supplementary materials


bg2439 scheme

Acta Cryst. (2012). E68, o119    [ doi:10.1107/S1600536811052780 ]

1-Benzoyl-3-(2,4,5-trichlorophenyl)thiourea

M. K. Rauf, M. Ebihara, A. Badshah and Imtiaz-ud-Din

Abstract top

The benzene and phenyl rings in the title compound, C14H9Cl3N2OS, form a dihedral angle of 40.98 (6)°. The molecule exists in the thione form with typical thiourea C-S [1.666 (2) Å] and C-O [1.227 (3) Å] bond lengths as well as shortened C-N bonds [1.345 (3) and 1.386 (2) Å]. An intramolecular N-H...O hydrogen bond stabilizes the molecular conformation. In the crystal, pairs of N-H...S hydrogen bonds link the molecules into centrosymmetric dimers.

Comment top

Thiourea derivatives are very useful building blocks for the synthesis of a wide range of aliphatic macromolecular and heterocyclic compounds. Thus, benzothiazoles have been prepared from arylthioureas in the presence of bromine (Patil & Chedekel, 1984), 2-aminothiazoles from the condensation of thiourea with α-halocarbonyl compounds (Baily et al., 1996), and 2-Methyl-aminothiazolines from N-(2-hydroxyethyl)-N'-methylthioureas (Namgun et al., 2001). N, N-dialkyl-N-aroylthioureas have been efficiently used for the extraction of Nickle, Palladium and Platinum metals (Koch, 2001). Aliphatic and acylthioureas are well known for their antimicrobial activities (Wegner et al., 1986). Symmetrical and unsymmetrical thioureas have shown antifungal activity against the plant pathogens (Krishnamurthy et al., 1999). We became interested in the synthesis of these thioureas as intermediates in the synthesis of novel guanidines(Murtaza et al., 2009a ; 2009b) and heterocyclic compounds for the systematic study of bioactivity and Complexation behaviour. Hence, we present here the crystal structure of the title compound, (I), Fig. 1. Comparison with N-benzoyl-N'-phenylthioureas [Cambridge Structural Database (Mogul Version 1.7; Allen, 2002) and (Allen et al., 1987)], show the molecule to exist in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. Comparison with N-benzoyl-N'-phenylthioureas (Khawar Rauf et al., 2009a,b) suggests the 2,4,5-trichloro substitution on phenyl ring implies no significant effect on these bond lengths. Compound (I) (Fig. 1) shows the typical Thiourea CS and CO double bonds as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar, as reflected by the torsion angles C1—N2—C2—O1 [-5.0 (3)] and N1—C1—N2—C2 [1.7 (3)]. This is associated with the expected typical thiourea intramolecular N—H···O H–bond (Table 1), forming a six-membered ring commonly observed in this class of compounds (Khawar Rauf et al., 2009a,b). The dihedral angles to the N1 C1 S1 N2 C2 O1 plane are 50.97 (4)° for the ring formed by C3 to C8 and 11.44 (7)° for the ring formed by C9 to C14. The crystal packing shows intramolecular N—H···O and intermolecular N—H···S H–bonds (Table 1, Fig. 2). The Cl atoms are not involved in any type of H–bonds.

Related literature top

For information on thiourea derivatives, see: Patil & Chedekel (1984); Baily et al. (1996); Namgun et al. (2001); Koch (2001); Wegner et al. (1986); Krishnamurthy et al. (1999); Murtaza et al. (2009a,b). For related structures, see: Khawar Rauf et al. (2009a,b). For bond-length data, see: Allen et al. (1987). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Freshly prepared benzoylisothiocyanate (1.63 g, 10 mmol) was dissolved in acetone (50 ml) and stirred for 45 minutes. Afterwards neat 2,4,5-trichloroaniline(1.96 g, 10 mmol) was added and the resulting mixture was stirred for 1 h. The reaction mixture was then poured into acidified water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/1,1-dichloromethane (1:1 v/v) to give fine crystals of the title compound (I), with an overall yield of 95%. Full spectroscopic and physical characterization will be reported elsewhere.

