organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(di­bromo­meth­yl)benzene

aDepartment of Chemical Engineering, Feng Chia University, 40724 Taichung, Taiwan
*Correspondence e-mail: kyuchen@fcu.edu.tw

(Received 29 September 2011; accepted 25 November 2011; online 3 December 2011)

In the title compound, C8H6Br4, intra­molecular C—H⋯Br hydrogen bonds generate two S(6) rings. The two geminal bromine-atom substituents point to opposite sides of the aromatic ring system. In the crystal, mol­ecules are linked by inter­molecular ππ inter­actions with centroid–centroid distances of 3.727 (9) and 3.858 (9) Å.

Related literature

For the preparation of the title compound, see: Ghorbani-Vaghei et al. (2009[Ghorbani-Vaghei, R., Chegini, M., Veisi, H. & Karimi-Tabar, M. (2009). Tetrahedron Lett. 50, 1861-1865.]). For its applications, see: Chen et al. (2002[Chen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115-8119.], 2006[Chen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136-12144.], 2007[Chen, K.-Y., Hsing, H.-H., Wu, C.-C., Hwang, J.-J. & Chow, T. J. (2007). Chem. Commun. 10, 1065-1067.]); Chow et al. (2005[Chow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967-6975.]); Jansen et al. (2010[Jansen, G., Kahlert, B., Klärner, F.-G., Boese, R. & Bläser, D. (2010). J. Am. Chem. Soc., 132, 8581-8592.]); Pandithavidana et al. (2009[Pandithavidana, D. R., Poloukhtine, A. & Popik, V. V. (2009). J. Am. Chem. Soc. 131, 351-356.]); Swartz et al. (2005[Swartz, C. R., Parkin, S. R., Bullock, J. E., Anthony, J. E., Mayer, A. C. & Malliaras, G. G. (2005). Org. Lett. 7, 3163-3166.]). For related structures, see: Kuś & Jones (2003)[Kuś, P. & Jones, P. G. (2003). Acta Cryst. E59, o899-o900.]; Qin et al. (2005[Qin, S., Yin, G. & Zhou, B. (2005). Acta Cryst. E61, o3257-o3258.]); Sim et al. (2001[Sim, W., Lee, J. Y., Kim, J. S., Kim, J.-G. & Suh, I.-H. (2001). Acta Cryst. C57, 293-294.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6Br4

  • Mr = 421.77

  • Triclinic, [P \overline 1]

  • a = 7.0222 (8) Å

  • b = 7.7313 (9) Å

  • c = 10.5927 (12) Å

  • α = 108.473 (10)°

  • β = 97.108 (9)°

  • γ = 90.394 (9)°

  • V = 540.61 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 14.83 mm−1

  • T = 297 K

  • 0.58 × 0.48 × 0.36 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.122, Tmax = 1.000

  • 4575 measured reflections

  • 2469 independent reflections

  • 1297 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.091

  • wR(F2) = 0.258

  • S = 1.04

  • 2469 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 1.62 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯Br1 0.98 2.64 3.364 (16) 131
C8—H8A⋯Br2 0.98 2.78 3.420 (16) 124

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound and its derivatives are useful reagents to build a naphthalene ring (Chen et al., 2002, 2006, 2007; Chow et al., 2005; Jansen et al., 2010; Pandithavidana et al., 2009). In addition, they have been prepared as potential precursors to pentacene derivatives (Swartz et al., 2005).

The ORTEP diagram of the title compound is shown in Fig. 1. Two intramolecular C—H···Br hydrogen bonds (see Table 1) generate two S(6) ring motifs (Bernstein et al., 1995). The two geminal bromine substituents point to opposite sides of the aromatic ring system. In the crystal structure (Fig. 2), the molecules are stabilized by intermolecular ππ interactions. Cg1···Cg1i distance is 3.727 (9)Å, symmetry code: (i) -1 - x, -y, 1 - z; Cg1···Cg1ii distance is 3.858 (9)Å, symmetry code: (ii) -x, -y, 1 - z; Cg1 is the centroid of the C2/C7 ring).

Related literature top

For the preparation of the title compound, see: Ghorbani-Vaghei et al. (2009). For its applications, see: Chen et al. (2002, 2006, 2007); Chow et al. (2005); Jansen et al. (2010); Pandithavidana et al. (2009); Swartz et al. (2005). For related structures, see: Kuś & Jones (2003); Qin et al. (2005); Sim et al. (2001). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by bromination of o-xylene with N,N,N',N'- tetrabromobenzene-1,3-disulfonamide in CCl4, according to the literature method (Ghorbani-Vaghei et al., 2009). Colorless crystals suitable for the crystallographic studies were isolated over a period of four weeks by slow evaporation from the chloroform solution.

