E61, o3257–o3258.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sim, W., Lee, J. Y., Kim, J. S., Kim, J.-G. & Suh, I.-H. (2001). Acta Cryst. C57, 293–294.

Swartz, C. R., Parkin, S. R., Bullock, J. E., Anthony, J. E., Mayer, A. C. & Malliaras, G. G. (2005). Org. Lett. 7, 3163–3166.