Refinement top

Hydrogen atoms were included in calculated positions and refined as riding on their parent atom with N—H = 0.86 Å and Uiso(H) = 1.2U(Neq), C—H = 0.93 Å and Uiso(H) = 1.2U(Ceq).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation and Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation and Rigaku, 2001); data reduction: CrystalClear (Molecular Structure Corporation and Rigaku, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and TEXSAN (Molecular Structure Corporation and Rigaku, 2004); software used to prepare material for publication: Yadokari-XG_2009 (Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular diagram of (I). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of (I) viewed along b-axis. Hydrogen bonds shown as dashed lines.
1-Benzoyl-3-(2,4,5-trichlorophenyl)thiourea top
Crystal data top
C14H9Cl3N2OSF(000) = 1456
Mr = 359.64Dx = 1.657 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 3588 reflections
a = 33.111 (8) Åθ = 3.4–27.5°
b = 3.8413 (7) ŵ = 0.78 mm1
c = 25.220 (6) ÅT = 296 K
β = 115.995 (2)°Prism, colorless
V = 2883.1 (11) Å30.20 × 0.20 × 0.20 mm
Z = 8
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3264 independent reflections
Radiation source: Sealed Tube2686 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.039
Detector resolution: 14.6306 pixels mm-1θmax = 27.5°, θmin = 3.2°
dtprofit.ref scansh = 4231
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
k = 34
Tmin = 0.800, Tmax = 1.000l = 2832
11264 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.4746P]
where P = (Fo2 + 2Fc2)/3
3264 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C14H9Cl3N2OSV = 2883.1 (11) Å3
Mr = 359.64Z = 8
Monoclinic, C2/cMo Kα radiation
a = 33.111 (8) ŵ = 0.78 mm1
b = 3.8413 (7) ÅT = 296 K
c = 25.220 (6) Å0.20 × 0.20 × 0.20 mm
β = 115.995 (2)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3264 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2686 reflections with I > 2σ(I)
Tmin = 0.800, Tmax = 1.000Rint = 0.039
11264 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.084Δρmax = 0.42 e Å3
S = 1.06Δρmin = 0.39 e Å3
3264 reflectionsAbsolute structure: ?
190 parametersFlack parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. ????