Refinement top

H atoms were positioned geometrically (C—H = 0.93 and 0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A section of the crystal packing of the title compound, viewed along the a axis. H atoms have been omitted for clarity.
1,2-Bis(dibromomethyl)benzene top
Crystal data top
C8H6Br4Z = 2
Mr = 421.77F(000) = 388
Triclinic, P1Dx = 2.591 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0222 (8) ÅCell parameters from 1856 reflections
b = 7.7313 (9) Åθ = 2.8–29.1°
c = 10.5927 (12) ŵ = 14.83 mm1
α = 108.473 (10)°T = 297 K
β = 97.108 (9)°Parallelepiped, colorless
γ = 90.394 (9)°0.58 × 0.48 × 0.36 mm
V = 540.61 (11) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2469 independent reflections
Radiation source: fine-focus sealed tube1297 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω scansθmax = 29.2°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 98
Tmin = 0.122, Tmax = 1.000k = 1010
4575 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.091Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.258H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0875P)2 + 18.1246P]
where P = (Fo2 + 2Fc2)/3
2469 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 1.62 e Å3
0 restraintsΔρmin = 1.27 e Å3
Crystal data top
C8H6Br4γ = 90.394 (9)°
Mr = 421.77V = 540.61 (11) Å3
Triclinic, P1Z = 2
a = 7.0222 (8) ÅMo Kα radiation
b = 7.7313 (9) ŵ = 14.83 mm1
c = 10.5927 (12) ÅT = 297 K
α = 108.473 (10)°0.58 × 0.48 × 0.36 mm
β = 97.108 (9)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2469 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1297 reflections with I > 2σ(I)
Tmin = 0.122, Tmax = 1.000Rint = 0.073
4575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0910 restraints
wR(F2) = 0.258H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0875P)2 + 18.1246P]
where P = (Fo2 + 2Fc2)/3
2469 reflectionsΔρmax = 1.62 e Å3
109 parametersΔρmin = 1.27 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.0868 (3)0.1807 (3)0.90582 (19)0.0434 (6)
Br20.6361 (3)0.1787 (3)0.9231 (2)0.0492 (6)
Br30.5867 (3)0.5842 (3)0.7641 (2)0.0488 (6)
Br41.0292 (3)0.5783 (3)0.7275 (2)0.0478 (6)
C10.832 (3)0.078 (3)0.8116 (17)0.036 (4)
H1A0.83110.05330.80030.043*
C20.796 (2)0.094 (2)0.6741 (16)0.030 (4)
C30.769 (2)0.070 (3)0.5681 (18)0.035 (4)
H3A0.78040.18030.58620.042*
C40.725 (2)0.073 (2)0.4342 (17)0.033 (4)
H4A0.70440.18210.36390.040*
C50.714 (2)0.097 (3)0.4101 (16)0.032 (4)
H5A0.69240.10040.32240.039*
C60.735 (2)0.255 (2)0.5136 (16)0.031 (4)
H6A0.71830.36440.49540.037*
C70.781 (2)0.261 (2)0.6455 (15)0.024 (3)
C80.821 (2)0.436 (2)0.7532 (17)0.033 (4)
H8A0.85330.41230.83870.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0330 (10)0.0605 (15)0.0388 (10)0.0108 (9)0.0006 (8)0.0207 (10)
Br20.0364 (11)0.0769 (17)0.0443 (11)0.0028 (10)0.0117 (9)0.0313 (11)
Br30.0386 (11)0.0406 (13)0.0671 (14)0.0169 (9)0.0072 (9)0.0165 (11)
Br40.0406 (11)0.0372 (13)0.0653 (14)0.0084 (8)0.0102 (9)0.0148 (10)
C10.047 (10)0.027 (10)0.041 (10)0.009 (8)0.002 (8)0.024 (8)
C20.019 (7)0.033 (11)0.033 (9)0.003 (7)0.000 (6)0.008 (8)
C30.016 (8)0.038 (11)0.051 (11)0.004 (7)0.006 (7)0.014 (9)
C40.040 (10)0.026 (10)0.033 (9)0.005 (7)0.017 (8)0.003 (8)
C50.024 (8)0.042 (11)0.025 (8)0.015 (7)0.008 (7)0.001 (8)
C60.042 (10)0.015 (9)0.029 (8)0.006 (7)0.009 (7)0.003 (7)
C70.019 (7)0.026 (9)0.032 (8)0.003 (6)0.007 (6)0.013 (7)
C80.032 (9)0.030 (11)0.038 (9)0.011 (7)0.003 (7)0.014 (8)
Geometric parameters (Å, º) top
Br1—C11.965 (17)C3—H3A0.9300
Br2—C11.932 (19)C4—C51.42 (3)
Br3—C82.003 (18)C4—H4A0.9300
Br4—C81.922 (15)C5—C61.35 (2)
C1—C21.49 (2)C5—H5A0.9300
C1—H1A0.9800C6—C71.38 (2)
C2—C71.42 (2)C6—H6A0.9300
C2—C31.40 (2)C7—C81.47 (2)
C3—C41.41 (2)C8—H8A0.9800
C2—C1—Br2113.8 (12)C6—C5—C4120.4 (16)
C2—C1—Br1112.7 (11)C6—C5—H5A119.8
Br2—C1—Br1110.0 (9)C4—C5—H5A119.8
C2—C1—H1A106.6C5—C6—C7122.7 (17)
Br2—C1—H1A106.6C5—C6—H6A118.6
Br1—C1—H1A106.6C7—C6—H6A118.6
C7—C2—C3119.0 (16)C6—C7—C2118.7 (15)
C7—C2—C1124.9 (15)C6—C7—C8120.6 (15)
C3—C2—C1116.0 (16)C2—C7—C8120.7 (14)
C4—C3—C2121.2 (17)C7—C8—Br4112.8 (11)
C4—C3—H3A119.4C7—C8—Br3110.0 (11)
C2—C3—H3A119.4Br4—C8—Br3108.1 (9)
C5—C4—C3117.9 (16)C7—C8—H8A108.6
C5—C4—H4A121.1Br4—C8—H8A108.6
C3—C4—H4A121.1Br3—C8—H8A108.6
Br2—C1—C2—C761.2 (18)C5—C6—C7—C8174.1 (15)
Br1—C1—C2—C765.0 (19)C3—C2—C7—C62 (2)
Br2—C1—C2—C3117.0 (14)C1—C2—C7—C6176.1 (15)
Br1—C1—C2—C3116.9 (14)C3—C2—C7—C8175.9 (14)
C7—C2—C3—C41 (2)C1—C2—C7—C86 (2)
C1—C2—C3—C4177.2 (14)C6—C7—C8—Br458.1 (18)
C2—C3—C4—C52 (2)C2—C7—C8—Br4119.7 (14)
C3—C4—C5—C63 (2)C6—C7—C8—Br362.6 (16)
C4—C5—C6—C75 (3)C2—C7—C8—Br3119.6 (13)
C5—C6—C7—C24 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br10.982.643.364 (16)131
C8—H8A···Br20.982.783.420 (16)124

