[Journal logo]

Volume 68 
Part 1 
Page o107  
January 2012  

Received 5 October 2011
Accepted 1 December 2011
Online 14 December 2011

Key indicators
Single-crystal X-ray study
T = 298 K
Mean [sigma](C-C) = 0.008 Å
R = 0.056
wR = 0.172
Data-to-parameter ratio = 8.0
Details
Open access

20,23,26,29,32,35,38,41-Octaoxa-5,9,13-triazapentacyclo[15.14.10.13,30.17,11.115,19]tetratetraconta-1,3(42),7,9,11(44),15(43),16,18,30-nonaene-6,12-dione acetone monosolvate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
Correspondence e-mail: jiang6128@yahoo.com.cn

In the crystal structure of the title compound, C33H39N3O10·C3H6O, the acetone molecule is encapsulated into the cavity of the cryptand and fixed by two N-H...O and one C-H...O hydrogen bond. C-H...O and C-H...N interactions link neighbouring cryptands. The dihedral angles between the pyridine ring and the benzene rings are 86.47 (17) and 85.53 (13)°.

Related literature

Cryptands have been utilized as hosts to form supramolecular assemblies, see: Balzani et al. (2000[Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. (2000). Angew. Chem. Int. Ed. 39, 3348-3391.]). Crown ether-based cryptands can form more stable supramolecular complexes with paraquat, paraquat derivatives, diquat and secondary ammonium salts than the corresponding simple crown ethers by virtue of multiple non-covalent interactions, see: Huang et al. (2005[Huang, F. H., Zakharov, L. N., Rheingold, A. L., Ashraf-Khorassani, M. & Gibson, H. W. (2005). J. Org. Chem. 70, 809-813.]). The title compound was obtained by the reaction of bis(5-aminomethyl-1,3-phenylene)-26-crown-8 (Wester & Voegtle, 1980[Wester, N. & Voegtle, F. (1980). Chem. Ber. 113, 1487-1493.]) with pyridine-3,5-dicarbonyl dichloride (Chen et al., 2010[Chen, M. J., Han, S. J., Jiang, L. S., Zhou, S. G., Jiang, F., Xu, Z. K., Liang, J. D. & Zhang, S. H. (2010). Chem. Commun., 46, 3932-3934.]).

[Scheme 1]

Experimental

Crystal data
  • C33H39N3O10·C3H6O

  • Mr = 695.75

  • Tetragonal, P 43

  • a = 14.232 (3) Å

  • c = 17.615 (4) Å

  • V = 3567.8 (12) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.10 mm-1

  • T = 298 K

  • 0.32 × 0.28 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.976

  • 19761 measured reflections

  • 3626 independent reflections

  • 2127 reflections with I > 2[sigma](I)

  • Rint = 0.059

Refinement
  • R[F2 > 2[sigma](F2)] = 0.056

  • wR(F2) = 0.172

  • S = 1.00

  • 3626 reflections

  • 453 parameters

  • 1 restraint

  • H-atom parameters constrained

  • [Delta][rho]max = 0.33 e Å-3

  • [Delta][rho]min = -0.19 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1...O1 0.86 2.36 3.209 (7) 170
N2-H2...O1 0.86 2.53 3.382 (7) 172
C9-H9...O1 0.93 2.43 3.271 (7) 151
C3-H3...O11i 0.93 2.46 3.356 (6) 161
C33-H33B...N3ii 0.97 2.60 3.401 (8) 140
Symmetry codes: (i) [-y+2, x, z-{\script{1\over 4}}]; (ii) [-y+1, x, z+{\script{3\over 4}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2033 ).


Acknowledgements

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (Nos. 21072066 and 20672038) and the Natural Science Foundation of Guangdong Province of China (No. 8151063101000015).

References

Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. (2000). Angew. Chem. Int. Ed. 39, 3348-3391.  [CrossRef] [ChemPort]
Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, M. J., Han, S. J., Jiang, L. S., Zhou, S. G., Jiang, F., Xu, Z. K., Liang, J. D. & Zhang, S. H. (2010). Chem. Commun., 46, 3932-3934.  [CSD] [CrossRef] [ChemPort]
Huang, F. H., Zakharov, L. N., Rheingold, A. L., Ashraf-Khorassani, M. & Gibson, H. W. (2005). J. Org. Chem. 70, 809-813.  [CSD] [CrossRef] [PubMed] [ChemPort]
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [details]
Wester, N. & Voegtle, F. (1980). Chem. Ber. 113, 1487-1493.  [CrossRef] [ChemPort]


Acta Cryst (2012). E68, o107  [ doi:10.1107/S1600536811051877 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.