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.43321 (7)0.2438 (4)0.27137 (9)0.0156 (4)
S10.435250 (18)0.44890 (12)0.21438 (2)0.01721 (13)
N10.39554 (6)0.1658 (4)0.27661 (7)0.0169 (4)
H10.39850.07850.30950.020*
N20.47294 (6)0.1480 (4)0.31893 (7)0.0161 (4)
H20.49730.20180.31660.019*
C20.47806 (7)0.0243 (5)0.36979 (9)0.0183 (4)
O10.44567 (5)0.0919 (4)0.37941 (7)0.0262 (4)
C30.35153 (7)0.2166 (5)0.23204 (9)0.0159 (4)
C40.31883 (7)0.3736 (5)0.24474 (9)0.0169 (4)
C50.27552 (7)0.4225 (4)0.20171 (10)0.0183 (5)
H50.25420.52740.21100.022*
C60.26409 (7)0.3141 (5)0.14447 (9)0.0175 (4)
C70.29612 (7)0.1512 (5)0.13109 (9)0.0170 (4)
C80.33904 (7)0.0996 (4)0.17480 (9)0.0157 (4)
H80.36000.01540.16580.019*
Cl10.332696 (18)0.51597 (12)0.31608 (2)0.02171 (14)
Cl20.210441 (17)0.39364 (12)0.09054 (2)0.02358 (14)
Cl30.283000 (19)0.00640 (12)0.06075 (2)0.02230 (14)
C90.52450 (7)0.1244 (4)0.41257 (9)0.0160 (4)
C100.56177 (7)0.1060 (5)0.40132 (10)0.0202 (5)
H100.55890.02090.36530.024*
C110.60327 (7)0.2139 (5)0.44354 (10)0.0262 (5)
H110.62820.20270.43560.031*
C120.60807 (7)0.3382 (5)0.49742 (10)0.0236 (5)
H120.63610.41000.52570.028*
C130.57106 (8)0.3556 (5)0.50921 (10)0.0278 (5)
H130.57410.43750.54550.033*
C140.52959 (8)0.2506 (5)0.46687 (10)0.0250 (5)
H140.50470.26440.47470.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0159 (11)0.0153 (9)0.0139 (11)0.0006 (7)0.0050 (9)0.0028 (7)
S10.0155 (3)0.0206 (2)0.0151 (3)0.00181 (18)0.0063 (2)0.00292 (18)
N10.0143 (9)0.0239 (8)0.0117 (9)0.0017 (6)0.0048 (8)0.0036 (7)
N20.0117 (9)0.0228 (8)0.0127 (9)0.0001 (6)0.0042 (8)0.0017 (6)
C20.0181 (12)0.0218 (10)0.0136 (11)0.0013 (8)0.0058 (10)0.0001 (8)
O10.0157 (9)0.0441 (9)0.0203 (9)0.0027 (6)0.0093 (8)0.0103 (7)
C30.0135 (11)0.0174 (9)0.0143 (11)0.0006 (7)0.0037 (9)0.0029 (7)
C40.0176 (12)0.0175 (9)0.0162 (11)0.0011 (7)0.0080 (10)0.0005 (7)
C50.0143 (11)0.0184 (9)0.0237 (13)0.0005 (7)0.0096 (10)0.0022 (8)
C60.0108 (11)0.0175 (9)0.0201 (12)0.0010 (7)0.0031 (9)0.0052 (8)
C70.0180 (11)0.0170 (9)0.0142 (11)0.0017 (7)0.0054 (9)0.0007 (7)
C80.0143 (11)0.0161 (9)0.0174 (11)0.0009 (7)0.0076 (9)0.0011 (8)
Cl10.0205 (3)0.0287 (3)0.0170 (3)0.00048 (19)0.0092 (2)0.00330 (19)
Cl20.0140 (3)0.0281 (3)0.0231 (3)0.00175 (19)0.0030 (2)0.0041 (2)
Cl30.0202 (3)0.0295 (3)0.0133 (3)0.00027 (19)0.0038 (2)0.00146 (19)
C90.0144 (11)0.0167 (9)0.0138 (11)0.0013 (7)0.0033 (9)0.0008 (7)
C100.0217 (12)0.0211 (10)0.0182 (12)0.0011 (8)0.0091 (10)0.0033 (8)
C110.0178 (12)0.0298 (11)0.0301 (14)0.0022 (9)0.0097 (11)0.0056 (9)
C120.0176 (12)0.0218 (10)0.0213 (13)0.0016 (8)0.0007 (10)0.0033 (8)
C130.0291 (14)0.0337 (12)0.0168 (13)0.0025 (9)0.0066 (11)0.0055 (9)
C140.0193 (13)0.0349 (11)0.0214 (13)0.0032 (9)0.0093 (11)0.0054 (9)
Geometric parameters (Å, °) top
C1—N11.345 (3)C6—Cl21.727 (2)
C1—N21.386 (2)C7—C81.379 (3)
C1—S11.666 (2)C7—Cl31.723 (2)
N1—C31.410 (2)C8—H80.9300
N1—H10.8600C9—C101.384 (3)
N2—C21.386 (3)C9—C141.391 (3)
N2—H20.8600C10—C111.382 (3)
C2—O11.227 (3)C10—H100.9300
C2—C91.491 (3)C11—C121.382 (3)
C3—C81.391 (3)C11—H110.9300
C3—C41.394 (3)C12—C131.383 (3)
C4—C51.380 (3)C12—H120.9300
C4—Cl11.739 (2)C13—C141.379 (3)
C5—C61.386 (3)C13—H130.9300
C5—H50.9300C14—H140.9300
C6—C71.394 (3)
N1—C1—N2115.16 (18)C8—C7—C6119.9 (2)
N1—C1—S1125.47 (16)C8—C7—Cl3118.89 (16)
N2—C1—S1119.36 (15)C6—C7—Cl3121.24 (17)
C1—N1—C3124.74 (18)C7—C8—C3121.12 (19)
C1—N1—H1117.6C7—C8—H8119.4
C3—N1—H1117.6C3—C8—H8119.4
C2—N2—C1127.76 (18)C10—C9—C14119.02 (19)
C2—N2—H2116.1C10—C9—C2124.6 (2)
C1—N2—H2116.1C14—C9—C2116.36 (19)
O1—C2—N2121.4 (2)C11—C10—C9120.1 (2)
O1—C2—C9121.06 (19)C11—C10—H10119.9
N2—C2—C9117.51 (18)C9—C10—H10119.9
C8—C3—C4118.10 (19)C12—C11—C10120.5 (2)
C8—C3—N1121.05 (18)C12—C11—H11119.7
C4—C3—N1120.81 (19)C10—C11—H11119.7
C5—C4—C3121.5 (2)C11—C12—C13119.8 (2)
C5—C4—Cl1118.90 (16)C11—C12—H12120.1
C3—C4—Cl1119.63 (16)C13—C12—H12120.1
C4—C5—C6119.57 (19)C14—C13—C12119.6 (2)
C4—C5—H5120.2C14—C13—H13120.2
C6—C5—H5120.2C12—C13—H13120.2
C5—C6—C7119.82 (19)C13—C14—C9120.9 (2)
C5—C6—Cl2118.96 (16)C13—C14—H14119.5
C7—C6—Cl2121.20 (17)C9—C14—H14119.5
N2—C1—N1—C3175.25 (16)C5—C6—C7—Cl3178.95 (14)
S1—C1—N1—C36.3 (3)Cl2—C6—C7—Cl32.6 (2)
N1—C1—N2—C21.7 (3)C6—C7—C8—C31.9 (3)
S1—C1—N2—C2179.68 (15)Cl3—C7—C8—C3178.94 (14)
C1—N2—C2—O15.0 (3)C4—C3—C8—C72.9 (3)
C1—N2—C2—C9175.03 (17)N1—C3—C8—C7179.55 (16)
C1—N1—C3—C849.5 (3)O1—C2—C9—C10169.75 (18)
C1—N1—C3—C4133.0 (2)N2—C2—C9—C1010.3 (3)
C8—C3—C4—C51.9 (3)O1—C2—C9—C149.0 (3)
N1—C3—C4—C5179.45 (17)N2—C2—C9—C14170.96 (17)
C8—C3—C4—Cl1178.74 (14)C14—C9—C10—C110.4 (3)
N1—C3—C4—Cl11.2 (2)C2—C9—C10—C11178.33 (18)
C3—C4—C5—C60.1 (3)C9—C10—C11—C120.5 (3)
Cl1—C4—C5—C6179.25 (14)C10—C11—C12—C130.1 (3)
C4—C5—C6—C71.2 (3)C11—C12—C13—C140.4 (3)
C4—C5—C6—Cl2177.30 (14)C12—C13—C14—C90.6 (3)
C5—C6—C7—C80.2 (3)C10—C9—C14—C130.2 (3)
Cl2—C6—C7—C8178.26 (14)C2—C9—C14—C13178.98 (19)
Hydrogen-bond geometry (Å, °) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.892.586 (2)137.
N2—H2···S1i0.862.833.6771 (19)168.
Symmetry codes: (i) −x+1, y, −z+1/2.
Table 1
Hydrogen-bond geometry (Å, °)
top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.861.892.586 (2)137.
N2—H2···S1i0.862.833.6771 (19)168.
Symmetry codes: (i) −x+1, y, −z+1/2.
Acknowledgements top

MKR is grateful to the Quaid-i-Azam University, Islamabad, for financial support for a post-doctoral fellowship.

references
References top

Allen, F. H. (2002). Acta Cryst. B58, 380–388.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Baily, N., Dean, A. W., Judd, D. B., Middlemiss, D., Storer, R. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett. 6, 1409–1413.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.

Khawar Rauf, M., Bolte, M. & Badshah, A. (2009a). Acta Cryst. E65, o177.

Khawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o240.

Koch, K. R. (2001). Coord. Chem. Rev. 216–217, 473–488.

Krishnamurthy, R., Govindaraghavan, S. & Narayanasamy, J. (1999). J. Pestic. Sci. 52, 145–151.

Molecular Structure Corporation and Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Molecular Structure Corporation and Rigaku (2004). TEXSAN. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

Murtaza, G., Ebihara, M., Said, M., Khawar Rauf, M. & Anwar, S. (2009a). Acta Cryst. E65, o2297–o2298.

Murtaza, G., Hanif-Ur-Rehman,, Khawar Rauf, M., Ebihara, M. & Badshah, A. (2009b). Acta Cryst. E65, o343.

Namgun, L., Mi-Hyun, C. & Taek, H. K. (2001). J. Korean Chem. Soc. 45, 96–99.

Patil, D. G. & Chedekel, M. R. (1984). J. Org. Chem. 49, 997–1000.

Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wegner, P., Hans, R., Frank, H. & Joppien, H. (1986). Eur. Patent No. 190611.