Experimental details

Crystal data
Chemical formulaC8H6Br4
Mr421.77
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)7.0222 (8), 7.7313 (9), 10.5927 (12)
α, β, γ (°)108.473 (10), 97.108 (9), 90.394 (9)
V3)540.61 (11)
Z2
Radiation typeMo Kα
µ (mm1)14.83
Crystal size (mm)0.58 × 0.48 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.122, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4575, 2469, 1297
Rint0.073
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.091, 0.258, 1.04
No. of reflections2469
No. of parameters109
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0875P)2 + 18.1246P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.62, 1.27

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Br10.982.643.364 (16)131
C8—H8A···Br20.982.783.420 (16)124
 

Acknowledgements

This work was supported by the National Science Council (NSC 99–2113-M-035–001-MY2) and Feng Chia University in Taiwan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationChen, K.-Y., Chow, T. J., Chou, P.-T., Cheng, Y.-M. & Tsai, S.-H. (2002). Tetrahedron Lett. 43, 8115–8119.  Web of Science CrossRef CAS
First citationChen, K.-Y., Hsieh, C.-C., Cheng, Y.-M., Lai, C.-H., Chou, P.-T. & Chow, T. J. (2006). J. Phys. Chem. A, 110, 12136–12144.  Web of Science CrossRef PubMed CAS
First citationChen, K.-Y., Hsing, H.-H., Wu, C.-C., Hwang, J.-J. & Chow, T. J. (2007). Chem. Commun. 10, 1065–1067.  Web of Science CrossRef
First citationChow, T. J., Pan, Y.-T., Yeh, Y.-S., Wen, Y.-S., Chen, K.-Y. & Chou, P.-T. (2005). Tetrahedron, 61, 6967–6975.  Web of Science CSD CrossRef CAS
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals
First citationGhorbani-Vaghei, R., Chegini, M., Veisi, H. & Karimi-Tabar, M. (2009). Tetrahedron Lett. 50, 1861–1865.  CAS
First citationJansen, G., Kahlert, B., Klärner, F.-G., Boese, R. & Bläser, D. (2010). J. Am. Chem. Soc., 132, 8581–8592.  Web of Science CSD CrossRef CAS PubMed
First citationKuś, P. & Jones, P. G. (2003). Acta Cryst. E59, o899–o900.  Web of Science CSD CrossRef IUCr Journals
First citationPandithavidana, D. R., Poloukhtine, A. & Popik, V. V. (2009). J. Am. Chem. Soc. 131, 351–356.  Web of Science CrossRef PubMed CAS
First citationQin, S., Yin, G. & Zhou, B. (2005). Acta Cryst. E61, o3257–o3258.  Web of Science CSD CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSim, W., Lee, J. Y., Kim, J. S., Kim, J.-G. & Suh, I.-H. (2001). Acta Cryst. C57, 293–294.  Web of Science CSD CrossRef CAS IUCr Journals
First citationSwartz, C. R., Parkin, S. R., Bullock, J. E., Anthony, J. E., Mayer, A. C. & Malliaras, G. G. (2005). Org. Lett. 7, 3163–3166.  Web of Science CSD CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds